//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This family of functions identifies calls to builtin functions that allocate // or free memory. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "memory-builtins" enum AllocType : uint8_t { OpNewLike = 1<<0, // allocates; never returns null MallocLike = 1<<1, // allocates; may return null StrDupLike = 1<<2, MallocOrOpNewLike = MallocLike | OpNewLike, AllocLike = MallocOrOpNewLike | StrDupLike, AnyAlloc = AllocLike }; enum class MallocFamily { Malloc, CPPNew, // new(unsigned int) CPPNewAligned, // new(unsigned int, align_val_t) CPPNewArray, // new[](unsigned int) CPPNewArrayAligned, // new[](unsigned long, align_val_t) MSVCNew, // new(unsigned int) MSVCArrayNew, // new[](unsigned int) VecMalloc, KmpcAllocShared, }; StringRef mangledNameForMallocFamily(const MallocFamily &Family) { switch (Family) { case MallocFamily::Malloc: return "malloc"; case MallocFamily::CPPNew: return "_Znwm"; case MallocFamily::CPPNewAligned: return "_ZnwmSt11align_val_t"; case MallocFamily::CPPNewArray: return "_Znam"; case MallocFamily::CPPNewArrayAligned: return "_ZnamSt11align_val_t"; case MallocFamily::MSVCNew: return "??2@YAPAXI@Z"; case MallocFamily::MSVCArrayNew: return "??_U@YAPAXI@Z"; case MallocFamily::VecMalloc: return "vec_malloc"; case MallocFamily::KmpcAllocShared: return "__kmpc_alloc_shared"; } llvm_unreachable("missing an alloc family"); } struct AllocFnsTy { AllocType AllocTy; unsigned NumParams; // First and Second size parameters (or -1 if unused) int FstParam, SndParam; // Alignment parameter for aligned_alloc and aligned new int AlignParam; // Name of default allocator function to group malloc/free calls by family MallocFamily Family; }; // clang-format off // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to // know which functions are nounwind, noalias, nocapture parameters, etc. static const std::pair AllocationFnData[] = { {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, }; // clang-format on static const Function *getCalledFunction(const Value *V, bool &IsNoBuiltin) { // Don't care about intrinsics in this case. if (isa(V)) return nullptr; const auto *CB = dyn_cast(V); if (!CB) return nullptr; IsNoBuiltin = CB->isNoBuiltin(); if (const Function *Callee = CB->getCalledFunction()) return Callee; return nullptr; } /// Returns the allocation data for the given value if it's a call to a known /// allocation function. static std::optional getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, const TargetLibraryInfo *TLI) { // Don't perform a slow TLI lookup, if this function doesn't return a pointer // and thus can't be an allocation function. if (!Callee->getReturnType()->isPointerTy()) return std::nullopt; // Make sure that the function is available. LibFunc TLIFn; if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) return std::nullopt; const auto *Iter = find_if( AllocationFnData, [TLIFn](const std::pair &P) { return P.first == TLIFn; }); if (Iter == std::end(AllocationFnData)) return std::nullopt; const AllocFnsTy *FnData = &Iter->second; if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) return std::nullopt; // Check function prototype. int FstParam = FnData->FstParam; int SndParam = FnData->SndParam; FunctionType *FTy = Callee->getFunctionType(); if (FTy->getReturnType()->isPointerTy() && FTy->getNumParams() == FnData->NumParams && (FstParam < 0 || (FTy->getParamType(FstParam)->isIntegerTy(32) || FTy->getParamType(FstParam)->isIntegerTy(64))) && (SndParam < 0 || FTy->getParamType(SndParam)->isIntegerTy(32) || FTy->getParamType(SndParam)->isIntegerTy(64))) return *FnData; return std::nullopt; } static std::optional getAllocationData(const Value *V, AllocType AllocTy, const TargetLibraryInfo *TLI) { bool IsNoBuiltinCall; if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) if (!IsNoBuiltinCall) return getAllocationDataForFunction(Callee, AllocTy, TLI); return std::nullopt; } static std::optional getAllocationData(const Value *V, AllocType AllocTy, function_ref GetTLI) { bool IsNoBuiltinCall; if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) if (!IsNoBuiltinCall) return getAllocationDataForFunction( Callee, AllocTy, &GetTLI(const_cast(*Callee))); return std::nullopt; } static std::optional getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) { bool IsNoBuiltinCall; const Function *Callee = getCalledFunction(V, IsNoBuiltinCall); if (!Callee) return std::nullopt; // Prefer to use existing information over allocsize. This will give us an // accurate AllocTy. if (!IsNoBuiltinCall) if (std::optional Data = getAllocationDataForFunction(Callee, AnyAlloc, TLI)) return Data; Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); if (Attr == Attribute()) return std::nullopt; std::pair> Args = Attr.getAllocSizeArgs(); AllocFnsTy Result; // Because allocsize only tells us how many bytes are allocated, we're not // really allowed to assume anything, so we use MallocLike. Result.AllocTy = MallocLike; Result.NumParams = Callee->getNumOperands(); Result.FstParam = Args.first; Result.SndParam = Args.second.value_or(-1); // Allocsize has no way to specify an alignment argument Result.AlignParam = -1; return Result; } static AllocFnKind getAllocFnKind(const Value *V) { if (const auto *CB = dyn_cast(V)) { Attribute Attr = CB->getFnAttr(Attribute::AllocKind); if (Attr.isValid()) return AllocFnKind(Attr.getValueAsInt()); } return AllocFnKind::Unknown; } static AllocFnKind getAllocFnKind(const Function *F) { Attribute Attr = F->getFnAttribute(Attribute::AllocKind); if (Attr.isValid()) return AllocFnKind(Attr.getValueAsInt()); return AllocFnKind::Unknown; } static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) { return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown; } static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) { return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown; } /// Tests if a value is a call or invoke to a library function that /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup /// like). bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { return getAllocationData(V, AnyAlloc, TLI).has_value() || checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); } bool llvm::isAllocationFn( const Value *V, function_ref GetTLI) { return getAllocationData(V, AnyAlloc, GetTLI).has_value() || checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); } /// Tests if a value is a call or invoke to a library function that /// allocates memory via new. bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) { return getAllocationData(V, OpNewLike, TLI).has_value(); } /// Tests if a value is a call or invoke to a library function that /// allocates memory similar to malloc or calloc. bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { // TODO: Function behavior does not match name. return getAllocationData(V, MallocOrOpNewLike, TLI).has_value(); } /// Tests if a value is a call or invoke to a library function that /// allocates memory (either malloc, calloc, or strdup like). bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { return getAllocationData(V, AllocLike, TLI).has_value() || checkFnAllocKind(V, AllocFnKind::Alloc); } /// Tests if a functions is a call or invoke to a library function that /// reallocates memory (e.g., realloc). bool llvm::isReallocLikeFn(const Function *F) { return checkFnAllocKind(F, AllocFnKind::Realloc); } Value *llvm::getReallocatedOperand(const CallBase *CB) { if (checkFnAllocKind(CB, AllocFnKind::Realloc)) return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); return nullptr; } bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) { // Note: Removability is highly dependent on the source language. For // example, recent C++ requires direct calls to the global allocation // [basic.stc.dynamic.allocation] to be observable unless part of a new // expression [expr.new paragraph 13]. // Historically we've treated the C family allocation routines and operator // new as removable return isAllocLikeFn(CB, TLI); } Value *llvm::getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI) { const std::optional FnData = getAllocationData(V, AnyAlloc, TLI); if (FnData && FnData->AlignParam >= 0) { return V->getOperand(FnData->AlignParam); } return V->getArgOperandWithAttribute(Attribute::AllocAlign); } /// When we're compiling N-bit code, and the user uses parameters that are /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into /// trouble with APInt size issues. This function handles resizing + overflow /// checks for us. Check and zext or trunc \p I depending on IntTyBits and /// I's value. static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { // More bits than we can handle. Checking the bit width isn't necessary, but // it's faster than checking active bits, and should give `false` in the // vast majority of cases. if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) return false; if (I.getBitWidth() != IntTyBits) I = I.zextOrTrunc(IntTyBits); return true; } std::optional llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref Mapper) { // Note: This handles both explicitly listed allocation functions and // allocsize. The code structure could stand to be cleaned up a bit. std::optional FnData = getAllocationSize(CB, TLI); if (!FnData) return std::nullopt; // Get the index type for this address space, results and intermediate // computations are performed at that width. auto &DL = CB->getModule()->getDataLayout(); const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); // Handle strdup-like functions separately. if (FnData->AllocTy == StrDupLike) { APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); if (!Size) return std::nullopt; // Strndup limits strlen. if (FnData->FstParam > 0) { const ConstantInt *Arg = dyn_cast(Mapper(CB->getArgOperand(FnData->FstParam))); if (!Arg) return std::nullopt; APInt MaxSize = Arg->getValue().zext(IntTyBits); if (Size.ugt(MaxSize)) Size = MaxSize + 1; } return Size; } const ConstantInt *Arg = dyn_cast(Mapper(CB->getArgOperand(FnData->FstParam))); if (!Arg) return std::nullopt; APInt Size = Arg->getValue(); if (!CheckedZextOrTrunc(Size, IntTyBits)) return std::nullopt; // Size is determined by just 1 parameter. if (FnData->SndParam < 0) return Size; Arg = dyn_cast(Mapper(CB->getArgOperand(FnData->SndParam))); if (!Arg) return std::nullopt; APInt NumElems = Arg->getValue(); if (!CheckedZextOrTrunc(NumElems, IntTyBits)) return std::nullopt; bool Overflow; Size = Size.umul_ov(NumElems, Overflow); if (Overflow) return std::nullopt; return Size; } Constant *llvm::getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty) { auto *Alloc = dyn_cast(V); if (!Alloc) return nullptr; // malloc are uninitialized (undef) if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value()) return UndefValue::get(Ty); AllocFnKind AK = getAllocFnKind(Alloc); if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) return UndefValue::get(Ty); if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown) return Constant::getNullValue(Ty); return nullptr; } struct FreeFnsTy { unsigned NumParams; // Name of default allocator function to group malloc/free calls by family MallocFamily Family; }; // clang-format off static const std::pair FreeFnData[] = { {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) }; // clang-format on std::optional getFreeFunctionDataForFunction(const Function *Callee, const LibFunc TLIFn) { const auto *Iter = find_if(FreeFnData, [TLIFn](const std::pair &P) { return P.first == TLIFn; }); if (Iter == std::end(FreeFnData)) return std::nullopt; return Iter->second; } std::optional llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) { bool IsNoBuiltin; const Function *Callee = getCalledFunction(I, IsNoBuiltin); if (Callee == nullptr || IsNoBuiltin) return std::nullopt; LibFunc TLIFn; if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) { // Callee is some known library function. const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI); if (AllocData) return mangledNameForMallocFamily(AllocData->Family); const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); if (FreeData) return mangledNameForMallocFamily(FreeData->Family); } // Callee isn't a known library function, still check attributes. if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc | AllocFnKind::Realloc)) { Attribute Attr = cast(I)->getFnAttr("alloc-family"); if (Attr.isValid()) return Attr.getValueAsString(); } return std::nullopt; } /// isLibFreeFunction - Returns true if the function is a builtin free() bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { std::optional FnData = getFreeFunctionDataForFunction(F, TLIFn); if (!FnData) return checkFnAllocKind(F, AllocFnKind::Free); // Check free prototype. // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin // attribute will exist. FunctionType *FTy = F->getFunctionType(); if (!FTy->getReturnType()->isVoidTy()) return false; if (FTy->getNumParams() != FnData->NumParams) return false; if (!FTy->getParamType(0)->isPointerTy()) return false; return true; } Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) { bool IsNoBuiltinCall; const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall); if (Callee == nullptr || IsNoBuiltinCall) return nullptr; LibFunc TLIFn; if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) && isLibFreeFunction(Callee, TLIFn)) { // All currently supported free functions free the first argument. return CB->getArgOperand(0); } if (checkFnAllocKind(CB, AllocFnKind::Free)) return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); return nullptr; } //===----------------------------------------------------------------------===// // Utility functions to compute size of objects. // static APInt getSizeWithOverflow(const SizeOffsetType &Data) { if (Data.second.isNegative() || Data.first.ult(Data.second)) return APInt(Data.first.getBitWidth(), 0); return Data.first - Data.second; } /// Compute the size of the object pointed by Ptr. Returns true and the /// object size in Size if successful, and false otherwise. /// If RoundToAlign is true, then Size is rounded up to the alignment of /// allocas, byval arguments, and global variables. bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); SizeOffsetType Data = Visitor.compute(const_cast(Ptr)); if (!Visitor.bothKnown(Data)) return false; Size = getSizeWithOverflow(Data).getZExtValue(); return true; } Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed) { return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr, MustSucceed); } Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed) { assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && "ObjectSize must be a call to llvm.objectsize!"); bool MaxVal = cast(ObjectSize->getArgOperand(1))->isZero(); ObjectSizeOpts EvalOptions; EvalOptions.AA = AA; // Unless we have to fold this to something, try to be as accurate as // possible. if (MustSucceed) EvalOptions.EvalMode = MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; else EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset; EvalOptions.NullIsUnknownSize = cast(ObjectSize->getArgOperand(2))->isOne(); auto *ResultType = cast(ObjectSize->getType()); bool StaticOnly = cast(ObjectSize->getArgOperand(3))->isZero(); if (StaticOnly) { // FIXME: Does it make sense to just return a failure value if the size won't // fit in the output and `!MustSucceed`? uint64_t Size; if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && isUIntN(ResultType->getBitWidth(), Size)) return ConstantInt::get(ResultType, Size); } else { LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); SizeOffsetEvalType SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0)); if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { IRBuilder Builder(Ctx, TargetFolder(DL)); Builder.SetInsertPoint(ObjectSize); // If we've outside the end of the object, then we can always access // exactly 0 bytes. Value *ResultSize = Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); Value *UseZero = Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); Value *Ret = Builder.CreateSelect( UseZero, ConstantInt::get(ResultType, 0), ResultSize); // The non-constant size expression cannot evaluate to -1. if (!isa(SizeOffsetPair.first) || !isa(SizeOffsetPair.second)) Builder.CreateAssumption( Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); return Ret; } } if (!MustSucceed) return nullptr; return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); } STATISTIC(ObjectVisitorArgument, "Number of arguments with unsolved size and offset"); STATISTIC(ObjectVisitorLoad, "Number of load instructions with unsolved size and offset"); APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { if (Options.RoundToAlign && Alignment) return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment)); return Size; } ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, ObjectSizeOpts Options) : DL(DL), TLI(TLI), Options(Options) { // Pointer size must be rechecked for each object visited since it could have // a different address space. } SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); // Stripping pointer casts can strip address space casts which can change the // index type size. The invariant is that we use the value type to determine // the index type size and if we stripped address space casts we have to // readjust the APInt as we pass it upwards in order for the APInt to match // the type the caller passed in. APInt Offset(InitialIntTyBits, 0); V = V->stripAndAccumulateConstantOffsets( DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); // Later we use the index type size and zero but it will match the type of the // value that is passed to computeImpl. IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); Zero = APInt::getZero(IntTyBits); bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; if (!IndexTypeSizeChanged && Offset.isZero()) return computeImpl(V); // We stripped an address space cast that changed the index type size or we // accumulated some constant offset (or both). Readjust the bit width to match // the argument index type size and apply the offset, as required. SizeOffsetType SOT = computeImpl(V); if (IndexTypeSizeChanged) { if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits)) SOT.first = APInt(); if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits)) SOT.second = APInt(); } // If the computed offset is "unknown" we cannot add the stripped offset. return {SOT.first, SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second}; } SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) { if (Instruction *I = dyn_cast(V)) { // If we have already seen this instruction, bail out. Cycles can happen in // unreachable code after constant propagation. if (!SeenInsts.insert(I).second) return unknown(); return visit(*I); } if (Argument *A = dyn_cast(V)) return visitArgument(*A); if (ConstantPointerNull *P = dyn_cast(V)) return visitConstantPointerNull(*P); if (GlobalAlias *GA = dyn_cast(V)) return visitGlobalAlias(*GA); if (GlobalVariable *GV = dyn_cast(V)) return visitGlobalVariable(*GV); if (UndefValue *UV = dyn_cast(V)) return visitUndefValue(*UV); LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V << '\n'); return unknown(); } bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { return ::CheckedZextOrTrunc(I, IntTyBits); } SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) return unknown(); APInt Size(IntTyBits, ElemSize.getKnownMinValue()); if (!I.isArrayAllocation()) return std::make_pair(align(Size, I.getAlign()), Zero); Value *ArraySize = I.getArraySize(); if (const ConstantInt *C = dyn_cast(ArraySize)) { APInt NumElems = C->getValue(); if (!CheckedZextOrTrunc(NumElems)) return unknown(); bool Overflow; Size = Size.umul_ov(NumElems, Overflow); return Overflow ? unknown() : std::make_pair(align(Size, I.getAlign()), Zero); } return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { Type *MemoryTy = A.getPointeeInMemoryValueType(); // No interprocedural analysis is done at the moment. if (!MemoryTy|| !MemoryTy->isSized()) { ++ObjectVisitorArgument; return unknown(); } APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); return std::make_pair(align(Size, A.getParamAlign()), Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { if (std::optional Size = getAllocSize(&CB, TLI)) return std::make_pair(*Size, Zero); return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { // If null is unknown, there's nothing we can do. Additionally, non-zero // address spaces can make use of null, so we don't presume to know anything // about that. // // TODO: How should this work with address space casts? We currently just drop // them on the floor, but it's unclear what we should do when a NULL from // addrspace(1) gets casted to addrspace(0) (or vice-versa). if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) return unknown(); return std::make_pair(Zero, Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { // Easy cases were already folded by previous passes. return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { if (GA.isInterposable()) return unknown(); return compute(GA.getAliasee()); } SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ if (!GV.hasDefinitiveInitializer()) return unknown(); APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); return std::make_pair(align(Size, GV.getAlign()), Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { // clueless return unknown(); } SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset( LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From, SmallDenseMap &VisitedBlocks, unsigned &ScannedInstCount) { constexpr unsigned MaxInstsToScan = 128; auto Where = VisitedBlocks.find(&BB); if (Where != VisitedBlocks.end()) return Where->second; auto Unknown = [this, &BB, &VisitedBlocks]() { return VisitedBlocks[&BB] = unknown(); }; auto Known = [&BB, &VisitedBlocks](SizeOffsetType SO) { return VisitedBlocks[&BB] = SO; }; do { Instruction &I = *From; if (I.isDebugOrPseudoInst()) continue; if (++ScannedInstCount > MaxInstsToScan) return Unknown(); if (!I.mayWriteToMemory()) continue; if (auto *SI = dyn_cast(&I)) { AliasResult AR = Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand()); switch ((AliasResult::Kind)AR) { case AliasResult::NoAlias: continue; case AliasResult::MustAlias: if (SI->getValueOperand()->getType()->isPointerTy()) return Known(compute(SI->getValueOperand())); else return Unknown(); // No handling of non-pointer values by `compute`. default: return Unknown(); } } if (auto *CB = dyn_cast(&I)) { Function *Callee = CB->getCalledFunction(); // Bail out on indirect call. if (!Callee) return Unknown(); LibFunc TLIFn; if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) || !TLI->has(TLIFn)) return Unknown(); // TODO: There's probably more interesting case to support here. if (TLIFn != LibFunc_posix_memalign) return Unknown(); AliasResult AR = Options.AA->alias(CB->getOperand(0), Load.getPointerOperand()); switch ((AliasResult::Kind)AR) { case AliasResult::NoAlias: continue; case AliasResult::MustAlias: break; default: return Unknown(); } // Is the error status of posix_memalign correctly checked? If not it // would be incorrect to assume it succeeds and load doesn't see the // previous value. std::optional Checked = isImpliedByDomCondition( ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL); if (!Checked || !*Checked) return Unknown(); Value *Size = CB->getOperand(2); auto *C = dyn_cast(Size); if (!C) return Unknown(); return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)}); } return Unknown(); } while (From-- != BB.begin()); SmallVector PredecessorSizeOffsets; for (auto *PredBB : predecessors(&BB)) { PredecessorSizeOffsets.push_back(findLoadSizeOffset( Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()), VisitedBlocks, ScannedInstCount)); if (!bothKnown(PredecessorSizeOffsets.back())) return Unknown(); } if (PredecessorSizeOffsets.empty()) return Unknown(); return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(), PredecessorSizeOffsets.front(), [this](SizeOffsetType LHS, SizeOffsetType RHS) { return combineSizeOffset(LHS, RHS); })); } SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) { if (!Options.AA) { ++ObjectVisitorLoad; return unknown(); } SmallDenseMap VisitedBlocks; unsigned ScannedInstCount = 0; SizeOffsetType SO = findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI), VisitedBlocks, ScannedInstCount); if (!bothKnown(SO)) ++ObjectVisitorLoad; return SO; } SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS, SizeOffsetType RHS) { if (!bothKnown(LHS) || !bothKnown(RHS)) return unknown(); switch (Options.EvalMode) { case ObjectSizeOpts::Mode::Min: return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS; case ObjectSizeOpts::Mode::Max: return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS; case ObjectSizeOpts::Mode::ExactSizeFromOffset: return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS : unknown(); case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset: return LHS == RHS && LHS.second.eq(RHS.second) ? LHS : unknown(); } llvm_unreachable("missing an eval mode"); } SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { auto IncomingValues = PN.incoming_values(); return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), compute(*IncomingValues.begin()), [this](SizeOffsetType LHS, Value *VRHS) { return combineSizeOffset(LHS, compute(VRHS)); }); } SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { return combineSizeOffset(compute(I.getTrueValue()), compute(I.getFalseValue())); } SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { return std::make_pair(Zero, Zero); } SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); return unknown(); } ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, ObjectSizeOpts EvalOpts) : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL), IRBuilderCallbackInserter( [&](Instruction *I) { InsertedInstructions.insert(I); })), EvalOpts(EvalOpts) { // IntTy and Zero must be set for each compute() since the address space may // be different for later objects. } SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { // XXX - Are vectors of pointers possible here? IntTy = cast(DL.getIndexType(V->getType())); Zero = ConstantInt::get(IntTy, 0); SizeOffsetEvalType Result = compute_(V); if (!bothKnown(Result)) { // Erase everything that was computed in this iteration from the cache, so // that no dangling references are left behind. We could be a bit smarter if // we kept a dependency graph. It's probably not worth the complexity. for (const Value *SeenVal : SeenVals) { CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); // non-computable results can be safely cached if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) CacheMap.erase(CacheIt); } // Erase any instructions we inserted as part of the traversal. for (Instruction *I : InsertedInstructions) { I->replaceAllUsesWith(PoisonValue::get(I->getType())); I->eraseFromParent(); } } SeenVals.clear(); InsertedInstructions.clear(); return Result; } SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); SizeOffsetType Const = Visitor.compute(V); if (Visitor.bothKnown(Const)) return std::make_pair(ConstantInt::get(Context, Const.first), ConstantInt::get(Context, Const.second)); V = V->stripPointerCasts(); // Check cache. CacheMapTy::iterator CacheIt = CacheMap.find(V); if (CacheIt != CacheMap.end()) return CacheIt->second; // Always generate code immediately before the instruction being // processed, so that the generated code dominates the same BBs. BuilderTy::InsertPointGuard Guard(Builder); if (Instruction *I = dyn_cast(V)) Builder.SetInsertPoint(I); // Now compute the size and offset. SizeOffsetEvalType Result; // Record the pointers that were handled in this run, so that they can be // cleaned later if something fails. We also use this set to break cycles that // can occur in dead code. if (!SeenVals.insert(V).second) { Result = unknown(); } else if (GEPOperator *GEP = dyn_cast(V)) { Result = visitGEPOperator(*GEP); } else if (Instruction *I = dyn_cast(V)) { Result = visit(*I); } else if (isa(V) || (isa(V) && cast(V)->getOpcode() == Instruction::IntToPtr) || isa(V) || isa(V)) { // Ignore values where we cannot do more than ObjectSizeVisitor. Result = unknown(); } else { LLVM_DEBUG( dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V << '\n'); Result = unknown(); } // Don't reuse CacheIt since it may be invalid at this point. CacheMap[V] = Result; return Result; } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { if (!I.getAllocatedType()->isSized()) return unknown(); // must be a VLA assert(I.isArrayAllocation()); // If needed, adjust the alloca's operand size to match the pointer size. // Subsequent math operations expect the types to match. Value *ArraySize = Builder.CreateZExtOrTrunc( I.getArraySize(), DL.getIntPtrType(I.getContext())); assert(ArraySize->getType() == Zero->getType() && "Expected zero constant to have pointer type"); Value *Size = ConstantInt::get(ArraySize->getType(), DL.getTypeAllocSize(I.getAllocatedType())); Size = Builder.CreateMul(Size, ArraySize); return std::make_pair(Size, Zero); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { std::optional FnData = getAllocationSize(&CB, TLI); if (!FnData) return unknown(); // Handle strdup-like functions separately. if (FnData->AllocTy == StrDupLike) { // TODO: implement evaluation of strdup/strndup return unknown(); } Value *FirstArg = CB.getArgOperand(FnData->FstParam); FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); if (FnData->SndParam < 0) return std::make_pair(FirstArg, Zero); Value *SecondArg = CB.getArgOperand(FnData->SndParam); SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); Value *Size = Builder.CreateMul(FirstArg, SecondArg); return std::make_pair(Size, Zero); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); if (!bothKnown(PtrData)) return unknown(); Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); Offset = Builder.CreateAdd(PtrData.second, Offset); return std::make_pair(PtrData.first, Offset); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { // clueless return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) { return unknown(); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { // Create 2 PHIs: one for size and another for offset. PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); // Insert right away in the cache to handle recursive PHIs. CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); // Compute offset/size for each PHI incoming pointer. for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); if (!bothKnown(EdgeData)) { OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy)); OffsetPHI->eraseFromParent(); InsertedInstructions.erase(OffsetPHI); SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy)); SizePHI->eraseFromParent(); InsertedInstructions.erase(SizePHI); return unknown(); } SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); } Value *Size = SizePHI, *Offset = OffsetPHI; if (Value *Tmp = SizePHI->hasConstantValue()) { Size = Tmp; SizePHI->replaceAllUsesWith(Size); SizePHI->eraseFromParent(); InsertedInstructions.erase(SizePHI); } if (Value *Tmp = OffsetPHI->hasConstantValue()) { Offset = Tmp; OffsetPHI->replaceAllUsesWith(Offset); OffsetPHI->eraseFromParent(); InsertedInstructions.erase(OffsetPHI); } return std::make_pair(Size, Offset); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) return unknown(); if (TrueSide == FalseSide) return TrueSide; Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, FalseSide.first); Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, FalseSide.second); return std::make_pair(Size, Offset); } SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I << '\n'); return unknown(); }