#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the SmallBitVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLBITVECTOR_H #define LLVM_ADT_SMALLBITVECTOR_H #include "llvm/ADT/BitVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include #include #include namespace llvm { /// This is a 'bitvector' (really, a variable-sized bit array), optimized for /// the case when the array is small. It contains one pointer-sized field, which /// is directly used as a plain collection of bits when possible, or as a /// pointer to a larger heap-allocated array when necessary. This allows normal /// "small" cases to be fast without losing generality for large inputs. class SmallBitVector { // TODO: In "large" mode, a pointer to a BitVector is used, leading to an // unnecessary level of indirection. It would be more efficient to use a // pointer to memory containing size, allocation size, and the array of bits. uintptr_t X = 1; enum { // The number of bits in this class. NumBaseBits = sizeof(uintptr_t) * CHAR_BIT, // One bit is used to discriminate between small and large mode. The // remaining bits are used for the small-mode representation. SmallNumRawBits = NumBaseBits - 1, // A few more bits are used to store the size of the bit set in small mode. // Theoretically this is a ceil-log2. These bits are encoded in the most // significant bits of the raw bits. SmallNumSizeBits = (NumBaseBits == 32 ? 5 : NumBaseBits == 64 ? 6 : SmallNumRawBits), // The remaining bits are used to store the actual set in small mode. SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits }; static_assert(NumBaseBits == 64 || NumBaseBits == 32, "Unsupported word size"); public: using size_type = unsigned; // Encapsulation of a single bit. class reference { SmallBitVector &TheVector; unsigned BitPos; public: reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {} reference(const reference&) = default; reference& operator=(reference t) { *this = bool(t); return *this; } reference& operator=(bool t) { if (t) TheVector.set(BitPos); else TheVector.reset(BitPos); return *this; } operator bool() const { return const_cast(TheVector).operator[](BitPos); } }; private: BitVector *getPointer() const { assert(!isSmall()); return reinterpret_cast(X); } void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) { X = 1; setSmallSize(NewSize); setSmallBits(NewSmallBits); } void switchToLarge(BitVector *BV) { X = reinterpret_cast(BV); assert(!isSmall() && "Tried to use an unaligned pointer"); } // Return all the bits used for the "small" representation; this includes // bits for the size as well as the element bits. uintptr_t getSmallRawBits() const { assert(isSmall()); return X >> 1; } void setSmallRawBits(uintptr_t NewRawBits) { assert(isSmall()); X = (NewRawBits << 1) | uintptr_t(1); } // Return the size. size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; } void setSmallSize(size_t Size) { setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits)); } // Return the element bits. uintptr_t getSmallBits() const { return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize()); } void setSmallBits(uintptr_t NewBits) { setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) | (getSmallSize() << SmallNumDataBits)); } public: /// Creates an empty bitvector. SmallBitVector() = default; /// Creates a bitvector of specified number of bits. All bits are initialized /// to the specified value. explicit SmallBitVector(unsigned s, bool t = false) { if (s <= SmallNumDataBits) switchToSmall(t ? ~uintptr_t(0) : 0, s); else switchToLarge(new BitVector(s, t)); } /// SmallBitVector copy ctor. SmallBitVector(const SmallBitVector &RHS) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.getPointer())); } SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) { RHS.X = 1; } ~SmallBitVector() { if (!isSmall()) delete getPointer(); } using const_set_bits_iterator = const_set_bits_iterator_impl; using set_iterator = const_set_bits_iterator; const_set_bits_iterator set_bits_begin() const { return const_set_bits_iterator(*this); } const_set_bits_iterator set_bits_end() const { return const_set_bits_iterator(*this, -1); } iterator_range set_bits() const { return make_range(set_bits_begin(), set_bits_end()); } bool isSmall() const { return X & uintptr_t(1); } /// Tests whether there are no bits in this bitvector. bool empty() const { return isSmall() ? getSmallSize() == 0 : getPointer()->empty(); } /// Returns the number of bits in this bitvector. size_t size() const { return isSmall() ? getSmallSize() : getPointer()->size(); } /// Returns the number of bits which are set. size_type count() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); return countPopulation(Bits); } return getPointer()->count(); } /// Returns true if any bit is set. bool any() const { if (isSmall()) return getSmallBits() != 0; return getPointer()->any(); } /// Returns true if all bits are set. bool all() const { if (isSmall()) return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1; return getPointer()->all(); } /// Returns true if none of the bits are set. bool none() const { if (isSmall()) return getSmallBits() == 0; return getPointer()->none(); } /// Returns the index of the first set bit, -1 if none of the bits are set. int find_first() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (Bits == 0) return -1; return countTrailingZeros(Bits); } return getPointer()->find_first(); } int find_last() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (Bits == 0) return -1; return NumBaseBits - countLeadingZeros(Bits) - 1; } return getPointer()->find_last(); } /// Returns the index of the first unset bit, -1 if all of the bits are set. int find_first_unset() const { if (isSmall()) { if (count() == getSmallSize()) return -1; uintptr_t Bits = getSmallBits(); return countTrailingOnes(Bits); } return getPointer()->find_first_unset(); } int find_last_unset() const { if (isSmall()) { if (count() == getSmallSize()) return -1; uintptr_t Bits = getSmallBits(); // Set unused bits. Bits |= ~uintptr_t(0) << getSmallSize(); return NumBaseBits - countLeadingOnes(Bits) - 1; } return getPointer()->find_last_unset(); } /// Returns the index of the next set bit following the "Prev" bit. /// Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { if (isSmall()) { uintptr_t Bits = getSmallBits(); // Mask off previous bits. Bits &= ~uintptr_t(0) << (Prev + 1); if (Bits == 0 || Prev + 1 >= getSmallSize()) return -1; return countTrailingZeros(Bits); } return getPointer()->find_next(Prev); } /// Returns the index of the next unset bit following the "Prev" bit. /// Returns -1 if the next unset bit is not found. int find_next_unset(unsigned Prev) const { if (isSmall()) { uintptr_t Bits = getSmallBits(); // Mask in previous bits. Bits |= (uintptr_t(1) << (Prev + 1)) - 1; // Mask in unused bits. Bits |= ~uintptr_t(0) << getSmallSize(); if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize()) return -1; return countTrailingOnes(Bits); } return getPointer()->find_next_unset(Prev); } /// find_prev - Returns the index of the first set bit that precedes the /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. int find_prev(unsigned PriorTo) const { if (isSmall()) { if (PriorTo == 0) return -1; --PriorTo; uintptr_t Bits = getSmallBits(); Bits &= maskTrailingOnes(PriorTo + 1); if (Bits == 0) return -1; return NumBaseBits - countLeadingZeros(Bits) - 1; } return getPointer()->find_prev(PriorTo); } /// Clear all bits. void clear() { if (!isSmall()) delete getPointer(); switchToSmall(0, 0); } /// Grow or shrink the bitvector. void resize(unsigned N, bool t = false) { if (!isSmall()) { getPointer()->resize(N, t); } else if (SmallNumDataBits >= N) { uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0; setSmallSize(N); setSmallBits(NewBits | getSmallBits()); } else { BitVector *BV = new BitVector(N, t); uintptr_t OldBits = getSmallBits(); for (size_t i = 0, e = getSmallSize(); i != e; ++i) (*BV)[i] = (OldBits >> i) & 1; switchToLarge(BV); } } void reserve(unsigned N) { if (isSmall()) { if (N > SmallNumDataBits) { uintptr_t OldBits = getSmallRawBits(); size_t SmallSize = getSmallSize(); BitVector *BV = new BitVector(SmallSize); for (size_t i = 0; i < SmallSize; ++i) if ((OldBits >> i) & 1) BV->set(i); BV->reserve(N); switchToLarge(BV); } } else { getPointer()->reserve(N); } } // Set, reset, flip SmallBitVector &set() { if (isSmall()) setSmallBits(~uintptr_t(0)); else getPointer()->set(); return *this; } SmallBitVector &set(unsigned Idx) { if (isSmall()) { assert(Idx <= static_cast( std::numeric_limits::digits) && "undefined behavior"); setSmallBits(getSmallBits() | (uintptr_t(1) << Idx)); } else getPointer()->set(Idx); return *this; } /// Efficiently set a range of bits in [I, E) SmallBitVector &set(unsigned I, unsigned E) { assert(I <= E && "Attempted to set backwards range!"); assert(E <= size() && "Attempted to set out-of-bounds range!"); if (I == E) return *this; if (isSmall()) { uintptr_t EMask = ((uintptr_t)1) << E; uintptr_t IMask = ((uintptr_t)1) << I; uintptr_t Mask = EMask - IMask; setSmallBits(getSmallBits() | Mask); } else getPointer()->set(I, E); return *this; } SmallBitVector &reset() { if (isSmall()) setSmallBits(0); else getPointer()->reset(); return *this; } SmallBitVector &reset(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx)); else getPointer()->reset(Idx); return *this; } /// Efficiently reset a range of bits in [I, E) SmallBitVector &reset(unsigned I, unsigned E) { assert(I <= E && "Attempted to reset backwards range!"); assert(E <= size() && "Attempted to reset out-of-bounds range!"); if (I == E) return *this; if (isSmall()) { uintptr_t EMask = ((uintptr_t)1) << E; uintptr_t IMask = ((uintptr_t)1) << I; uintptr_t Mask = EMask - IMask; setSmallBits(getSmallBits() & ~Mask); } else getPointer()->reset(I, E); return *this; } SmallBitVector &flip() { if (isSmall()) setSmallBits(~getSmallBits()); else getPointer()->flip(); return *this; } SmallBitVector &flip(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx)); else getPointer()->flip(Idx); return *this; } // No argument flip. SmallBitVector operator~() const { return SmallBitVector(*this).flip(); } // Indexing. reference operator[](unsigned Idx) { assert(Idx < size() && "Out-of-bounds Bit access."); return reference(*this, Idx); } bool operator[](unsigned Idx) const { assert(Idx < size() && "Out-of-bounds Bit access."); if (isSmall()) return ((getSmallBits() >> Idx) & 1) != 0; return getPointer()->operator[](Idx); } bool test(unsigned Idx) const { return (*this)[Idx]; } // Push single bit to end of vector. void push_back(bool Val) { resize(size() + 1, Val); } /// Test if any common bits are set. bool anyCommon(const SmallBitVector &RHS) const { if (isSmall() && RHS.isSmall()) return (getSmallBits() & RHS.getSmallBits()) != 0; if (!isSmall() && !RHS.isSmall()) return getPointer()->anyCommon(*RHS.getPointer()); for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) if (test(i) && RHS.test(i)) return true; return false; } // Comparison operators. bool operator==(const SmallBitVector &RHS) const { if (size() != RHS.size()) return false; if (isSmall() && RHS.isSmall()) return getSmallBits() == RHS.getSmallBits(); else if (!isSmall() && !RHS.isSmall()) return *getPointer() == *RHS.getPointer(); else { for (size_t i = 0, e = size(); i != e; ++i) { if ((*this)[i] != RHS[i]) return false; } return true; } } bool operator!=(const SmallBitVector &RHS) const { return !(*this == RHS); } // Intersection, union, disjoint union. // FIXME BitVector::operator&= does not resize the LHS but this does SmallBitVector &operator&=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall() && RHS.isSmall()) setSmallBits(getSmallBits() & RHS.getSmallBits()); else if (!isSmall() && !RHS.isSmall()) getPointer()->operator&=(*RHS.getPointer()); else { size_t i, e; for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i) (*this)[i] = test(i) && RHS.test(i); for (e = size(); i != e; ++i) reset(i); } return *this; } /// Reset bits that are set in RHS. Same as *this &= ~RHS. SmallBitVector &reset(const SmallBitVector &RHS) { if (isSmall() && RHS.isSmall()) setSmallBits(getSmallBits() & ~RHS.getSmallBits()); else if (!isSmall() && !RHS.isSmall()) getPointer()->reset(*RHS.getPointer()); else for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) if (RHS.test(i)) reset(i); return *this; } /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any(). bool test(const SmallBitVector &RHS) const { if (isSmall() && RHS.isSmall()) return (getSmallBits() & ~RHS.getSmallBits()) != 0; if (!isSmall() && !RHS.isSmall()) return