/* Sequential list data type implemented by a hash table with a binary tree. Copyright (C) 2006-2007, 2009-2020 Free Software Foundation, Inc. Written by Bruno Haible , 2006. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Common code of gl_avltreehash_list.c and gl_rbtreehash_list.c. */ /* Hash table entry representing the same value at more than one position. */ struct gl_multiple_nodes { struct gl_hash_entry h; /* hash table entry fields; must be first */ void *magic; /* used to distinguish from single node */ gl_oset_t nodes; /* set of nodes, sorted by position */ }; /* A value that cannot occur at the corresponding field (->left) in gl_list_node_impl. */ #define MULTIPLE_NODES_MAGIC (void *) -1 /* Returns the position of the given node in the tree. */ static size_t _GL_ATTRIBUTE_PURE node_position (gl_list_node_t node) { size_t position = 0; if (node->left != NULL) position += node->left->branch_size; for (;;) { gl_list_node_t parent = node->parent; if (parent == NULL) return position; /* position is now relative to the subtree of node. */ if (parent->right == node) { position += 1; if (parent->left != NULL) position += parent->left->branch_size; } /* position is now relative to the subtree of parent. */ node = parent; } } /* Compares two nodes by their position in the tree. */ static int _GL_ATTRIBUTE_PURE compare_by_position (const void *x1, const void *x2) { gl_list_node_t node1 = (gl_list_node_t) x1; gl_list_node_t node2 = (gl_list_node_t) x2; size_t position1 = node_position (node1); size_t position2 = node_position (node2); return (position1 > position2 ? 1 : position1 < position2 ? -1 : 0); } /* Compares a node's position in the tree with a given threshold. */ static bool _GL_ATTRIBUTE_PURE compare_position_threshold (const void *x, const void *threshold) { gl_list_node_t node = (gl_list_node_t) x; size_t position = node_position (node); return (position >= (uintptr_t)threshold); } /* Returns the first element of a non-empty ordered set of nodes. */ static gl_list_node_t gl_oset_first (gl_oset_t set) { gl_oset_iterator_t iter = gl_oset_iterator (set); const void *first; if (!gl_oset_iterator_next (&iter, &first)) abort (); gl_oset_iterator_free (&iter); return (gl_list_node_t) first; } /* Adds a node to the hash table structure. If duplicates are allowed, this function performs in average time O((log n)^2): gl_oset_nx_add may need to add an element to an ordered set of size O(n), needing O(log n) comparison function calls. The comparison function is compare_by_position, which is O(log n) worst-case. If duplicates are forbidden, this function is O(1). Return 0 upon success, -1 upon out-of-memory. */ static int add_to_bucket (gl_list_t list, gl_list_node_t new_node) { size_t bucket = new_node->h.hashcode % list->table_size; /* If no duplicates are allowed, multiple nodes are not needed. */ if (list->base.allow_duplicates) { size_t hashcode = new_node->h.hashcode; const void *value = new_node->value; gl_listelement_equals_fn equals = list->base.equals_fn; gl_hash_entry_t *entryp; for (entryp = &list->table[bucket]; *entryp != NULL; entryp = &(*entryp)->hash_next) { gl_hash_entry_t entry = *entryp; if (entry->hashcode == hashcode) { if (((struct gl_multiple_nodes *) entry)->magic == MULTIPLE_NODES_MAGIC) { /* An entry representing multiple nodes. */ gl_oset_t nodes = ((struct gl_multiple_nodes *) entry)->nodes; /* Only the first node is interesting. */ gl_list_node_t node = gl_oset_first (nodes); if (equals != NULL ? equals (value, node->value) : value == node->value) { /* Found already multiple nodes with the same value. Add the new_node to it. */ return gl_oset_nx_add (nodes, new_node); } } else { /* An entry representing a single node. */ gl_list_node_t node = (struct gl_list_node_impl *) entry; if (equals != NULL ? equals (value, node->value) : value == node->value) { /* Found already a node with the same value. Turn it into an ordered set, and add new_node to it. */ gl_oset_t nodes; struct gl_multiple_nodes *multi_entry; nodes = gl_oset_nx_create_empty (OSET_TREE_FLAVOR, compare_by_position, NULL); if (nodes == NULL) return -1; if (gl_oset_nx_add (nodes, node) < 0) goto fail; if (gl_oset_nx_add (nodes, new_node) < 0) goto fail; multi_entry = (struct gl_multiple_nodes *) malloc (sizeof (struct gl_multiple_nodes)); if (multi_entry == NULL) goto fail; multi_entry->h.hash_next = entry->hash_next; multi_entry->h.hashcode = entry->hashcode; multi_entry->magic = MULTIPLE_NODES_MAGIC; multi_entry->nodes = nodes; *entryp = &multi_entry->h; return 0; fail: gl_oset_free (nodes); return -1; } } } } } /* If no duplicates are allowed, multiple nodes are not needed. */ new_node->h.hash_next = list->table[bucket]; list->table[bucket] = &new_node->h; return 0; } /* Tell GCC that the likely return value is 0. */ #define add_to_bucket(list,node) \ __builtin_expect ((add_to_bucket) (list, node), 0) /* Removes a node from the hash table structure. If duplicates are allowed, this function performs in average time O((log n)^2): gl_oset_remove may need to remove an element from an ordered set of size O(n), needing O(log n) comparison function calls. The comparison function is compare_by_position, which is O(log n) worst-case. If duplicates are forbidden, this function is O(1) on average. */ static void remove_from_bucket (gl_list_t list, gl_list_node_t old_node) { size_t bucket = old_node->h.hashcode % list->table_size; if (list->base.allow_duplicates) { size_t hashcode = old_node->h.hashcode; const void *value = old_node->value; gl_listelement_equals_fn equals = list->base.equals_fn; gl_hash_entry_t *entryp; for (entryp = &list->table[bucket]; ; entryp = &(*entryp)->hash_next) { gl_hash_entry_t entry = *entryp; if (entry == &old_node->h) { /* Found old_node as a single node in the bucket. Remove it. */ *entryp = old_node->h.hash_next; break; } if (entry == NULL) /* node is not in the right bucket. Did the hash codes change inadvertently? */ abort (); if (((struct gl_multiple_nodes *) entry)->magic == MULTIPLE_NODES_MAGIC && entry->hashcode == hashcode) { /* An entry representing multiple nodes. */ gl_oset_t nodes = ((struct gl_multiple_nodes *) entry)->nodes; /* Only the first node is interesting. */ gl_list_node_t node = gl_oset_first (nodes); if (equals != NULL ? equals (value, node->value) : value == node->value) { /* Found multiple nodes with the same value. old_node must be one of them. Remove it. */ if (!gl_oset_remove (nodes, old_node)) abort (); if (gl_oset_size (nodes) == 1) { /* Replace a one-element set with a single node. */ node = gl_oset_first (nodes); node->h.hash_next = entry->hash_next; *entryp = &node->h; gl_oset_free (nodes); free (entry); } break; } } } } else { /* If no duplicates are allowed, multiple nodes are not needed. */ gl_hash_entry_t *entryp; for (entryp = &list->table[bucket]; ; entryp = &(*entryp)->hash_next) { if (*entryp == &old_node->h) { *entryp = old_node->h.hash_next; break; } if (*entryp == NULL) /* node is not in the right bucket. Did the hash codes change inadvertently? */ abort (); } } } /* Builds up the hash table during initialization: Stores all the nodes of list->root in the hash table. Returns 0 upon success, -1 upon out-of-memory. */ static int add_nodes_to_buckets (gl_list_t list) { /* Iterate across all nodes. */ gl_list_node_t node = list->root; iterstack_t stack; iterstack_item_t *stack_ptr = &stack[0]; for (;;) { /* Descend on left branch. */ for (;;) { if (node == NULL) break; stack_ptr->node = node; stack_ptr->rightp = false; node = node->left; stack_ptr++; } /* Climb up again. */ for (;;) { if (stack_ptr == &stack[0]) goto done; stack_ptr--; if (!stack_ptr->rightp) break; } node = stack_ptr->node; /* Add the current node to the hash table. */ node->h.hashcode = (list->base.hashcode_fn != NULL ? list->base.hashcode_fn (node->value) : (size_t)(uintptr_t) node->value); if (add_to_bucket (list, node) < 0) goto fail; /* Descend on right branch. */ stack_ptr->rightp = true; node = node->right; stack_ptr++; } done: return 0; fail: /* Undo everything. */ for (;;) { /* Descend on left branch. */ stack_ptr->rightp = false; node = node->left; stack_ptr++; /* Descend on right branch. */ for (;;) { if (node == NULL) break; stack_ptr->node = node; stack_ptr->rightp = true; node = node->right; stack_ptr++; } /* Climb up again. */ for (;;) { if (stack_ptr == &stack[0]) goto fail_done; stack_ptr--; if (stack_ptr->rightp) break; } node = stack_ptr->node; /* Remove the current node from the hash table. */ remove_from_bucket (list, node); } fail_done: return -1; } /* Tell GCC that the likely return value is 0. */ #if (__GNUC__ >= 3) || (__clang_major__ >= 4) # define add_nodes_to_buckets(list) \ __builtin_expect ((add_nodes_to_buckets) (list), 0) #endif