//===-- Operations.cpp ----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/FuzzMutate/Operations.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" using namespace llvm; using namespace fuzzerop; void llvm::describeFuzzerIntOps(std::vector &Ops) { Ops.push_back(binOpDescriptor(1, Instruction::Add)); Ops.push_back(binOpDescriptor(1, Instruction::Sub)); Ops.push_back(binOpDescriptor(1, Instruction::Mul)); Ops.push_back(binOpDescriptor(1, Instruction::SDiv)); Ops.push_back(binOpDescriptor(1, Instruction::UDiv)); Ops.push_back(binOpDescriptor(1, Instruction::SRem)); Ops.push_back(binOpDescriptor(1, Instruction::URem)); Ops.push_back(binOpDescriptor(1, Instruction::Shl)); Ops.push_back(binOpDescriptor(1, Instruction::LShr)); Ops.push_back(binOpDescriptor(1, Instruction::AShr)); Ops.push_back(binOpDescriptor(1, Instruction::And)); Ops.push_back(binOpDescriptor(1, Instruction::Or)); Ops.push_back(binOpDescriptor(1, Instruction::Xor)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_EQ)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_NE)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_UGT)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_UGE)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_ULT)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_ULE)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SGT)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SGE)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SLT)); Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SLE)); } void llvm::describeFuzzerFloatOps(std::vector &Ops) { Ops.push_back(binOpDescriptor(1, Instruction::FAdd)); Ops.push_back(binOpDescriptor(1, Instruction::FSub)); Ops.push_back(binOpDescriptor(1, Instruction::FMul)); Ops.push_back(binOpDescriptor(1, Instruction::FDiv)); Ops.push_back(binOpDescriptor(1, Instruction::FRem)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_FALSE)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OEQ)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OGT)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OGE)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OLT)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OLE)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ONE)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ORD)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UNO)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UEQ)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UGT)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UGE)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ULT)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ULE)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UNE)); Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_TRUE)); } void llvm::describeFuzzerControlFlowOps( std::vector &Ops) { Ops.push_back(splitBlockDescriptor(1)); } void llvm::describeFuzzerPointerOps(std::vector &Ops) { Ops.push_back(gepDescriptor(1)); } void llvm::describeFuzzerAggregateOps( std::vector &Ops) { Ops.push_back(extractValueDescriptor(1)); Ops.push_back(insertValueDescriptor(1)); } void llvm::describeFuzzerVectorOps(std::vector &Ops) { Ops.push_back(extractElementDescriptor(1)); Ops.push_back(insertElementDescriptor(1)); Ops.push_back(shuffleVectorDescriptor(1)); } OpDescriptor llvm::fuzzerop::binOpDescriptor(unsigned Weight, Instruction::BinaryOps Op) { auto buildOp = [Op](ArrayRef Srcs, Instruction *Inst) { return BinaryOperator::Create(Op, Srcs[0], Srcs[1], "B", Inst); }; switch (Op) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: return {Weight, {anyIntType(), matchFirstType()}, buildOp}; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: return {Weight, {anyFloatType(), matchFirstType()}, buildOp}; case Instruction::BinaryOpsEnd: llvm_unreachable("Value out of range of enum"); } llvm_unreachable("Covered switch"); } OpDescriptor llvm::fuzzerop::cmpOpDescriptor(unsigned Weight, Instruction::OtherOps CmpOp, CmpInst::Predicate Pred) { auto buildOp = [CmpOp, Pred](ArrayRef Srcs, Instruction *Inst) { return CmpInst::Create(CmpOp, Pred, Srcs[0], Srcs[1], "C", Inst); }; switch (CmpOp) { case Instruction::ICmp: return {Weight, {anyIntType(), matchFirstType()}, buildOp}; case Instruction::FCmp: return {Weight, {anyFloatType(), matchFirstType()}, buildOp}; default: llvm_unreachable("CmpOp must be ICmp or FCmp"); } } OpDescriptor llvm::fuzzerop::splitBlockDescriptor(unsigned Weight) { auto buildSplitBlock = [](ArrayRef Srcs, Instruction *Inst) { BasicBlock *Block = Inst->getParent(); BasicBlock *Next = Block->splitBasicBlock(Inst, "BB"); // If it was an exception handling block, we are done. if (Block->isEHPad()) return nullptr; // Loop back on this block by replacing the unconditional forward branch // with a conditional with a backedge. if (Block != &Block->getParent()->getEntryBlock()) { BranchInst::Create(Block, Next, Srcs[0], Block->getTerminator()); Block->getTerminator()->eraseFromParent(); // We need values for each phi in the block. Since there isn't a good way // to do a variable number of input values currently, we just fill them // with undef. for (PHINode &PHI : Block->phis()) PHI.addIncoming(UndefValue::get(PHI.getType()), Block); } return nullptr; }; SourcePred isInt1Ty{[](ArrayRef, const Value *V) { return V->getType()->isIntegerTy(1); }, std::nullopt}; return {Weight, {isInt1Ty}, buildSplitBlock}; } OpDescriptor llvm::fuzzerop::gepDescriptor(unsigned Weight) { auto buildGEP = [](ArrayRef Srcs, Instruction *Inst) { // TODO: It would be better to generate a random type here, rather than // generating a random value and picking its type. Type *Ty = Srcs[0]->getType()->isOpaquePointerTy() ? Srcs[1]->getType() : Srcs[0]->getType()->getNonOpaquePointerElementType(); auto Indices = ArrayRef(Srcs).drop_front(2); return GetElementPtrInst::Create(Ty, Srcs[0], Indices, "G", Inst); }; // TODO: Handle aggregates and vectors // TODO: Support multiple indices. // TODO: Try to avoid meaningless accesses. SourcePred sizedType( [](ArrayRef, const Value *V) { return V->getType()->isSized(); }, std::nullopt); return {Weight, {sizedPtrType(), sizedType, anyIntType()}, buildGEP}; } static uint64_t getAggregateNumElements(Type *T) { assert(T->isAggregateType() && "Not a struct or array"); if (isa(T)) return T->getStructNumElements(); return T->getArrayNumElements(); } static SourcePred validExtractValueIndex() { auto Pred = [](ArrayRef Cur, const Value *V) { if (auto *CI = dyn_cast(V)) if (!CI->uge(getAggregateNumElements(Cur[0]->getType()))) return true; return false; }; auto Make = [](ArrayRef Cur, ArrayRef Ts) { std::vector Result; auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext()); uint64_t N = getAggregateNumElements(Cur[0]->getType()); // Create indices at the start, end, and middle, but avoid dups. Result.push_back(ConstantInt::get(Int32Ty, 0)); if (N > 1) Result.push_back(ConstantInt::get(Int32Ty, N - 1)); if (N > 2) Result.push_back(ConstantInt::get(Int32Ty, N / 2)); return Result; }; return {Pred, Make}; } OpDescriptor llvm::fuzzerop::extractValueDescriptor(unsigned Weight) { auto buildExtract = [](ArrayRef Srcs, Instruction *Inst) { // TODO: It's pretty inefficient to shuffle this all through constants. unsigned Idx = cast(Srcs[1])->getZExtValue(); return ExtractValueInst::Create(Srcs[0], {Idx}, "E", Inst); }; // TODO: Should we handle multiple indices? return {Weight, {anyAggregateType(), validExtractValueIndex()}, buildExtract}; } static SourcePred matchScalarInAggregate() { auto Pred = [](ArrayRef Cur, const Value *V) { if (auto *ArrayT = dyn_cast(Cur[0]->getType())) return V->getType() == ArrayT->getElementType(); auto *STy = cast(Cur[0]->getType()); for (int I = 0, E = STy->getNumElements(); I < E; ++I) if (STy->getTypeAtIndex(I) == V->getType()) return true; return false; }; auto Make = [](ArrayRef Cur, ArrayRef) { if (auto *ArrayT = dyn_cast(Cur[0]->getType())) return makeConstantsWithType(ArrayT->getElementType()); std::vector Result; auto *STy = cast(Cur[0]->getType()); for (int I = 0, E = STy->getNumElements(); I < E; ++I) makeConstantsWithType(STy->getTypeAtIndex(I), Result); return Result; }; return {Pred, Make}; } static SourcePred validInsertValueIndex() { auto Pred = [](ArrayRef Cur, const Value *V) { if (auto *CI = dyn_cast(V)) if (CI->getBitWidth() == 32) { Type *Indexed = ExtractValueInst::getIndexedType(Cur[0]->getType(), CI->getZExtValue()); return Indexed == Cur[1]->getType(); } return false; }; auto Make = [](ArrayRef Cur, ArrayRef Ts) { std::vector Result; auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext()); auto *BaseTy = Cur[0]->getType(); int I = 0; while (Type *Indexed = ExtractValueInst::getIndexedType(BaseTy, I)) { if (Indexed == Cur[1]->getType()) Result.push_back(ConstantInt::get(Int32Ty, I)); ++I; } return Result; }; return {Pred, Make}; } OpDescriptor llvm::fuzzerop::insertValueDescriptor(unsigned Weight) { auto buildInsert = [](ArrayRef Srcs, Instruction *Inst) { // TODO: It's pretty inefficient to shuffle this all through constants. unsigned Idx = cast(Srcs[2])->getZExtValue(); return InsertValueInst::Create(Srcs[0], Srcs[1], {Idx}, "I", Inst); }; return { Weight, {anyAggregateType(), matchScalarInAggregate(), validInsertValueIndex()}, buildInsert}; } OpDescriptor llvm::fuzzerop::extractElementDescriptor(unsigned Weight) { auto buildExtract = [](ArrayRef Srcs, Instruction *Inst) { return ExtractElementInst::Create(Srcs[0], Srcs[1], "E", Inst); }; // TODO: Try to avoid undefined accesses. return {Weight, {anyVectorType(), anyIntType()}, buildExtract}; } OpDescriptor llvm::fuzzerop::insertElementDescriptor(unsigned Weight) { auto buildInsert = [](ArrayRef Srcs, Instruction *Inst) { return InsertElementInst::Create(Srcs[0], Srcs[1], Srcs[2], "I", Inst); }; // TODO: Try to avoid undefined accesses. return {Weight, {anyVectorType(), matchScalarOfFirstType(), anyIntType()}, buildInsert}; } static SourcePred validShuffleVectorIndex() { auto Pred = [](ArrayRef Cur, const Value *V) { return ShuffleVectorInst::isValidOperands(Cur[0], Cur[1], V); }; auto Make = [](ArrayRef Cur, ArrayRef Ts) { auto *FirstTy = cast(Cur[0]->getType()); auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext()); // TODO: It's straighforward to make up reasonable values, but listing them // exhaustively would be insane. Come up with a couple of sensible ones. return std::vector{ UndefValue::get(VectorType::get(Int32Ty, FirstTy->getElementCount()))}; }; return {Pred, Make}; } OpDescriptor llvm::fuzzerop::shuffleVectorDescriptor(unsigned Weight) { auto buildShuffle = [](ArrayRef Srcs, Instruction *Inst) { return new ShuffleVectorInst(Srcs[0], Srcs[1], Srcs[2], "S", Inst); }; return {Weight, {anyVectorType(), matchFirstType(), validShuffleVectorIndex()}, buildShuffle}; }