getPointer()->test(*RHS.getPointer()); unsigned i, e; for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i) if (test(i) && !RHS.test(i)) return true; for (e = size(); i != e; ++i) if (test(i)) return true; return false; } SmallBitVector &operator|=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall() && RHS.isSmall()) setSmallBits(getSmallBits() | RHS.getSmallBits()); else if (!isSmall() && !RHS.isSmall()) getPointer()->operator|=(*RHS.getPointer()); else { for (size_t i = 0, e = RHS.size(); i != e; ++i) (*this)[i] = test(i) || RHS.test(i); } return *this; } SmallBitVector &operator^=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall() && RHS.isSmall()) setSmallBits(getSmallBits() ^ RHS.getSmallBits()); else if (!isSmall() && !RHS.isSmall()) getPointer()->operator^=(*RHS.getPointer()); else { for (size_t i = 0, e = RHS.size(); i != e; ++i) (*this)[i] = test(i) != RHS.test(i); } return *this; } SmallBitVector &operator<<=(unsigned N) { if (isSmall()) setSmallBits(getSmallBits() << N); else getPointer()->operator<<=(N); return *this; } SmallBitVector &operator>>=(unsigned N) { if (isSmall()) setSmallBits(getSmallBits() >> N); else getPointer()->operator>>=(N); return *this; } // Assignment operator. const SmallBitVector &operator=(const SmallBitVector &RHS) { if (isSmall()) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.getPointer())); } else { if (!RHS.isSmall()) *getPointer() = *RHS.getPointer(); else { delete getPointer(); X = RHS.X; } } return *this; } const SmallBitVector &operator=(SmallBitVector &&RHS) { if (this != &RHS) { clear(); swap(RHS); } return *this; } void swap(SmallBitVector &RHS) { std::swap(X, RHS.X); } /// Add '1' bits from Mask to this vector. Don't resize. /// This computes "*this |= Mask". void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->setBitsInMask(Mask, MaskWords); } /// Clear any bits in this vector that are set in Mask. Don't resize. /// This computes "*this &= ~Mask". void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->clearBitsInMask(Mask, MaskWords); } /// Add a bit to this vector for every '0' bit in Mask. Don't resize. /// This computes "*this |= ~Mask". void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->setBitsNotInMask(Mask, MaskWords); } /// Clear a bit in this vector for every '0' bit in Mask. Don't resize. /// This computes "*this &= Mask". void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->clearBitsNotInMask(Mask, MaskWords); } void invalid() { assert(empty()); X = (uintptr_t)-1; } bool isInvalid() const { return X == (uintptr_t)-1; } ArrayRef getData(uintptr_t &Store) const { if (!isSmall()) return getPointer()->getData(); Store = getSmallBits(); return makeArrayRef(Store); } private: template void applyMask(const uint32_t *Mask, unsigned MaskWords) { assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!"); uintptr_t M = Mask[0]; if (NumBaseBits == 64) M |= uint64_t(Mask[1]) << 32; if (InvertMask) M = ~M; if (AddBits) setSmallBits(getSmallBits() | M); else setSmallBits(getSmallBits() & ~M); } }; inline SmallBitVector operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result &= RHS; return Result; } inline SmallBitVector operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result |= RHS; return Result; } inline SmallBitVector operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result ^= RHS; return Result; } template <> struct DenseMapInfo { static inline SmallBitVector getEmptyKey() { return SmallBitVector(); } static inline SmallBitVector getTombstoneKey() { SmallBitVector V; V.invalid(); return V; } static unsigned getHashValue(const SmallBitVector &V) { uintptr_t Store; return DenseMapInfo>>::getHashValue( std::make_pair(V.size(), V.getData(Store))); } static bool isEqual(const SmallBitVector &LHS, const SmallBitVector &RHS) { if (LHS.isInvalid() || RHS.isInvalid()) return LHS.isInvalid() == RHS.isInvalid(); return LHS == RHS; } }; } // end namespace llvm namespace std { /// Implement std::swap in terms of BitVector swap. inline void swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) { LHS.swap(RHS); } } // end namespace std #endif // LLVM_ADT_SMALLBITVECTOR_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif