#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This header defines the BitstreamReader class. This class can be used to // read an arbitrary bitstream, regardless of its contents. // //===----------------------------------------------------------------------===// #ifndef LLVM_BITSTREAM_BITSTREAMREADER_H #define LLVM_BITSTREAM_BITSTREAMREADER_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Bitstream/BitCodes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include #include #include #include #include #include #include #include #include namespace llvm { /// This class maintains the abbreviations read from a block info block. class BitstreamBlockInfo { public: /// This contains information emitted to BLOCKINFO_BLOCK blocks. These /// describe abbreviations that all blocks of the specified ID inherit. struct BlockInfo { unsigned BlockID = 0; std::vector> Abbrevs; std::string Name; std::vector> RecordNames; }; private: std::vector BlockInfoRecords; public: /// If there is block info for the specified ID, return it, otherwise return /// null. const BlockInfo *getBlockInfo(unsigned BlockID) const { // Common case, the most recent entry matches BlockID. if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) return &BlockInfoRecords.back(); for (unsigned i = 0, e = static_cast(BlockInfoRecords.size()); i != e; ++i) if (BlockInfoRecords[i].BlockID == BlockID) return &BlockInfoRecords[i]; return nullptr; } BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { if (const BlockInfo *BI = getBlockInfo(BlockID)) return *const_cast(BI); // Otherwise, add a new record. BlockInfoRecords.emplace_back(); BlockInfoRecords.back().BlockID = BlockID; return BlockInfoRecords.back(); } }; /// This represents a position within a bitstream. There may be multiple /// independent cursors reading within one bitstream, each maintaining their /// own local state. class SimpleBitstreamCursor { ArrayRef BitcodeBytes; size_t NextChar = 0; public: /// This is the current data we have pulled from the stream but have not /// returned to the client. This is specifically and intentionally defined to /// follow the word size of the host machine for efficiency. We use word_t in /// places that are aware of this to make it perfectly explicit what is going /// on. using word_t = size_t; private: word_t CurWord = 0; /// This is the number of bits in CurWord that are valid. This is always from /// [0...bits_of(size_t)-1] inclusive. unsigned BitsInCurWord = 0; public: static const constexpr size_t MaxChunkSize = sizeof(word_t) * 8; SimpleBitstreamCursor() = default; explicit SimpleBitstreamCursor(ArrayRef BitcodeBytes) : BitcodeBytes(BitcodeBytes) {} explicit SimpleBitstreamCursor(StringRef BitcodeBytes) : BitcodeBytes(arrayRefFromStringRef(BitcodeBytes)) {} explicit SimpleBitstreamCursor(MemoryBufferRef BitcodeBytes) : SimpleBitstreamCursor(BitcodeBytes.getBuffer()) {} bool canSkipToPos(size_t pos) const { // pos can be skipped to if it is a valid address or one byte past the end. return pos <= BitcodeBytes.size(); } bool AtEndOfStream() { return BitsInCurWord == 0 && BitcodeBytes.size() <= NextChar; } /// Return the bit # of the bit we are reading. uint64_t GetCurrentBitNo() const { return NextChar*CHAR_BIT - BitsInCurWord; } // Return the byte # of the current bit. uint64_t getCurrentByteNo() const { return GetCurrentBitNo() / 8; } ArrayRef getBitcodeBytes() const { return BitcodeBytes; } /// Reset the stream to the specified bit number. Error JumpToBit(uint64_t BitNo) { size_t ByteNo = size_t(BitNo/8) & ~(sizeof(word_t)-1); unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1)); assert(canSkipToPos(ByteNo) && "Invalid location"); // Move the cursor to the right word. NextChar = ByteNo; BitsInCurWord = 0; // Skip over any bits that are already consumed. if (WordBitNo) { if (Expected Res = Read(WordBitNo)) return Error::success(); else return Res.takeError(); } return Error::success(); } /// Get a pointer into the bitstream at the specified byte offset. const uint8_t *getPointerToByte(uint64_t ByteNo, uint64_t NumBytes) { return BitcodeBytes.data() + ByteNo; } /// Get a pointer into the bitstream at the specified bit offset. /// /// The bit offset must be on a byte boundary. const uint8_t *getPointerToBit(uint64_t BitNo, uint64_t NumBytes) { assert(!(BitNo % 8) && "Expected bit on byte boundary"); return getPointerToByte(BitNo / 8, NumBytes); } Error fillCurWord() { if (NextChar >= BitcodeBytes.size()) return createStringError(std::errc::io_error, "Unexpected end of file reading %u of %u bytes", NextChar, BitcodeBytes.size()); // Read the next word from the stream. const uint8_t *NextCharPtr = BitcodeBytes.data() + NextChar; unsigned BytesRead; if (BitcodeBytes.size() >= NextChar + sizeof(word_t)) { BytesRead = sizeof(word_t); CurWord = support::endian::read( NextCharPtr); } else { // Short read. BytesRead = BitcodeBytes.size() - NextChar; CurWord = 0; for (unsigned B = 0; B != BytesRead; ++B) CurWord |= uint64_t(NextCharPtr[B]) << (B * 8); } NextChar += BytesRead; BitsInCurWord = BytesRead * 8; return Error::success(); } Expected Read(unsigned NumBits) { static const unsigned BitsInWord = MaxChunkSize; assert(NumBits && NumBits <= BitsInWord && "Cannot return zero or more than BitsInWord bits!"); static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f; // If the field is fully contained by CurWord, return it quickly. if (BitsInCurWord >= NumBits) { word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits)); // Use a mask to avoid undefined behavior. CurWord >>= (NumBits & Mask); BitsInCurWord -= NumBits; return R; } word_t R = BitsInCurWord ? CurWord : 0; unsigned BitsLeft = NumBits - BitsInCurWord; if (Error fillResult = fillCurWord()) return std::move(fillResult); // If we run out of data, abort. if (BitsLeft > BitsInCurWord) return createStringError(std::errc::io_error, "Unexpected end of file reading %u of %u bits", BitsInCurWord, BitsLeft); word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft)); // Use a mask to avoid undefined behavior. CurWord >>= (BitsLeft & Mask); BitsInCurWord -= BitsLeft; R |= R2 << (NumBits - BitsLeft); return R; } Expected ReadVBR(unsigned NumBits) { Expected MaybeRead = Read(NumBits); if (!MaybeRead) return MaybeRead; uint32_t Piece = MaybeRead.get(); if ((Piece & (1U << (NumBits-1))) == 0) return Piece; uint32_t Result = 0; unsigned NextBit = 0; while (true) { Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; MaybeRead = Read(NumBits); if (!MaybeRead) return MaybeRead; Piece = MaybeRead.get(); } } // Read a VBR that may have a value up to 64-bits in size. The chunk size of // the VBR must still be <= 32 bits though. Expected ReadVBR64(unsigned NumBits) { Expected MaybeRead = Read(NumBits); if (!MaybeRead) return MaybeRead; uint32_t Piece = MaybeRead.get(); if ((Piece & (1U << (NumBits-1))) == 0) return uint64_t(Piece); uint64_t Result = 0; unsigned NextBit = 0; while (true) { Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; MaybeRead = Read(NumBits); if (!MaybeRead) return MaybeRead; Piece = MaybeRead.get(); } } void SkipToFourByteBoundary() { // If word_t is 64-bits and if we've read less than 32 bits, just dump // the bits we have up to the next 32-bit boundary. if (sizeof(word_t) > 4 && BitsInCurWord >= 32) { CurWord >>= BitsInCurWord-32; BitsInCurWord = 32; return; } BitsInCurWord = 0; } /// Return the size of the stream in bytes. size_t SizeInBytes() const { return BitcodeBytes.size(); } /// Skip to the end of the file. void skipToEnd() { NextChar = BitcodeBytes.size(); } }; /// When advancing through a bitstream cursor, each advance can discover a few /// different kinds of entries: struct BitstreamEntry { enum { Error, // Malformed bitcode was found. EndBlock, // We've reached the end of the current block, (or the end of the // file, which is treated like a series of EndBlock records. SubBlock, // This is the start of a new subblock of a specific ID. Record // This is a record with a specific AbbrevID. } Kind; unsigned ID; static BitstreamEntry getError() { BitstreamEntry E; E.Kind = Error; return E; } static BitstreamEntry getEndBlock() { BitstreamEntry E; E.Kind = EndBlock; return E; } static BitstreamEntry getSubBlock(unsigned ID) { BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E; } static BitstreamEntry getRecord(unsigned AbbrevID) { BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E; } }; /// This represents a position within a bitcode file, implemented on top of a /// SimpleBitstreamCursor. /// /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not /// be passed by value. class BitstreamCursor : SimpleBitstreamCursor { // This is the declared size of code values used for the current block, in // bits. unsigned CurCodeSize = 2; /// Abbrevs installed at in this block. std::vector> CurAbbrevs; struct Block { unsigned PrevCodeSize; std::vector> PrevAbbrevs; explicit Block(unsigned PCS) : PrevCodeSize(PCS) {} }; /// This tracks the codesize of parent blocks. SmallVector BlockScope; BitstreamBlockInfo *BlockInfo = nullptr; public: static const size_t MaxChunkSize = sizeof(word_t) * 8; BitstreamCursor() = default; explicit BitstreamCursor(ArrayRef BitcodeBytes) : SimpleBitstreamCursor(BitcodeBytes) {} explicit BitstreamCursor(StringRef BitcodeBytes) : SimpleBitstreamCursor(BitcodeBytes) {} explicit BitstreamCursor(MemoryBufferRef BitcodeBytes) : SimpleBitstreamCursor(BitcodeBytes) {} using SimpleBitstreamCursor::AtEndOfStream; using SimpleBitstreamCursor::canSkipToPos; using SimpleBitstreamCursor::fillCurWord; using SimpleBitstreamCursor::getBitcodeBytes; using SimpleBitstreamCursor::GetCurrentBitNo; using SimpleBitstreamCursor::getCurrentByteNo; using SimpleBitstreamCursor::getPointerToByte; using SimpleBitstreamCursor::JumpToBit; using SimpleBitstreamCursor::Read; using SimpleBitstreamCursor::ReadVBR; using SimpleBitstreamCursor::ReadVBR64; using SimpleBitstreamCursor::SizeInBytes; using SimpleBitstreamCursor::skipToEnd; /// Return the number of bits used to encode an abbrev #. unsigned getAbbrevIDWidth() const { return CurCodeSize; } /// Flags that modify the behavior of advance(). enum { /// If this flag is used, the advance() method does not automatically pop /// the block scope when the end of a block is reached. AF_DontPopBlockAtEnd = 1, /// If this flag is used, abbrev entries are returned just like normal /// records. AF_DontAutoprocessAbbrevs = 2 }; /// Advance the current bitstream, returning the next entry in the stream. Expected advance(unsigned Flags = 0) { while (true) { if (AtEndOfStream()) return BitstreamEntry::getError(); Expected MaybeCode = ReadCode(); if (!MaybeCode) return MaybeCode.takeError(); unsigned Code = MaybeCode.get(); if (Code == bitc::END_BLOCK) { // Pop the end of the block unless Flags tells us not to. if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd()) return BitstreamEntry::getError(); return BitstreamEntry::getEndBlock(); } if (Code == bitc::ENTER_SUBBLOCK) { if (Expected MaybeSubBlock = ReadSubBlockID()) return BitstreamEntry::getSubBlock(MaybeSubBlock.get()); else return MaybeSubBlock.takeError(); } if (Code == bitc::DEFINE_ABBREV && !(Flags & AF_DontAutoprocessAbbrevs)) { // We read and accumulate abbrev's, the client can't do anything with // them anyway. if (Error Err = ReadAbbrevRecord()) return std::move(Err); continue; } return BitstreamEntry::getRecord(Code); } } /// This is a convenience function for clients that don't expect any /// subblocks. This just skips over them automatically. Expected advanceSkippingSubblocks(unsigned Flags = 0) { while (true) { // If we found a normal entry, return it. Expected MaybeEntry = advance(Flags); if (!MaybeEntry) return MaybeEntry; BitstreamEntry Entry = MaybeEntry.get(); if (Entry.Kind != BitstreamEntry::SubBlock) return Entry; // If we found a sub-block, just skip over it and check the next entry. if (Error Err = SkipBlock()) return std::move(Err); } } Expected ReadCode() { return Read(CurCodeSize); } // Block header: // [ENTER_SUBBLOCK, blockid, newcodelen, , blocklen] /// Having read the ENTER_SUBBLOCK code, read the BlockID for the block. Expected ReadSubBlockID() { return ReadVBR(bitc::BlockIDWidth); } /// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body /// of this block. Error SkipBlock() { // Read and ignore the codelen value. if (Expected Res = ReadVBR(bitc::CodeLenWidth)) ; // Since we are skipping this block, we don't care what code widths are // used inside of it. else return Res.takeError(); SkipToFourByteBoundary(); Expected MaybeNum = Read(bitc::BlockSizeWidth); if (!MaybeNum) return MaybeNum.takeError(); size_t NumFourBytes = MaybeNum.get(); // Check that the block wasn't partially defined, and that the offset isn't // bogus. size_t SkipTo = GetCurrentBitNo() + NumFourBytes * 4 * 8; if (AtEndOfStream()) return createStringError(std::errc::illegal_byte_sequence, "can't skip block: already at end of stream"); if (!canSkipToPos(SkipTo / 8)) return createStringError(std::errc::illegal_byte_sequence, "can't skip to bit %zu from %" PRIu64, SkipTo, GetCurrentBitNo()); if (Error Res = JumpToBit(SkipTo)) return Res; return Error::success(); } /// Having read the ENTER_SUBBLOCK abbrevid, and enter the block. Error EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr); bool ReadBlockEnd() { if (BlockScope.empty()) return true; // Block tail: // [END_BLOCK, ] SkipToFourByteBoundary(); popBlockScope(); return false; } private: void popBlockScope() { CurCodeSize = BlockScope.back().PrevCodeSize; CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs); BlockScope.pop_back(); } //===--------------------------------------------------------------------===// // Record Processing //===--------------------------------------------------------------------===// public: /// Return the abbreviation for the specified AbbrevId. const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) { unsigned AbbrevNo = AbbrevID - bitc::FIRST_APPLICATION_ABBREV; if (AbbrevNo >= CurAbbrevs.size()) report_fatal_error("Invalid abbrev number"); return CurAbbrevs[AbbrevNo].get(); } /// Read the current record and discard it, returning the code for the record. Expected skipRecord(unsigned AbbrevID); Expected readRecord(unsigned AbbrevID, SmallVectorImpl &Vals, StringRef *Blob = nullptr); //===--------------------------------------------------------------------===// // Abbrev Processing //===--------------------------------------------------------------------===// Error ReadAbbrevRecord(); /// Read and return a block info block from the bitstream. If an error was /// encountered, return None. /// /// \param ReadBlockInfoNames Whether to read block/record name information in /// the BlockInfo block. Only llvm-bcanalyzer uses this. Expected> ReadBlockInfoBlock(bool ReadBlockInfoNames = false); /// Set the block info to be used by this BitstreamCursor to interpret /// abbreviated records. void setBlockInfo(BitstreamBlockInfo *BI) { BlockInfo = BI; } }; } // end llvm namespace #endif // LLVM_BITSTREAM_BITSTREAMREADER_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif