#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements methods to test, set and extract typed bits from packed /// unsigned integers. /// /// Why not C++ bitfields? /// ---------------------- /// C++ bitfields do not offer control over the bit layout nor consistent /// behavior when it comes to out of range values. /// For instance, the layout is implementation defined and adjacent bits may be /// packed together but are not required to. This is problematic when storage is /// sparse and data must be stored in a particular integer type. /// /// The methods provided in this file ensure precise control over the /// layout/storage as well as protection against out of range values. /// /// Usage example /// ------------- /// \code{.cpp} /// uint8_t Storage = 0; /// /// // Store and retrieve a single bit as bool. /// using Bool = Bitfield::Element; /// Bitfield::set(Storage, true); /// EXPECT_EQ(Storage, 0b00000001); /// // ^ /// EXPECT_EQ(Bitfield::get(Storage), true); /// /// // Store and retrieve a 2 bit typed enum. /// // Note: enum underlying type must be unsigned. /// enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES }; /// // Note: enum maximum value needs to be passed in as last parameter. /// using Suit = Bitfield::Element; /// Bitfield::set(Storage, SuitEnum::HEARTS); /// EXPECT_EQ(Storage, 0b00000101); /// // ^^ /// EXPECT_EQ(Bitfield::get(Storage), SuitEnum::HEARTS); /// /// // Store and retrieve a 5 bit value as unsigned. /// using Value = Bitfield::Element; /// Bitfield::set(Storage, 10); /// EXPECT_EQ(Storage, 0b01010101); /// // ^^^^^ /// EXPECT_EQ(Bitfield::get(Storage), 10U); /// /// // Interpret the same 5 bit value as signed. /// using SignedValue = Bitfield::Element; /// Bitfield::set(Storage, -2); /// EXPECT_EQ(Storage, 0b11110101); /// // ^^^^^ /// EXPECT_EQ(Bitfield::get(Storage), -2); /// /// // Ability to efficiently test if a field is non zero. /// EXPECT_TRUE(Bitfield::test(Storage)); /// /// // Alter Storage changes value. /// Storage = 0; /// EXPECT_EQ(Bitfield::get(Storage), false); /// EXPECT_EQ(Bitfield::get(Storage), SuitEnum::CLUBS); /// EXPECT_EQ(Bitfield::get(Storage), 0U); /// EXPECT_EQ(Bitfield::get(Storage), 0); /// /// Storage = 255; /// EXPECT_EQ(Bitfield::get(Storage), true); /// EXPECT_EQ(Bitfield::get(Storage), SuitEnum::SPADES); /// EXPECT_EQ(Bitfield::get(Storage), 31U); /// EXPECT_EQ(Bitfield::get(Storage), -1); /// \endcode /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_BITFIELDS_H #define LLVM_ADT_BITFIELDS_H #include #include // CHAR_BIT #include // size_t #include // uintXX_t #include // numeric_limits #include namespace llvm { namespace bitfields_details { /// A struct defining useful bit patterns for n-bits integer types. template struct BitPatterns { /// Bit patterns are forged using the equivalent `Unsigned` type because of /// undefined operations over signed types (e.g. Bitwise shift operators). /// Moreover same size casting from unsigned to signed is well defined but not /// the other way around. using Unsigned = typename std::make_unsigned::type; static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size"); static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT; static_assert(TypeBits >= Bits, "n-bit must fit in T"); /// e.g. with TypeBits == 8 and Bits == 6. static constexpr Unsigned AllZeros = Unsigned(0); // 00000000 static constexpr Unsigned AllOnes = ~Unsigned(0); // 11111111 static constexpr Unsigned Umin = AllZeros; // 00000000 static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits); // 00111111 static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000 static constexpr Unsigned Smax = Umax >> 1U; // 00011111 static constexpr Unsigned Smin = ~Smax; // 11100000 static constexpr Unsigned SignExtend = Unsigned(Smin << 1U); // 11000000 }; /// `Compressor` is used to manipulate the bits of a (possibly signed) integer /// type so it can be packed and unpacked into a `bits` sized integer, /// `Compressor` is specialized on signed-ness so no runtime cost is incurred. /// The `pack` method also checks that the passed in `UserValue` is valid. template ::value> struct Compressor { static_assert(std::is_unsigned::value, "T is unsigned"); using BP = BitPatterns; static T pack(T UserValue, T UserMaxValue) { assert(UserValue <= UserMaxValue && "value is too big"); assert(UserValue <= BP::Umax && "value is too big"); return UserValue; } static T unpack(T StorageValue) { return StorageValue; } }; template struct Compressor { static_assert(std::is_signed::value, "T is signed"); using BP = BitPatterns; static T pack(T UserValue, T UserMaxValue) { assert(UserValue <= UserMaxValue && "value is too big"); assert(UserValue <= T(BP::Smax) && "value is too big"); assert(UserValue >= T(BP::Smin) && "value is too small"); if (UserValue < 0) UserValue &= ~BP::SignExtend; return UserValue; } static T unpack(T StorageValue) { if (StorageValue >= T(BP::SignBitMask)) StorageValue |= BP::SignExtend; return StorageValue; } }; /// Impl is where Bifield description and Storage are put together to interact /// with values. template struct Impl { static_assert(std::is_unsigned::value, "Storage must be unsigned"); using IntegerType = typename Bitfield::IntegerType; using C = Compressor; using BP = BitPatterns; static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT; static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask"); static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask"); static constexpr StorageType Mask = BP::Umax << Bitfield::Shift; /// Checks `UserValue` is within bounds and packs it between `FirstBit` and /// `LastBit` of `Packed` leaving the rest unchanged. static void update(StorageType &Packed, IntegerType UserValue) { const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue); Packed &= ~Mask; Packed |= StorageValue << Bitfield::Shift; } /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as /// an`IntegerType`. static IntegerType extract(StorageType Packed) { const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift; return C::unpack(StorageValue); } /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as /// an`IntegerType`. static StorageType test(StorageType Packed) { return Packed & Mask; } }; /// `Bitfield` deals with the following type: /// - unsigned enums /// - signed and unsigned integer /// - `bool` /// Internally though we only manipulate integer with well defined and /// consistent semantics, this excludes typed enums and `bool` that are replaced /// with their unsigned counterparts. The correct type is restored in the public /// API. template ::value> struct ResolveUnderlyingType { using type = typename std::underlying_type::type; }; template struct ResolveUnderlyingType { using type = T; }; template <> struct ResolveUnderlyingType { /// In case sizeof(bool) != 1, replace `void` by an additionnal /// std::conditional. using type = std::conditional::type; }; } // namespace bitfields_details /// Holds functions to get, set or test bitfields. struct Bitfield { /// Describes an element of a Bitfield. This type is then used with the /// Bitfield static member functions. /// \tparam T The type of the field once in unpacked form. /// \tparam Offset The position of the first bit. /// \tparam Size The size of the field. /// \tparam MaxValue For enums the maximum enum allowed. template ::value ? T(0) // coupled with static_assert below : std::numeric_limits::max()> struct Element { using Type = T; using IntegerType = typename bitfields_details::ResolveUnderlyingType::type; static constexpr unsigned Shift = Offset; static constexpr unsigned Bits = Size; static constexpr unsigned FirstBit = Offset; static constexpr unsigned LastBit = Shift + Bits - 1; static constexpr unsigned NextBit = Shift + Bits; private: template friend struct bitfields_details::Impl; static_assert(Bits > 0, "Bits must be non zero"); static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT; static_assert(Bits <= TypeBits, "Bits may not be greater than T size"); static_assert(!std::is_enum::value || MaxValue != T(0), "Enum Bitfields must provide a MaxValue"); static_assert(!std::is_enum::value || std::is_unsigned::value, "Enum must be unsigned"); static_assert(std::is_integral::value && std::numeric_limits::is_integer, "IntegerType must be an integer type"); static constexpr IntegerType UserMaxValue = static_cast(MaxValue); }; /// Unpacks the field from the `Packed` value. template static typename Bitfield::Type get(StorageType Packed) { using I = bitfields_details::Impl; return static_cast(I::extract(Packed)); } /// Return a non-zero value if the field is non-zero. /// It is more efficient than `getField`. template static StorageType test(StorageType Packed) { using I = bitfields_details::Impl; return I::test(Packed); } /// Sets the typed value in the provided `Packed` value. /// The method will asserts if the provided value is too big to fit in. template static void set(StorageType &Packed, typename Bitfield::Type Value) { using I = bitfields_details::Impl; I::update(Packed, static_cast(Value)); } /// Returns whether the two bitfields share common bits. template static constexpr bool isOverlapping() { return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit; } template static constexpr bool areContiguous() { return true; } template static constexpr bool areContiguous() { return A::NextBit == B::FirstBit && areContiguous(); } }; } // namespace llvm #endif // LLVM_ADT_BITFIELDS_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif