#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //======- ParsedAttr.h - Parsed attribute sets ------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the ParsedAttr class, which is used to collect // parsed attributes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_PARSEDATTR_H #define LLVM_CLANG_SEMA_PARSEDATTR_H #include "clang/Basic/AttrSubjectMatchRules.h" #include "clang/Basic/AttributeCommonInfo.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Sema/Ownership.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Registry.h" #include "llvm/Support/VersionTuple.h" #include #include #include #include namespace clang { class ASTContext; class Decl; class Expr; class IdentifierInfo; class LangOptions; class ParsedAttr; class Sema; class Stmt; class TargetInfo; struct ParsedAttrInfo { /// Corresponds to the Kind enum. unsigned AttrKind : 16; /// The number of required arguments of this attribute. unsigned NumArgs : 4; /// The number of optional arguments of this attributes. unsigned OptArgs : 4; /// True if the parsing does not match the semantic content. unsigned HasCustomParsing : 1; /// True if this attribute is only available for certain targets. unsigned IsTargetSpecific : 1; /// True if this attribute applies to types. unsigned IsType : 1; /// True if this attribute applies to statements. unsigned IsStmt : 1; /// True if this attribute has any spellings that are known to gcc. unsigned IsKnownToGCC : 1; /// True if this attribute is supported by #pragma clang attribute. unsigned IsSupportedByPragmaAttribute : 1; /// The syntaxes supported by this attribute and how they're spelled. struct Spelling { AttributeCommonInfo::Syntax Syntax; const char *NormalizedFullName; }; ArrayRef Spellings; // The names of the known arguments of this attribute. ArrayRef ArgNames; ParsedAttrInfo(AttributeCommonInfo::Kind AttrKind = AttributeCommonInfo::NoSemaHandlerAttribute) : AttrKind(AttrKind), NumArgs(0), OptArgs(0), HasCustomParsing(0), IsTargetSpecific(0), IsType(0), IsStmt(0), IsKnownToGCC(0), IsSupportedByPragmaAttribute(0) {} virtual ~ParsedAttrInfo() = default; /// Check if this attribute appertains to D, and issue a diagnostic if not. virtual bool diagAppertainsToDecl(Sema &S, const ParsedAttr &Attr, const Decl *D) const { return true; } /// Check if this attribute appertains to St, and issue a diagnostic if not. virtual bool diagAppertainsToStmt(Sema &S, const ParsedAttr &Attr, const Stmt *St) const { return true; } /// Check if the given attribute is mutually exclusive with other attributes /// already applied to the given declaration. virtual bool diagMutualExclusion(Sema &S, const ParsedAttr &A, const Decl *D) const { return true; } /// Check if this attribute is allowed by the language we are compiling. virtual bool acceptsLangOpts(const LangOptions &LO) const { return true; } /// Check if this attribute is allowed when compiling for the given target. virtual bool existsInTarget(const TargetInfo &Target) const { return true; } /// Convert the spelling index of Attr to a semantic spelling enum value. virtual unsigned spellingIndexToSemanticSpelling(const ParsedAttr &Attr) const { return UINT_MAX; } /// Populate Rules with the match rules of this attribute. virtual void getPragmaAttributeMatchRules( llvm::SmallVectorImpl> &Rules, const LangOptions &LangOpts) const { } enum AttrHandling { NotHandled, AttributeApplied, AttributeNotApplied }; /// If this ParsedAttrInfo knows how to handle this ParsedAttr applied to this /// Decl then do so and return either AttributeApplied if it was applied or /// AttributeNotApplied if it wasn't. Otherwise return NotHandled. virtual AttrHandling handleDeclAttribute(Sema &S, Decl *D, const ParsedAttr &Attr) const { return NotHandled; } static const ParsedAttrInfo &get(const AttributeCommonInfo &A); static ArrayRef getAllBuiltin(); }; typedef llvm::Registry ParsedAttrInfoRegistry; /// Represents information about a change in availability for /// an entity, which is part of the encoding of the 'availability' /// attribute. struct AvailabilityChange { /// The location of the keyword indicating the kind of change. SourceLocation KeywordLoc; /// The version number at which the change occurred. VersionTuple Version; /// The source range covering the version number. SourceRange VersionRange; /// Determine whether this availability change is valid. bool isValid() const { return !Version.empty(); } }; namespace detail { enum AvailabilitySlot { IntroducedSlot, DeprecatedSlot, ObsoletedSlot, NumAvailabilitySlots }; /// Describes the trailing object for Availability attribute in ParsedAttr. struct AvailabilityData { AvailabilityChange Changes[NumAvailabilitySlots]; SourceLocation StrictLoc; const Expr *Replacement; AvailabilityData(const AvailabilityChange &Introduced, const AvailabilityChange &Deprecated, const AvailabilityChange &Obsoleted, SourceLocation Strict, const Expr *ReplaceExpr) : StrictLoc(Strict), Replacement(ReplaceExpr) { Changes[IntroducedSlot] = Introduced; Changes[DeprecatedSlot] = Deprecated; Changes[ObsoletedSlot] = Obsoleted; } }; struct TypeTagForDatatypeData { ParsedType MatchingCType; unsigned LayoutCompatible : 1; unsigned MustBeNull : 1; }; struct PropertyData { IdentifierInfo *GetterId, *SetterId; PropertyData(IdentifierInfo *getterId, IdentifierInfo *setterId) : GetterId(getterId), SetterId(setterId) {} }; } // namespace /// Wraps an identifier and optional source location for the identifier. struct IdentifierLoc { SourceLocation Loc; IdentifierInfo *Ident; static IdentifierLoc *create(ASTContext &Ctx, SourceLocation Loc, IdentifierInfo *Ident); }; /// A union of the various pointer types that can be passed to an /// ParsedAttr as an argument. using ArgsUnion = llvm::PointerUnion; using ArgsVector = llvm::SmallVector; /// ParsedAttr - Represents a syntactic attribute. /// /// For a GNU attribute, there are four forms of this construct: /// /// 1: __attribute__(( const )). ParmName/Args/NumArgs will all be unused. /// 2: __attribute__(( mode(byte) )). ParmName used, Args/NumArgs unused. /// 3: __attribute__(( format(printf, 1, 2) )). ParmName/Args/NumArgs all used. /// 4: __attribute__(( aligned(16) )). ParmName is unused, Args/Num used. /// class ParsedAttr final : public AttributeCommonInfo, private llvm::TrailingObjects< ParsedAttr, ArgsUnion, detail::AvailabilityData, detail::TypeTagForDatatypeData, ParsedType, detail::PropertyData> { friend TrailingObjects; size_t numTrailingObjects(OverloadToken) const { return NumArgs; } size_t numTrailingObjects(OverloadToken) const { return IsAvailability; } size_t numTrailingObjects(OverloadToken) const { return IsTypeTagForDatatype; } size_t numTrailingObjects(OverloadToken) const { return HasParsedType; } size_t numTrailingObjects(OverloadToken) const { return IsProperty; } private: IdentifierInfo *MacroII = nullptr; SourceLocation MacroExpansionLoc; SourceLocation EllipsisLoc; /// The number of expression arguments this attribute has. /// The expressions themselves are stored after the object. unsigned NumArgs : 16; /// True if already diagnosed as invalid. mutable unsigned Invalid : 1; /// True if this attribute was used as a type attribute. mutable unsigned UsedAsTypeAttr : 1; /// True if this has the extra information associated with an /// availability attribute. unsigned IsAvailability : 1; /// True if this has extra information associated with a /// type_tag_for_datatype attribute. unsigned IsTypeTagForDatatype : 1; /// True if this has extra information associated with a /// Microsoft __delcspec(property) attribute. unsigned IsProperty : 1; /// True if this has a ParsedType unsigned HasParsedType : 1; /// True if the processing cache is valid. mutable unsigned HasProcessingCache : 1; /// A cached value. mutable unsigned ProcessingCache : 8; /// True if the attribute is specified using '#pragma clang attribute'. mutable unsigned IsPragmaClangAttribute : 1; /// The location of the 'unavailable' keyword in an /// availability attribute. SourceLocation UnavailableLoc; const Expr *MessageExpr; const ParsedAttrInfo &Info; ArgsUnion *getArgsBuffer() { return getTrailingObjects(); } ArgsUnion const *getArgsBuffer() const { return getTrailingObjects(); } detail::AvailabilityData *getAvailabilityData() { return getTrailingObjects(); } const detail::AvailabilityData *getAvailabilityData() const { return getTrailingObjects(); } private: friend class AttributeFactory; friend class AttributePool; /// Constructor for attributes with expression arguments. ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ArgsUnion *args, unsigned numArgs, Syntax syntaxUsed, SourceLocation ellipsisLoc) : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, syntaxUsed), EllipsisLoc(ellipsisLoc), NumArgs(numArgs), Invalid(false), UsedAsTypeAttr(false), IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(false), HasProcessingCache(false), IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { if (numArgs) memcpy(getArgsBuffer(), args, numArgs * sizeof(ArgsUnion)); } /// Constructor for availability attributes. ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *Parm, const AvailabilityChange &introduced, const AvailabilityChange &deprecated, const AvailabilityChange &obsoleted, SourceLocation unavailable, const Expr *messageExpr, Syntax syntaxUsed, SourceLocation strict, const Expr *replacementExpr) : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, syntaxUsed), NumArgs(1), Invalid(false), UsedAsTypeAttr(false), IsAvailability(true), IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(false), HasProcessingCache(false), IsPragmaClangAttribute(false), UnavailableLoc(unavailable), MessageExpr(messageExpr), Info(ParsedAttrInfo::get(*this)) { ArgsUnion PVal(Parm); memcpy(getArgsBuffer(), &PVal, sizeof(ArgsUnion)); new (getAvailabilityData()) detail::AvailabilityData( introduced, deprecated, obsoleted, strict, replacementExpr); } /// Constructor for objc_bridge_related attributes. ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *Parm1, IdentifierLoc *Parm2, IdentifierLoc *Parm3, Syntax syntaxUsed) : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, syntaxUsed), NumArgs(3), Invalid(false), UsedAsTypeAttr(false), IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(false), HasProcessingCache(false), IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { ArgsUnion *Args = getArgsBuffer(); Args[0] = Parm1; Args[1] = Parm2; Args[2] = Parm3; } /// Constructor for type_tag_for_datatype attribute. ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *ArgKind, ParsedType matchingCType, bool layoutCompatible, bool mustBeNull, Syntax syntaxUsed) : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, syntaxUsed), NumArgs(1), Invalid(false), UsedAsTypeAttr(false), IsAvailability(false), IsTypeTagForDatatype(true), IsProperty(false), HasParsedType(false), HasProcessingCache(false), IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { ArgsUnion PVal(ArgKind); memcpy(getArgsBuffer(), &PVal, sizeof(ArgsUnion)); detail::TypeTagForDatatypeData &ExtraData = getTypeTagForDatatypeDataSlot(); new (&ExtraData.MatchingCType) ParsedType(matchingCType); ExtraData.LayoutCompatible = layoutCompatible; ExtraData.MustBeNull = mustBeNull; } /// Constructor for attributes with a single type argument. ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ParsedType typeArg, Syntax syntaxUsed) : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, syntaxUsed), NumArgs(0), Invalid(false), UsedAsTypeAttr(false), IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(true), HasProcessingCache(false), IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { new (&getTypeBuffer()) ParsedType(typeArg); } /// Constructor for microsoft __declspec(property) attribute. ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierInfo *getterId, IdentifierInfo *setterId, Syntax syntaxUsed) : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, syntaxUsed), NumArgs(0), Invalid(false), UsedAsTypeAttr(false), IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(true), HasParsedType(false), HasProcessingCache(false), IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { new (&getPropertyDataBuffer()) detail::PropertyData(getterId, setterId); } /// Type tag information is stored immediately following the arguments, if /// any, at the end of the object. They are mutually exclusive with /// availability slots. detail::TypeTagForDatatypeData &getTypeTagForDatatypeDataSlot() { return *getTrailingObjects(); } const detail::TypeTagForDatatypeData &getTypeTagForDatatypeDataSlot() const { return *getTrailingObjects(); } /// The type buffer immediately follows the object and are mutually exclusive /// with arguments. ParsedType &getTypeBuffer() { return *getTrailingObjects(); } const ParsedType &getTypeBuffer() const { return *getTrailingObjects(); } /// The property data immediately follows the object is is mutually exclusive /// with arguments. detail::PropertyData &getPropertyDataBuffer() { assert(IsProperty); return *getTrailingObjects(); } const detail::PropertyData &getPropertyDataBuffer() const { assert(IsProperty); return *getTrailingObjects(); } size_t allocated_size() const; public: ParsedAttr(const ParsedAttr &) = delete; ParsedAttr(ParsedAttr &&) = delete; ParsedAttr &operator=(const ParsedAttr &) = delete; ParsedAttr &operator=(ParsedAttr &&) = delete; ~ParsedAttr() = delete; void operator delete(void *) = delete; bool hasParsedType() const { return HasParsedType; } /// Is this the Microsoft __declspec(property) attribute? bool isDeclspecPropertyAttribute() const { return IsProperty; } bool isInvalid() const { return Invalid; } void setInvalid(bool b = true) const { Invalid = b; } bool hasProcessingCache() const { return HasProcessingCache; } unsigned getProcessingCache() const { assert(hasProcessingCache()); return ProcessingCache; } void setProcessingCache(unsigned value) const { ProcessingCache = value; HasProcessingCache = true; } bool isUsedAsTypeAttr() const { return UsedAsTypeAttr; } void setUsedAsTypeAttr(bool Used = true) { UsedAsTypeAttr = Used; } /// True if the attribute is specified using '#pragma clang attribute'. bool isPragmaClangAttribute() const { return IsPragmaClangAttribute; } void setIsPragmaClangAttribute() { IsPragmaClangAttribute = true; } bool isPackExpansion() const { return EllipsisLoc.isValid(); } SourceLocation getEllipsisLoc() const { return EllipsisLoc; } /// getNumArgs - Return the number of actual arguments to this attribute. unsigned getNumArgs() const { return NumArgs; } /// getArg - Return the specified argument. ArgsUnion getArg(unsigned Arg) const { assert(Arg < NumArgs && "Arg access out of range!"); return getArgsBuffer()[Arg]; } bool isArgExpr(unsigned Arg) const { return Arg < NumArgs && getArg(Arg).is(); } Expr *getArgAsExpr(unsigned Arg) const { return getArg(Arg).get(); } bool isArgIdent(unsigned Arg) const { return Arg < NumArgs && getArg(Arg).is(); } IdentifierLoc *getArgAsIdent(unsigned Arg) const { return getArg(Arg).get(); } const AvailabilityChange &getAvailabilityIntroduced() const { assert(getParsedKind() == AT_Availability && "Not an availability attribute"); return getAvailabilityData()->Changes[detail::IntroducedSlot]; } const AvailabilityChange &getAvailabilityDeprecated() const { assert(getParsedKind() == AT_Availability && "Not an availability attribute"); return getAvailabilityData()->Changes[detail::DeprecatedSlot]; } const AvailabilityChange &getAvailabilityObsoleted() const { assert(getParsedKind() == AT_Availability && "Not an availability attribute"); return getAvailabilityData()->Changes[detail::ObsoletedSlot]; } SourceLocation getStrictLoc() const { assert(getParsedKind() == AT_Availability && "Not an availability attribute"); return getAvailabilityData()->StrictLoc; } SourceLocation getUnavailableLoc() const { assert(getParsedKind() == AT_Availability && "Not an availability attribute"); return UnavailableLoc; } const Expr * getMessageExpr() const { assert(getParsedKind() == AT_Availability && "Not an availability attribute"); return MessageExpr; } const Expr *getReplacementExpr() const { assert(getParsedKind() == AT_Availability && "Not an availability attribute"); return getAvailabilityData()->Replacement; } const ParsedType &getMatchingCType() const { assert(getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute"); return getTypeTagForDatatypeDataSlot().MatchingCType; } bool getLayoutCompatible() const { assert(getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute"); return getTypeTagForDatatypeDataSlot().LayoutCompatible; } bool getMustBeNull() const { assert(getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute"); return getTypeTagForDatatypeDataSlot().MustBeNull; } const ParsedType &getTypeArg() const { assert(HasParsedType && "Not a type attribute"); return getTypeBuffer(); } IdentifierInfo *getPropertyDataGetter() const { assert(isDeclspecPropertyAttribute() && "Not a __delcspec(property) attribute"); return getPropertyDataBuffer().GetterId; } IdentifierInfo *getPropertyDataSetter() const { assert(isDeclspecPropertyAttribute() && "Not a __delcspec(property) attribute"); return getPropertyDataBuffer().SetterId; } /// Set the macro identifier info object that this parsed attribute was /// declared in if it was declared in a macro. Also set the expansion location /// of the macro. void setMacroIdentifier(IdentifierInfo *MacroName, SourceLocation Loc) { MacroII = MacroName; MacroExpansionLoc = Loc; } /// Returns true if this attribute was declared in a macro. bool hasMacroIdentifier() const { return MacroII != nullptr; } /// Return the macro identifier if this attribute was declared in a macro. /// nullptr is returned if it was not declared in a macro. IdentifierInfo *getMacroIdentifier() const { return MacroII; } SourceLocation getMacroExpansionLoc() const { assert(hasMacroIdentifier() && "Can only get the macro expansion location " "if this attribute has a macro identifier."); return MacroExpansionLoc; } /// Check if the attribute has exactly as many args as Num. May output an /// error. Returns false if a diagnostic is produced. bool checkExactlyNumArgs(class Sema &S, unsigned Num) const; /// Check if the attribute has at least as many args as Num. May output an /// error. Returns false if a diagnostic is produced. bool checkAtLeastNumArgs(class Sema &S, unsigned Num) const; /// Check if the attribute has at most as many args as Num. May output an /// error. Returns false if a diagnostic is produced. bool checkAtMostNumArgs(class Sema &S, unsigned Num) const; bool isTargetSpecificAttr() const; bool isTypeAttr() const; bool isStmtAttr() const; bool hasCustomParsing() const; unsigned getMinArgs() const; unsigned getMaxArgs() const; bool hasVariadicArg() const; bool diagnoseAppertainsTo(class Sema &S, const Decl *D) const; bool diagnoseAppertainsTo(class Sema &S, const Stmt *St) const; bool diagnoseMutualExclusion(class Sema &S, const Decl *D) const; // This function stub exists for parity with the declaration checking code so // that checkCommonAttributeFeatures() can work generically on declarations // or statements. bool diagnoseMutualExclusion(class Sema &S, const Stmt *St) const { return true; } bool appliesToDecl(const Decl *D, attr::SubjectMatchRule MatchRule) const; void getMatchRules(const LangOptions &LangOpts, SmallVectorImpl> &MatchRules) const; bool diagnoseLangOpts(class Sema &S) const; bool existsInTarget(const TargetInfo &Target) const; bool isKnownToGCC() const; bool isSupportedByPragmaAttribute() const; /// If the parsed attribute has a semantic equivalent, and it would /// have a semantic Spelling enumeration (due to having semantically-distinct /// spelling variations), return the value of that semantic spelling. If the /// parsed attribute does not have a semantic equivalent, or would not have /// a Spelling enumeration, the value UINT_MAX is returned. unsigned getSemanticSpelling() const; /// If this is an OpenCL address space attribute, returns its representation /// in LangAS, otherwise returns default address space. LangAS asOpenCLLangAS() const { switch (getParsedKind()) { case ParsedAttr::AT_OpenCLConstantAddressSpace: return LangAS::opencl_constant; case ParsedAttr::AT_OpenCLGlobalAddressSpace: return LangAS::opencl_global; case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: return LangAS::opencl_global_device; case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: return LangAS::opencl_global_host; case ParsedAttr::AT_OpenCLLocalAddressSpace: return LangAS::opencl_local; case ParsedAttr::AT_OpenCLPrivateAddressSpace: return LangAS::opencl_private; case ParsedAttr::AT_OpenCLGenericAddressSpace: return LangAS::opencl_generic; default: return LangAS::Default; } } /// If this is an OpenCL address space attribute, returns its SYCL /// representation in LangAS, otherwise returns default address space. LangAS asSYCLLangAS() const { switch (getKind()) { case ParsedAttr::AT_OpenCLGlobalAddressSpace: return LangAS::sycl_global; case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: return LangAS::sycl_global_device; case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: return LangAS::sycl_global_host; case ParsedAttr::AT_OpenCLLocalAddressSpace: return LangAS::sycl_local; case ParsedAttr::AT_OpenCLPrivateAddressSpace: return LangAS::sycl_private; case ParsedAttr::AT_OpenCLGenericAddressSpace: default: return LangAS::Default; } } AttributeCommonInfo::Kind getKind() const { return AttributeCommonInfo::Kind(Info.AttrKind); } const ParsedAttrInfo &getInfo() const { return Info; } }; class AttributePool; /// A factory, from which one makes pools, from which one creates /// individual attributes which are deallocated with the pool. /// /// Note that it's tolerably cheap to create and destroy one of /// these as long as you don't actually allocate anything in it. class AttributeFactory { public: enum { AvailabilityAllocSize = ParsedAttr::totalSizeToAlloc(1, 1, 0, 0, 0), TypeTagForDatatypeAllocSize = ParsedAttr::totalSizeToAlloc(1, 0, 1, 0, 0), PropertyAllocSize = ParsedAttr::totalSizeToAlloc(0, 0, 0, 0, 1), }; private: enum { /// The number of free lists we want to be sure to support /// inline. This is just enough that availability attributes /// don't surpass it. It's actually very unlikely we'll see an /// attribute that needs more than that; on x86-64 you'd need 10 /// expression arguments, and on i386 you'd need 19. InlineFreeListsCapacity = 1 + (AvailabilityAllocSize - sizeof(ParsedAttr)) / sizeof(void *) }; llvm::BumpPtrAllocator Alloc; /// Free lists. The index is determined by the following formula: /// (size - sizeof(ParsedAttr)) / sizeof(void*) SmallVector, InlineFreeListsCapacity> FreeLists; // The following are the private interface used by AttributePool. friend class AttributePool; /// Allocate an attribute of the given size. void *allocate(size_t size); void deallocate(ParsedAttr *AL); /// Reclaim all the attributes in the given pool chain, which is /// non-empty. Note that the current implementation is safe /// against reclaiming things which were not actually allocated /// with the allocator, although of course it's important to make /// sure that their allocator lives at least as long as this one. void reclaimPool(AttributePool &head); public: AttributeFactory(); ~AttributeFactory(); }; class AttributePool { friend class AttributeFactory; friend class ParsedAttributes; AttributeFactory &Factory; llvm::TinyPtrVector Attrs; void *allocate(size_t size) { return Factory.allocate(size); } ParsedAttr *add(ParsedAttr *attr) { Attrs.push_back(attr); return attr; } void remove(ParsedAttr *attr) { assert(llvm::is_contained(Attrs, attr) && "Can't take attribute from a pool that doesn't own it!"); Attrs.erase(llvm::find(Attrs, attr)); } void takePool(AttributePool &pool); public: /// Create a new pool for a factory. AttributePool(AttributeFactory &factory) : Factory(factory) {} AttributePool(const AttributePool &) = delete; ~AttributePool() { Factory.reclaimPool(*this); } /// Move the given pool's allocations to this pool. AttributePool(AttributePool &&pool) = default; AttributeFactory &getFactory() const { return Factory; } void clear() { Factory.reclaimPool(*this); Attrs.clear(); } /// Take the given pool's allocations and add them to this pool. void takeAllFrom(AttributePool &pool) { takePool(pool); pool.Attrs.clear(); } ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ArgsUnion *args, unsigned numArgs, ParsedAttr::Syntax syntax, SourceLocation ellipsisLoc = SourceLocation()) { size_t temp = ParsedAttr::totalSizeToAlloc(numArgs, 0, 0, 0, 0); (void)temp; void *memory = allocate( ParsedAttr::totalSizeToAlloc(numArgs, 0, 0, 0, 0)); return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, args, numArgs, syntax, ellipsisLoc)); } ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *Param, const AvailabilityChange &introduced, const AvailabilityChange &deprecated, const AvailabilityChange &obsoleted, SourceLocation unavailable, const Expr *MessageExpr, ParsedAttr::Syntax syntax, SourceLocation strict, const Expr *ReplacementExpr) { void *memory = allocate(AttributeFactory::AvailabilityAllocSize); return add(new (memory) ParsedAttr( attrName, attrRange, scopeName, scopeLoc, Param, introduced, deprecated, obsoleted, unavailable, MessageExpr, syntax, strict, ReplacementExpr)); } ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *Param1, IdentifierLoc *Param2, IdentifierLoc *Param3, ParsedAttr::Syntax syntax) { void *memory = allocate( ParsedAttr::totalSizeToAlloc(3, 0, 0, 0, 0)); return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, Param1, Param2, Param3, syntax)); } ParsedAttr * createTypeTagForDatatype(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *argumentKind, ParsedType matchingCType, bool layoutCompatible, bool mustBeNull, ParsedAttr::Syntax syntax) { void *memory = allocate(AttributeFactory::TypeTagForDatatypeAllocSize); return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, argumentKind, matchingCType, layoutCompatible, mustBeNull, syntax)); } ParsedAttr *createTypeAttribute(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ParsedType typeArg, ParsedAttr::Syntax syntaxUsed) { void *memory = allocate( ParsedAttr::totalSizeToAlloc(0, 0, 0, 1, 0)); return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, typeArg, syntaxUsed)); } ParsedAttr * createPropertyAttribute(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierInfo *getterId, IdentifierInfo *setterId, ParsedAttr::Syntax syntaxUsed) { void *memory = allocate(AttributeFactory::PropertyAllocSize); return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, getterId, setterId, syntaxUsed)); } }; class ParsedAttributesView { using VecTy = llvm::TinyPtrVector; using SizeType = decltype(std::declval().size()); public: bool empty() const { return AttrList.empty(); } SizeType size() const { return AttrList.size(); } ParsedAttr &operator[](SizeType pos) { return *AttrList[pos]; } const ParsedAttr &operator[](SizeType pos) const { return *AttrList[pos]; } void addAtEnd(ParsedAttr *newAttr) { assert(newAttr); AttrList.push_back(newAttr); } void remove(ParsedAttr *ToBeRemoved) { assert(is_contained(AttrList, ToBeRemoved) && "Cannot remove attribute that isn't in the list"); AttrList.erase(llvm::find(AttrList, ToBeRemoved)); } void clearListOnly() { AttrList.clear(); } struct iterator : llvm::iterator_adaptor_base { iterator() : iterator_adaptor_base(nullptr) {} iterator(VecTy::iterator I) : iterator_adaptor_base(I) {} reference operator*() const { return **I; } friend class ParsedAttributesView; }; struct const_iterator : llvm::iterator_adaptor_base { const_iterator() : iterator_adaptor_base(nullptr) {} const_iterator(VecTy::const_iterator I) : iterator_adaptor_base(I) {} reference operator*() const { return **I; } friend class ParsedAttributesView; }; void addAll(iterator B, iterator E) { AttrList.insert(AttrList.begin(), B.I, E.I); } void addAll(const_iterator B, const_iterator E) { AttrList.insert(AttrList.begin(), B.I, E.I); } void addAllAtEnd(iterator B, iterator E) { AttrList.insert(AttrList.end(), B.I, E.I); } void addAllAtEnd(const_iterator B, const_iterator E) { AttrList.insert(AttrList.end(), B.I, E.I); } iterator begin() { return iterator(AttrList.begin()); } const_iterator begin() const { return const_iterator(AttrList.begin()); } iterator end() { return iterator(AttrList.end()); } const_iterator end() const { return const_iterator(AttrList.end()); } ParsedAttr &front() { assert(!empty()); return *AttrList.front(); } const ParsedAttr &front() const { assert(!empty()); return *AttrList.front(); } ParsedAttr &back() { assert(!empty()); return *AttrList.back(); } const ParsedAttr &back() const { assert(!empty()); return *AttrList.back(); } bool hasAttribute(ParsedAttr::Kind K) const { return llvm::any_of(AttrList, [K](const ParsedAttr *AL) { return AL->getParsedKind() == K; }); } private: VecTy AttrList; }; /// ParsedAttributes - A collection of parsed attributes. Currently /// we don't differentiate between the various attribute syntaxes, /// which is basically silly. /// /// Right now this is a very lightweight container, but the expectation /// is that this will become significantly more serious. class ParsedAttributes : public ParsedAttributesView { public: ParsedAttributes(AttributeFactory &factory) : pool(factory) {} ParsedAttributes(const ParsedAttributes &) = delete; AttributePool &getPool() const { return pool; } void takeAllFrom(ParsedAttributes &attrs) { addAll(attrs.begin(), attrs.end()); attrs.clearListOnly(); pool.takeAllFrom(attrs.pool); } void takeOneFrom(ParsedAttributes &Attrs, ParsedAttr *PA) { Attrs.getPool().remove(PA); Attrs.remove(PA); getPool().add(PA); addAtEnd(PA); } void clear() { clearListOnly(); pool.clear(); } /// Add attribute with expression arguments. ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ArgsUnion *args, unsigned numArgs, ParsedAttr::Syntax syntax, SourceLocation ellipsisLoc = SourceLocation()) { ParsedAttr *attr = pool.create(attrName, attrRange, scopeName, scopeLoc, args, numArgs, syntax, ellipsisLoc); addAtEnd(attr); return attr; } /// Add availability attribute. ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *Param, const AvailabilityChange &introduced, const AvailabilityChange &deprecated, const AvailabilityChange &obsoleted, SourceLocation unavailable, const Expr *MessageExpr, ParsedAttr::Syntax syntax, SourceLocation strict, const Expr *ReplacementExpr) { ParsedAttr *attr = pool.create( attrName, attrRange, scopeName, scopeLoc, Param, introduced, deprecated, obsoleted, unavailable, MessageExpr, syntax, strict, ReplacementExpr); addAtEnd(attr); return attr; } /// Add objc_bridge_related attribute. ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *Param1, IdentifierLoc *Param2, IdentifierLoc *Param3, ParsedAttr::Syntax syntax) { ParsedAttr *attr = pool.create(attrName, attrRange, scopeName, scopeLoc, Param1, Param2, Param3, syntax); addAtEnd(attr); return attr; } /// Add type_tag_for_datatype attribute. ParsedAttr * addNewTypeTagForDatatype(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *argumentKind, ParsedType matchingCType, bool layoutCompatible, bool mustBeNull, ParsedAttr::Syntax syntax) { ParsedAttr *attr = pool.createTypeTagForDatatype( attrName, attrRange, scopeName, scopeLoc, argumentKind, matchingCType, layoutCompatible, mustBeNull, syntax); addAtEnd(attr); return attr; } /// Add an attribute with a single type argument. ParsedAttr *addNewTypeAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ParsedType typeArg, ParsedAttr::Syntax syntaxUsed) { ParsedAttr *attr = pool.createTypeAttribute(attrName, attrRange, scopeName, scopeLoc, typeArg, syntaxUsed); addAtEnd(attr); return attr; } /// Add microsoft __delspec(property) attribute. ParsedAttr * addNewPropertyAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierInfo *getterId, IdentifierInfo *setterId, ParsedAttr::Syntax syntaxUsed) { ParsedAttr *attr = pool.createPropertyAttribute(attrName, attrRange, scopeName, scopeLoc, getterId, setterId, syntaxUsed); addAtEnd(attr); return attr; } private: mutable AttributePool pool; }; struct ParsedAttributesWithRange : ParsedAttributes { ParsedAttributesWithRange(AttributeFactory &factory) : ParsedAttributes(factory) {} void clear() { ParsedAttributes::clear(); Range = SourceRange(); } SourceRange Range; }; struct ParsedAttributesViewWithRange : ParsedAttributesView { ParsedAttributesViewWithRange() {} void clearListOnly() { ParsedAttributesView::clearListOnly(); Range = SourceRange(); } SourceRange Range; }; /// These constants match the enumerated choices of /// err_attribute_argument_n_type and err_attribute_argument_type. enum AttributeArgumentNType { AANT_ArgumentIntOrBool, AANT_ArgumentIntegerConstant, AANT_ArgumentString, AANT_ArgumentIdentifier, AANT_ArgumentConstantExpr, AANT_ArgumentBuiltinFunction, }; /// These constants match the enumerated choices of /// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type. enum AttributeDeclKind { ExpectedFunction, ExpectedUnion, ExpectedVariableOrFunction, ExpectedFunctionOrMethod, ExpectedFunctionMethodOrBlock, ExpectedFunctionMethodOrParameter, ExpectedVariable, ExpectedVariableOrField, ExpectedVariableFieldOrTag, ExpectedTypeOrNamespace, ExpectedFunctionVariableOrClass, ExpectedKernelFunction, ExpectedFunctionWithProtoType, }; inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const ParsedAttr &At) { DB.AddTaggedVal(reinterpret_cast(At.getAttrName()), DiagnosticsEngine::ak_identifierinfo); return DB; } inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const ParsedAttr *At) { DB.AddTaggedVal(reinterpret_cast(At->getAttrName()), DiagnosticsEngine::ak_identifierinfo); return DB; } /// AttributeCommonInfo has a non-explicit constructor which takes an /// SourceRange as its only argument, this constructor has many uses so making /// it explicit is hard. This constructor causes ambiguity with /// DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, SourceRange R). /// We use SFINAE to disable any conversion and remove any ambiguity. template ::value, int> = 0> inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const ACI &CI) { DB.AddTaggedVal(reinterpret_cast(CI.getAttrName()), DiagnosticsEngine::ak_identifierinfo); return DB; } template ::value, int> = 0> inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, const ACI* CI) { DB.AddTaggedVal(reinterpret_cast(CI->getAttrName()), DiagnosticsEngine::ak_identifierinfo); return DB; } } // namespace clang #endif // LLVM_CLANG_SEMA_PARSEDATTR_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif