#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- Intrinsics.h - LLVM Intrinsic Function Handling ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a set of enums which allow processing of intrinsic // functions. Values of these enum types are returned by // Function::getIntrinsicID. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INTRINSICS_H #define LLVM_IR_INTRINSICS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/TypeSize.h" #include namespace llvm { class Type; class FunctionType; class Function; class LLVMContext; class Module; class AttributeList; /// This namespace contains an enum with a value for every intrinsic/builtin /// function known by LLVM. The enum values are returned by /// Function::getIntrinsicID(). namespace Intrinsic { // Abstraction for the arguments of the noalias intrinsics static const int NoAliasScopeDeclScopeArg = 0; // Intrinsic ID type. This is an opaque typedef to facilitate splitting up // the enum into target-specific enums. typedef unsigned ID; enum IndependentIntrinsics : unsigned { not_intrinsic = 0, // Must be zero // Get the intrinsic enums generated from Intrinsics.td #define GET_INTRINSIC_ENUM_VALUES #include "llvm/IR/IntrinsicEnums.inc" #undef GET_INTRINSIC_ENUM_VALUES }; /// Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx". /// Note, this version is for intrinsics with no overloads. Use the other /// version of getName if overloads are required. StringRef getName(ID id); /// Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx". /// Note, this version of getName supports overloads, but is less efficient /// than the StringRef version of this function. If no overloads are /// requried, it is safe to use this version, but better to use the StringRef /// version. std::string getName(ID id, ArrayRef Tys); /// Return the function type for an intrinsic. FunctionType *getType(LLVMContext &Context, ID id, ArrayRef Tys = None); /// Returns true if the intrinsic can be overloaded. bool isOverloaded(ID id); /// Returns true if the intrinsic is a leaf, i.e. it does not make any calls /// itself. Most intrinsics are leafs, the exceptions being the patchpoint /// and statepoint intrinsics. These call (or invoke) their "target" argument. bool isLeaf(ID id); /// Return the attributes for an intrinsic. AttributeList getAttributes(LLVMContext &C, ID id); /// Create or insert an LLVM Function declaration for an intrinsic, and return /// it. /// /// The Tys parameter is for intrinsics with overloaded types (e.g., those /// using iAny, fAny, vAny, or iPTRAny). For a declaration of an overloaded /// intrinsic, Tys must provide exactly one type for each overloaded type in /// the intrinsic. Function *getDeclaration(Module *M, ID id, ArrayRef Tys = None); /// Looks up Name in NameTable via binary search. NameTable must be sorted /// and all entries must start with "llvm.". If NameTable contains an exact /// match for Name or a prefix of Name followed by a dot, its index in /// NameTable is returned. Otherwise, -1 is returned. int lookupLLVMIntrinsicByName(ArrayRef NameTable, StringRef Name); /// Map a GCC builtin name to an intrinsic ID. ID getIntrinsicForGCCBuiltin(const char *Prefix, StringRef BuiltinName); /// Map a MS builtin name to an intrinsic ID. ID getIntrinsicForMSBuiltin(const char *Prefix, StringRef BuiltinName); /// This is a type descriptor which explains the type requirements of an /// intrinsic. This is returned by getIntrinsicInfoTableEntries. struct IITDescriptor { enum IITDescriptorKind { Void, VarArg, MMX, Token, Metadata, Half, BFloat, Float, Double, Quad, Integer, Vector, Pointer, Struct, Argument, ExtendArgument, TruncArgument, HalfVecArgument, SameVecWidthArgument, PtrToArgument, PtrToElt, VecOfAnyPtrsToElt, VecElementArgument, Subdivide2Argument, Subdivide4Argument, VecOfBitcastsToInt, AMX } Kind; union { unsigned Integer_Width; unsigned Float_Width; unsigned Pointer_AddressSpace; unsigned Struct_NumElements; unsigned Argument_Info; ElementCount Vector_Width; }; enum ArgKind { AK_Any, AK_AnyInteger, AK_AnyFloat, AK_AnyVector, AK_AnyPointer, AK_MatchType = 7 }; unsigned getArgumentNumber() const { assert(Kind == Argument || Kind == ExtendArgument || Kind == TruncArgument || Kind == HalfVecArgument || Kind == SameVecWidthArgument || Kind == PtrToArgument || Kind == PtrToElt || Kind == VecElementArgument || Kind == Subdivide2Argument || Kind == Subdivide4Argument || Kind == VecOfBitcastsToInt); return Argument_Info >> 3; } ArgKind getArgumentKind() const { assert(Kind == Argument || Kind == ExtendArgument || Kind == TruncArgument || Kind == HalfVecArgument || Kind == SameVecWidthArgument || Kind == PtrToArgument || Kind == VecElementArgument || Kind == Subdivide2Argument || Kind == Subdivide4Argument || Kind == VecOfBitcastsToInt); return (ArgKind)(Argument_Info & 7); } // VecOfAnyPtrsToElt uses both an overloaded argument (for address space) // and a reference argument (for matching vector width and element types) unsigned getOverloadArgNumber() const { assert(Kind == VecOfAnyPtrsToElt); return Argument_Info >> 16; } unsigned getRefArgNumber() const { assert(Kind == VecOfAnyPtrsToElt); return Argument_Info & 0xFFFF; } static IITDescriptor get(IITDescriptorKind K, unsigned Field) { IITDescriptor Result = { K, { Field } }; return Result; } static IITDescriptor get(IITDescriptorKind K, unsigned short Hi, unsigned short Lo) { unsigned Field = Hi << 16 | Lo; IITDescriptor Result = {K, {Field}}; return Result; } static IITDescriptor getVector(unsigned Width, bool IsScalable) { IITDescriptor Result = {Vector, {0}}; Result.Vector_Width = ElementCount::get(Width, IsScalable); return Result; } }; /// Return the IIT table descriptor for the specified intrinsic into an array /// of IITDescriptors. void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl &T); enum MatchIntrinsicTypesResult { MatchIntrinsicTypes_Match = 0, MatchIntrinsicTypes_NoMatchRet = 1, MatchIntrinsicTypes_NoMatchArg = 2, }; /// Match the specified function type with the type constraints specified by /// the .td file. If the given type is an overloaded type it is pushed to the /// ArgTys vector. /// /// Returns false if the given type matches with the constraints, true /// otherwise. MatchIntrinsicTypesResult matchIntrinsicSignature(FunctionType *FTy, ArrayRef &Infos, SmallVectorImpl &ArgTys); /// Verify if the intrinsic has variable arguments. This method is intended to /// be called after all the fixed arguments have been matched first. /// /// This method returns true on error. bool matchIntrinsicVarArg(bool isVarArg, ArrayRef &Infos); /// Gets the type arguments of an intrinsic call by matching type contraints /// specified by the .td file. The overloaded types are pushed into the /// AgTys vector. /// /// Returns false if the given function is not a valid intrinsic call. bool getIntrinsicSignature(Function *F, SmallVectorImpl &ArgTys); // Checks if the intrinsic name matches with its signature and if not // returns the declaration with the same signature and remangled name. llvm::Optional remangleIntrinsicFunction(Function *F); } // End Intrinsic namespace } // End llvm namespace #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif