/* * Copyright 2010-2011 INRIA Saclay * Copyright 2012-2014 Ecole Normale Superieure * Copyright 2015 Sven Verdoolaege * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include "gpu_array_tile.h" #include "gpu_group.h" #include "gpu_tree.h" #include "schedule.h" /* Print the name of the local copy of a given group of array references. */ __isl_give isl_printer *gpu_array_ref_group_print_name( struct gpu_array_ref_group *group, __isl_take isl_printer *p) { int global = 0; enum ppcg_group_access_type type; type = gpu_array_ref_group_type(group); if (type == ppcg_access_private) p = isl_printer_print_str(p, "private_"); else if (type == ppcg_access_shared) p = isl_printer_print_str(p, "shared_"); else global = 1; p = isl_printer_print_str(p, group->array->name); if (!global && group->local_array->n_group > 1) { p = isl_printer_print_str(p, "_"); p = isl_printer_print_int(p, group->nr); } return p; } /* Return the union of all read (read = 1) and/or write (write = 1) * access relations in the group. */ __isl_give isl_union_map *gpu_array_ref_group_access_relation( struct gpu_array_ref_group *group, int read, int write) { int i; isl_union_map *access; access = isl_union_map_empty(isl_map_get_space(group->access)); for (i = 0; i < group->n_ref; ++i) { isl_map *map_i; if (!((read && group->refs[i]->read) || (write && group->refs[i]->write))) continue; map_i = isl_map_copy(group->refs[i]->access); access = isl_union_map_union(access, isl_union_map_from_map(map_i)); } return access; } /* Should this array reference group be mapped to private, shared or global * memory? * If we have computed both a private and a shared tile, then * the tile with the smallest depth is used. If both have the same depth, * then the private tile is used. */ enum ppcg_group_access_type gpu_array_ref_group_type( struct gpu_array_ref_group *group) { if (group->private_tile && group->shared_tile && group->shared_tile->depth < group->private_tile->depth) return ppcg_access_shared; if (group->private_tile) return ppcg_access_private; if (group->shared_tile) return ppcg_access_shared; return ppcg_access_global; } /* Return the effective gpu_array_tile associated to "group" or * NULL if there is no such gpu_array_tile. */ struct gpu_array_tile *gpu_array_ref_group_tile( struct gpu_array_ref_group *group) { switch (gpu_array_ref_group_type(group)) { case ppcg_access_global: return NULL; case ppcg_access_shared: return group->shared_tile; case ppcg_access_private: return group->private_tile; } } /* Does the tile associated to "group" require unrolling of the schedule * dimensions mapped to threads? * Note that this can only happen for private tiles. */ int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group) { struct gpu_array_tile *tile; tile = gpu_array_ref_group_tile(group); if (!tile) return 0; return tile->requires_unroll; } /* Given a constraint * * a(p,i) + j = g f(e) * * or -a(p,i) - j = g f(e) if sign < 0, * store a(p,i) in bound->shift and g (stride) in bound->stride. * a(p,i) is assumed to be an expression in only the parameters * and the input dimensions. */ static void extract_stride(__isl_keep isl_constraint *c, struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign) { int i; isl_val *v; isl_space *space; unsigned nparam; unsigned nvar; isl_aff *aff; isl_val_free(bound->stride); bound->stride = isl_val_copy(stride); space = isl_constraint_get_space(c); space = isl_space_domain(space); nparam = isl_space_dim(space, isl_dim_param); nvar = isl_space_dim(space, isl_dim_set); v = isl_constraint_get_constant_val(c); if (sign < 0) v = isl_val_neg(v); aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); aff = isl_aff_set_constant_val(aff, v); for (i = 0; i < nparam; ++i) { if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1)) continue; v = isl_constraint_get_coefficient_val(c, isl_dim_param, i); if (sign < 0) v = isl_val_neg(v); aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v); } for (i = 0; i < nvar; ++i) { if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1)) continue; v = isl_constraint_get_coefficient_val(c, isl_dim_in, i); if (sign < 0) v = isl_val_neg(v); aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v); } bound->shift = aff; } /* Given an equality constraint of a map with a single output dimension j, * check if the constraint is of the form * * a(p,i) + j = g f(e) * * with a(p,i) an expression in the parameters and input dimensions * and f(e) an expression in the existentially quantified variables. * If so, and if g is larger than any such g from a previously considered * constraint, then call extract_stride to record the stride information * in bound. */ static isl_stat check_stride_constraint(__isl_take isl_constraint *c, void *user) { int i; isl_ctx *ctx; isl_val *v; unsigned n_div; struct gpu_array_bound *bound = user; ctx = isl_constraint_get_ctx(c); n_div = isl_constraint_dim(c, isl_dim_div); v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0); if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) { int s = isl_val_sgn(v); isl_val *stride = isl_val_zero(ctx); isl_val_free(v); for (i = 0; i < n_div; ++i) { v = isl_constraint_get_coefficient_val(c, isl_dim_div, i); stride = isl_val_gcd(stride, v); } if (!isl_val_is_zero(stride) && isl_val_gt(stride, bound->stride)) extract_stride(c, bound, stride, s); isl_val_free(stride); } else isl_val_free(v); isl_constraint_free(c); return isl_stat_ok; } /* Given contraints on an array index i, check if we can find * a shift a(p) and a stride g such that * * a(p) + i = 0 mod g * * If so, record the information in bound and apply the mapping * i -> (i + a(p))/g to the array index in bounds and return * the new constraints. * If not, simply return the original constraints. * * If bounds is a subset of the space * * D -> i * * then the bound recorded in bound->shift is of the form * * D -> s(D) * * with s(D) equal to a(p) above. * Next, we construct a mapping of the form * * [D -> i] -> [D -> (i + S(D))/g] * * This mapping is computed as follows. * We first introduce "i" in the domain through precomposition * with [D -> i] -> D obtaining * * [D -> i] -> s(D) * * Adding [D -> i] -> i produces * * [D -> i] -> i + s(D) * * and the domain product with [D -> i] -> D yields * * [D -> i] -> [D -> i + s(D)] * * Composition with [D -> i] -> [D -> i/g] gives the desired result. */ static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound, __isl_take isl_basic_map *bounds) { isl_space *space; isl_basic_map *hull; isl_basic_map *shift, *id, *bmap, *scale; isl_basic_set *bset; isl_aff *aff; bound->stride = NULL; hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds)); isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound); isl_basic_map_free(hull); if (!bound->stride) return bounds; shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift)); space = isl_basic_map_get_space(bounds); bmap = isl_basic_map_domain_map(isl_basic_map_universe(space)); shift = isl_basic_map_apply_range(bmap, shift); space = isl_basic_map_get_space(bounds); id = isl_basic_map_range_map(isl_basic_map_universe(space)); shift = isl_basic_map_sum(id, shift); space = isl_basic_map_get_space(bounds); id = isl_basic_map_domain_map(isl_basic_map_universe(space)); shift = isl_basic_map_range_product(id, shift); space = isl_space_domain(isl_basic_map_get_space(bounds)); id = isl_basic_map_identity(isl_space_map_from_set(space)); space = isl_space_range(isl_basic_map_get_space(bounds)); aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1); aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride)); scale = isl_basic_map_from_aff(aff); scale = isl_basic_map_product(id, scale); bmap = isl_basic_map_apply_range(shift, scale); bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap); bounds = isl_basic_set_unwrap(bset); return bounds; } /* Data used in compute_array_dim_size and compute_size_in_direction. * * pos is the position of the variable representing the array index, * i.e., the variable for which want to compute the size. This variable * is also the last variable in the set. */ struct gpu_size_info { isl_basic_set *bset; struct gpu_array_bound *bound; int pos; }; /* Given a constraint from the basic set describing the bounds on * an array index, check if it is a lower bound, say m i >= b(x), and, * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant * upper bound. If so, and if this bound is smaller than any bound * derived from earlier constraints, set the size to this bound on * the expression and the lower bound to ceil(b(x)/m). */ static isl_stat compute_size_in_direction(__isl_take isl_constraint *c, void *user) { struct gpu_size_info *size = user; unsigned nparam; unsigned n_div; isl_val *v; isl_aff *aff; isl_aff *lb; nparam = isl_basic_set_dim(size->bset, isl_dim_param); n_div = isl_constraint_dim(c, isl_dim_div); if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) || !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) { isl_constraint_free(c); return isl_stat_ok; } aff = isl_constraint_get_bound(c, isl_dim_set, size->pos); aff = isl_aff_ceil(aff); lb = isl_aff_copy(aff); aff = isl_aff_neg(aff); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1); v = isl_basic_set_max_val(size->bset, aff); isl_aff_free(aff); if (isl_val_is_int(v)) { v = isl_val_add_ui(v, 1); if (!size->bound->size || isl_val_lt(v, size->bound->size)) { isl_val_free(size->bound->size); size->bound->size = isl_val_copy(v); lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1); isl_aff_free(size->bound->lb); size->bound->lb = isl_aff_copy(lb); } } isl_val_free(v); isl_aff_free(lb); isl_constraint_free(c); return isl_stat_ok; } /* Given a basic map "bounds" that maps parameters and input dimensions * to a single output dimension, look for an expression in the parameters * and input dimensions such that the range of the output dimension shifted * by this expression is a constant. * * In particular, we currently only consider lower bounds on the output * dimension as candidate expressions. */ static int compute_array_dim_size(struct gpu_array_bound *bound, __isl_take isl_basic_map *bounds) { struct gpu_size_info size; bounds = isl_basic_map_detect_equalities(bounds); bounds = check_stride(bound, bounds); bound->size = NULL; bound->lb = NULL; size.bound = bound; size.pos = isl_basic_map_dim(bounds, isl_dim_in); size.bset = isl_basic_map_wrap(bounds); size.bset = isl_basic_set_flatten(size.bset); size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset)); isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction, &size); isl_basic_set_free(size.bset); return bound->size ? 0 : -1; } /* Check if we can find a memory tile for the given array * based on the given accesses, and if so, put the results in "tile". * * We project the accesses on each index in turn and look for a parametric * offset such that the size is constant. * * tile->depth is initialized to the input dimension of the computed bounds. */ static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile) { int i; tile->depth = isl_map_dim(access, isl_dim_in); for (i = 0; i < tile->n; ++i) { isl_map *access_i; isl_basic_map *hull; access_i = isl_map_copy(access); access_i = isl_map_project_out(access_i, isl_dim_out, 0, i); access_i = isl_map_project_out(access_i, isl_dim_out, 1, tile->n - (i + 1)); access_i = isl_map_compute_divs(access_i); hull = isl_map_simple_hull(access_i); if (compute_array_dim_size(&tile->bound[i], hull) < 0) return 0; } return 1; } /* Internal data structure for gpu_group_references. * * scop represents the input scop. * kernel_depth is the schedule depth where the kernel launch will * be introduced, i.e., it is the depth of the band that is mapped * to blocks. * shared_depth is the schedule depth at which the copying to/from * shared memory is computed. The copy operation may then * later be hoisted to a higher level. * thread_depth is the schedule depth where the thread mark is located, * i.e., it is the depth of the band that is mapped to threads and also * the schedule depth at which the copying to/from private memory * is computed. The copy operation may then later be hoisted to * a higher level. * n_thread is the number of schedule dimensions in the band that * is mapped to threads. * privatization lives in the range of thread_sched (i.e., it is * of dimension thread_depth + n_thread) and encodes the mapping * to thread identifiers (as parameters). * host_sched contains the kernel_depth dimensions of the host schedule. * shared_sched contains the first shared_depth dimensions of the * kernel schedule. * copy_sched contains the first thread_depth dimensions of the * kernel schedule. * thread_sched contains the first (thread_depth + n_thread) dimensions * of the kernel schedule. * full_sched is a union_map representation of the entire kernel schedule. * The schedules are all formulated in terms of the original statement * instances, i.e., those that appear in the domains of the access * relations. */ struct gpu_group_data { struct ppcg_scop *scop; int kernel_depth; int shared_depth; int thread_depth; int n_thread; isl_set *privatization; isl_union_map *host_sched; isl_union_map *shared_sched; isl_union_map *copy_sched; isl_union_map *thread_sched; isl_union_map *full_sched; }; /* Construct a map from domain_space to domain_space that increments * the dimension at position "pos" and leaves all other dimensions * constant. */ static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos) { isl_space *space; isl_aff *aff; isl_multi_aff *next; space = isl_space_map_from_set(domain_space); next = isl_multi_aff_identity(space); aff = isl_multi_aff_get_aff(next, pos); aff = isl_aff_add_constant_si(aff, 1); next = isl_multi_aff_set_aff(next, pos, aff); return isl_map_from_multi_aff(next); } /* Check if the given access is coalesced (or if there is no point * in trying to coalesce the access by mapping the array to shared memory). * That is, check whether incrementing the dimension that will get * wrapped over the last thread index results in incrementing * the last array index. * * If no two consecutive array elements are ever accessed by "access", * then mapping the corresponding array to shared memory will not * improve coalescing. In fact, the copying will likely be performed * by a single thread. Consider the access as coalesced such that * the caller will not try and map the array to shared memory just * to improve coalescing. * * This function is only called for access relations without reuse and * kernels with at least one thread identifier. */ static int access_is_coalesced(struct gpu_group_data *data, __isl_keep isl_union_map *access) { int dim; isl_space *space; isl_set *accessed; isl_map *access_map; isl_map *next_thread_x; isl_map *next_element; isl_map *map; int coalesced, empty; access = isl_union_map_copy(access); access = isl_union_map_apply_domain(access, isl_union_map_copy(data->full_sched)); access_map = isl_map_from_union_map(access); space = isl_map_get_space(access_map); space = isl_space_range(space); dim = isl_space_dim(space, isl_dim_set); if (dim == 0) next_element = isl_map_empty(isl_space_map_from_set(space)); else next_element = next(space, dim - 1); accessed = isl_map_range(isl_map_copy(access_map)); map = isl_map_copy(next_element); map = isl_map_intersect_domain(map, isl_set_copy(accessed)); map = isl_map_intersect_range(map, accessed); empty = isl_map_is_empty(map); isl_map_free(map); if (empty < 0 || empty) { isl_map_free(next_element); isl_map_free(access_map); return empty; } space = isl_map_get_space(access_map); space = isl_space_domain(space); next_thread_x = next(space, data->thread_depth + data->n_thread - 1); map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map)); map = isl_map_apply_range(map, access_map); coalesced = isl_map_is_subset(map, next_element); isl_map_free(next_element); isl_map_free(map); return coalesced; } /* Replace the host schedule dimensions in the access relation "access" * by parameters, so that they are treated as fixed when checking for reuse * (within a kernel) or whether two consecutive elements are accessed * (within a kernel). */ static __isl_give isl_union_map *localize_access(struct gpu_group_data *data, __isl_take isl_union_map *access) { int n; isl_space *space; isl_set *param; isl_union_map *umap; isl_id_list *ids; umap = isl_union_map_copy(data->host_sched); space = isl_union_map_get_space(umap); n = data->kernel_depth; ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_"); param = parametrization(space, n, 0, ids); isl_id_list_free(ids); umap = isl_union_map_intersect_range(umap, isl_union_set_from_set(param)); access = isl_union_map_intersect_domain(access, isl_union_map_domain(umap)); return access; } /* Given an access relation in terms of at least data->thread_depth initial * dimensions of the computed schedule, check if it is bijective for * fixed values of the first data->thread_depth dimensions. * We perform this check by equating these dimensions to parameters. */ static int access_is_bijective(struct gpu_group_data *data, __isl_keep isl_map *access) { int res; int dim; isl_set *par; isl_space *space; isl_id_list *ids; access = isl_map_copy(access); space = isl_space_params(isl_map_get_space(access)); ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s"); dim = isl_map_dim(access, isl_dim_in); par = parametrization(space, dim, 0, ids); isl_id_list_free(ids); access = isl_map_intersect_domain(access, par); res = isl_map_is_bijective(access); isl_map_free(access); return res; } /* Compute the number of outer schedule tile dimensions that affect * the offset of "tile". * If there is no such dimension, then return the index * of the first kernel dimension, i.e., data->kernel_depth. */ static int compute_tile_depth(struct gpu_group_data *data, struct gpu_array_tile *tile) { int i, j; for (j = tile->depth - 1; j >= data->kernel_depth; --j) { for (i = 0; i < tile->n; ++i) { isl_aff *lb; isl_aff *shift; lb = tile->bound[i].lb; if (isl_aff_involves_dims(lb, isl_dim_in, j, 1)) break; shift = tile->bound[i].shift; if (!shift) continue; if (isl_aff_involves_dims(shift, isl_dim_in, j, 1)) break; } if (i < tile->n) break; } return ++j; } /* Return the lowest depth between data->kernel_depth and data->thread_depth * at which every array element accessed through "acc" is accessed * by a single thread. The input dimension of "acc" is * data->thread_depth + data->n_thread, where the final data->n_thread * dimensions are those that will be mapped to threads. * If the values for these dimensions are uniquely determined * by the array index and a given number of outer dimensions, then * there is only one thread accessing that array element within those * outer dimensions. * * The input space of "acc" is first split up, such that it has the form * * [O -> T] -> A * * with O the outer dimensions, T the dimensions that will be mapped to threads * and A the array index. * * Then the positions of T and A are interchanged to simplify the test * whether T uniquely depends on O and A. * In particular, the above access relation is first combined with * * [O -> T] -> T * * to form * * [O -> T] -> [A -> T] * * from which * * O -> [A -> T] * * is extracted, which is then uncurried to * * [O -> A] -> T * * Finally, the final dimensions of O are projected out one by one * until T is no longer uniquely determined by A and the remaining * dimensions in O. The value returned is that of the last dimension * that was successfully projected out. * Note that there is no need to test whether [O -> A] -> T itself * is single-valued as that was already tested in access_is_bijective. */ static int compute_accessed_by_single_thread_depth(struct gpu_group_data *data, __isl_keep isl_map *acc) { int i; isl_space *space; isl_map *map; isl_bool sv; if (data->thread_depth == data->kernel_depth) return data->thread_depth; acc = isl_map_copy(acc); space = isl_map_get_space(acc); space = isl_space_params(space); space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, data->thread_depth); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, data->n_thread); space = isl_space_wrap(space); map = isl_set_flatten_map(isl_set_universe(space)); acc = isl_map_apply_range(map, acc); space = isl_space_domain(isl_map_get_space(acc)); map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space))); acc = isl_map_range_product(acc, map); acc = isl_map_domain_factor_domain(acc); acc = isl_map_uncurry(acc); for (i = data->thread_depth - 1; i >= data->kernel_depth; --i) { acc = isl_map_project_out(acc, isl_dim_in, i, 1); sv = isl_map_is_single_valued(acc); if (sv < 0) return -1; if (!sv) break; } isl_map_free(acc); return ++i; } /* Adjust the fields of "tile" to reflect the new input dimension "depth". * The dimension beyond "depth" are assumed not to affect the tile, * so they can simply be dropped. */ static int tile_adjust_depth(struct gpu_array_tile *tile, int depth) { int i; if (tile->depth == depth) return 0; for (i = 0; i < tile->n; ++i) { tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb, isl_dim_in, depth, tile->depth - depth); if (!tile->bound[i].lb) return -1; if (!tile->bound[i].shift) continue; tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift, isl_dim_in, depth, tile->depth - depth); if (!tile->bound[i].shift) return -1; } tile->depth = depth; return 0; } /* Determine the number of schedule dimensions that affect the offset of the * shared or private tile "tile" and store the result in tile->depth, with * a lower bound of data->kernel_depth. * Also adjust the fields of the tile to only refer to the tile->depth * outer schedule dimensions. */ static isl_stat tile_set_depth(struct gpu_group_data *data, struct gpu_array_tile *tile) { if (tile_adjust_depth(tile, compute_tile_depth(data, tile)) < 0) return isl_stat_error; return isl_stat_ok; } /* Determine the number of schedule dimensions that affect the offset of the * shared tile and store the minimum of the private and shared tile depth * in group->min_depth, with a lower bound of data->kernel_depth. * If there is no tile defined on the array reference group, * then set group->min_depth to data->thread_depth. */ static int set_depth(struct gpu_group_data *data, struct gpu_array_ref_group *group) { group->min_depth = data->thread_depth; if (group->private_tile) { if (group->private_tile->depth < group->min_depth) group->min_depth = group->private_tile->depth; } if (group->shared_tile) { if (tile_set_depth(data, group->shared_tile) < 0) return -1; if (group->shared_tile->depth < group->min_depth) group->min_depth = group->shared_tile->depth; } return 0; } /* Fill up the groups array with singleton groups, i.e., one group * per reference, initializing the array, access, write, n_ref and refs fields. * In particular the access field is initialized to the scheduled * access relation of the array reference. * * Return the number of elements initialized, i.e., the number of * active references in the current kernel. */ static int populate_array_references(struct gpu_local_array_info *local, struct gpu_array_ref_group **groups, struct gpu_group_data *data) { int i; int n; isl_ctx *ctx = isl_union_map_get_ctx(data->copy_sched); n = 0; for (i = 0; i < local->array->n_ref; ++i) { isl_union_map *umap; isl_map *map; struct gpu_array_ref_group *group; struct gpu_stmt_access *access = local->array->refs[i]; map = isl_map_copy(access->access); umap = isl_union_map_from_map(map); umap = isl_union_map_apply_domain(umap, isl_union_map_copy(data->copy_sched)); if (isl_union_map_is_empty(umap)) { isl_union_map_free(umap); continue; } map = isl_map_from_union_map(umap); map = isl_map_detect_equalities(map); group = isl_calloc_type(ctx, struct gpu_array_ref_group); if (!group) return -1; group->local_array = local; group->array = local->array; group->access = map; group->write = access->write; group->exact_write = access->exact_write; group->slice = access->n_index < local->array->n_index; group->refs = &local->array->refs[i]; group->n_ref = 1; groups[n++] = group; } return n; } /* If group->n_ref == 1, then group->refs was set by * populate_array_references to point directly into * group->array->refs and should not be freed. * If group->n_ref > 1, then group->refs was set by join_groups * to point to a newly allocated array. */ struct gpu_array_ref_group *gpu_array_ref_group_free( struct gpu_array_ref_group *group) { if (!group) return NULL; gpu_array_tile_free(group->shared_tile); gpu_array_tile_free(group->private_tile); isl_map_free(group->access); if (group->n_ref > 1) free(group->refs); free(group); return NULL; } /* Check if the access relations of group1 and group2 overlap within * copy_sched. */ static int accesses_overlap(struct gpu_array_ref_group *group1, struct gpu_array_ref_group *group2) { int disjoint; disjoint = isl_map_is_disjoint(group1->access, group2->access); if (disjoint < 0) return -1; return !disjoint; } /* Combine the given two groups into a single group, containing * the references of both groups. */ static struct gpu_array_ref_group *join_groups( struct gpu_array_ref_group *group1, struct gpu_array_ref_group *group2) { int i; isl_ctx *ctx; struct gpu_array_ref_group *group; if (!group1 || !group2) return NULL; ctx = isl_map_get_ctx(group1->access); group = isl_calloc_type(ctx, struct gpu_array_ref_group); if (!group) return NULL; group->local_array = group1->local_array; group->array = group1->array; group->access = isl_map_union(isl_map_copy(group1->access), isl_map_copy(group2->access)); group->write = group1->write || group2->write; group->exact_write = group1->exact_write && group2->exact_write; group->slice = group1->slice || group2->slice; group->n_ref = group1->n_ref + group2->n_ref; group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *, group->n_ref); if (!group->refs) return gpu_array_ref_group_free(group); for (i = 0; i < group1->n_ref; ++i) group->refs[i] = group1->refs[i]; for (i = 0; i < group2->n_ref; ++i) group->refs[group1->n_ref + i] = group2->refs[i]; return group; } /* Combine the given two groups into a single group and free * the original two groups. */ static struct gpu_array_ref_group *join_groups_and_free( struct gpu_array_ref_group *group1, struct gpu_array_ref_group *group2) { struct gpu_array_ref_group *group; group = join_groups(group1, group2); gpu_array_ref_group_free(group1); gpu_array_ref_group_free(group2); return group; } /* Report that the array reference group with the given access relation * is not mapped to shared memory in the given kernel because * it does not exhibit any reuse and is considered to be coalesced. */ static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel, __isl_keep isl_union_map *access) { isl_ctx *ctx; isl_printer *p; ctx = isl_union_map_get_ctx(access); p = isl_printer_to_file(ctx, stdout); p = isl_printer_print_str(p, "Array reference group "); p = isl_printer_print_union_map(p, access); p = isl_printer_print_str(p, " not considered for mapping to shared memory in kernel"); p = isl_printer_print_int(p, kernel->id); p = isl_printer_print_str(p, " because it exhibits no reuse and is considered to be coalesced"); p = isl_printer_end_line(p); isl_printer_free(p); } /* Given an access relation in terms of the data->thread_depth initial * dimensions of the computed schedule and the thread identifiers * (as parameters), check if the use of the corresponding private tile * requires unrolling. * * If we are creating a private tile because we are forced to, * then no unrolling is required. * Otherwise we check if "access" is bijective and unrolling * is required if it is not. Note that the access relation * has already been determined to be bijective before the introduction * of the thread identifiers and the removal of the schedule dimensions * that are mapped to these threads. If the access relation is no longer * bijective, then this means that more than one value of one of those * schedule dimensions is mapped to the same thread and therefore * unrolling is required. */ static int check_requires_unroll(struct gpu_group_data *data, __isl_keep isl_map *access, int force_private) { int bijective; if (force_private) return 0; bijective = access_is_bijective(data, access); if (bijective < 0) return -1; return !bijective; } /* Map the domain of "access" to the outer data->shared_depth * schedule dimensions. When data->shared_depth is equal to * data->thread_depth, this result is already available in group->access. */ static __isl_give isl_map *shared_access(struct gpu_array_ref_group *group, __isl_keep isl_union_map *access, struct gpu_group_data *data) { isl_union_map *shared; if (data->shared_depth == data->thread_depth) return isl_map_copy(group->access); shared = isl_union_map_copy(access); shared = isl_union_map_apply_domain(shared, isl_union_map_copy(data->shared_sched)); return isl_map_from_union_map(shared); } /* Compute the private and/or shared memory tiles for the array * reference group "group" of array "array". * Return 0 on success and -1 on error. * * If the array is a read-only scalar or if the user requested * not to use shared or private memory, then we do not need to do anything. * * If any reference in the reference group accesses more than one element, * then we would have to make sure that the layout in shared memory * is the same as that in global memory. Since we do not handle this yet * (and it may not even be possible), we refuse to map to private or * shared memory in such cases. * * If the array group involves any may writes (that are not must writes), * then we would have to make sure that we load the data into shared/private * memory first in case the data is not written by the kernel * (but still written back out to global memory). * Since we don't have any such mechanism at the moment, we don't * compute shared/private tiles for groups involving may writes. * * We only try to compute a shared memory tile if there is any reuse * or if the access is not coalesced. * Reuse and coalescing are checked within the given kernel. * * For computing a private memory tile, we also require that there is * some reuse. Moreover, we require that the access is private * to the thread. That is, we check that any given array element * is only accessed by a single thread. * We compute an access relation that maps the outer * data->thread_depth + data->n_thread schedule dimensions. * The latter data->n_thread will be mapped to thread identifiers. * We actually check that those iterators that will be wrapped * partition the array space. This check is stricter than necessary * since several iterations may be mapped onto the same thread * and then they could be allowed to access the same memory elements, * but our check does not allow this situation. * * For private memory tiles, the number of schedule dimensions that * affect the offset is computed and stored in tile->depth, with * a lower bound of data->kernel_depth. If this depth is smaller * than the minimal depth that still ensures that every element * is accessed by a single thread, then the depth is raised * to this minimal depth. * The fields of the tile are then adjusted to only refer to the tile->depth * outer schedule dimensions. * * We also check that the index expression only depends on parallel * loops. That way, we can move those loops innermost and unroll them. * Again, we use a test that is stricter than necessary. * We actually check whether the index expression only depends * on the iterators that are wrapped over the threads. * These are necessarily parallel, but there may be more parallel loops. * * Combining the injectivity of the first test with the single-valuedness * of the second test, we simply test for bijectivity. * * If the use of the private tile requires unrolling, but some * of the other arrays are forcibly mapped to private memory, * then we do not allow the use of this private tile since * we cannot move the schedule dimensions that need to be unrolled down * without performing some kind of expansion on those arrays * that are forcibly mapped to private memory. * * If the array is marked force_private, then we bypass all checks * and assume we can (and should) use registers only. * * If it turns out we can (or have to) use registers, we compute * the private memory tile size using can_tile, after introducing a dependence * on the thread indices. */ static int compute_group_bounds_core(struct ppcg_kernel *kernel, struct gpu_array_ref_group *group, struct gpu_group_data *data) { isl_ctx *ctx = isl_space_get_ctx(group->array->space); isl_union_map *access, *local; int n_index = group->array->n_index; int no_reuse, coalesced; isl_map *acc; int force_private = group->local_array->force_private; int use_shared = !force_private && kernel->options->use_shared_memory && data->n_thread > 0; int use_private = force_private || kernel->options->use_private_memory; int r = 0; int requires_unroll; int unique_depth; if (!use_shared && !use_private) return 0; if (gpu_array_is_read_only_scalar(group->array)) return 0; if (!force_private && !group->exact_write) return 0; if (group->slice) return 0; access = gpu_array_ref_group_access_relation(group, 1, 1); local = localize_access(data, isl_union_map_copy(access)); no_reuse = isl_union_map_is_injective(local); if (no_reuse < 0) r = -1; if (use_shared && no_reuse) coalesced = access_is_coalesced(data, local); isl_union_map_free(local); if (r >= 0 && kernel->options->debug->verbose && use_shared && no_reuse && coalesced) report_no_reuse_and_coalesced(kernel, access); if (use_shared && (!no_reuse || !coalesced)) { group->shared_tile = gpu_array_tile_create(ctx, group->array->n_index); acc = shared_access(group, access, data); if (!group->shared_tile) r = -1; else if (!can_tile(acc, group->shared_tile)) group->shared_tile = gpu_array_tile_free(group->shared_tile); isl_map_free(acc); } if (r < 0 || (!force_private && (!use_private || no_reuse))) { isl_union_map_free(access); return r; } access = isl_union_map_apply_domain(access, isl_union_map_copy(data->thread_sched)); acc = isl_map_from_union_map(access); if (!force_private && !access_is_bijective(data, acc)) { isl_map_free(acc); return 0; } unique_depth = compute_accessed_by_single_thread_depth(data, acc); acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization)); acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth, data->n_thread); requires_unroll = check_requires_unroll(data, acc, force_private); if (unique_depth < 0 || requires_unroll < 0 || (requires_unroll && kernel->any_force_private)) { isl_map_free(acc); return requires_unroll < 0 ? -1 : 0; } group->private_tile = gpu_array_tile_create(ctx, n_index); if (!group->private_tile) { isl_map_free(acc); return -1; } group->private_tile->requires_unroll = requires_unroll; if (!can_tile(acc, group->private_tile)) group->private_tile = gpu_array_tile_free(group->private_tile); isl_map_free(acc); if (group->private_tile) { struct gpu_array_tile *tile = group->private_tile; int tile_depth = compute_tile_depth(data, tile); if (tile_depth < unique_depth) tile_depth = unique_depth; if (tile_adjust_depth(tile, tile_depth) < 0) return -1; } if (force_private && !group->private_tile) isl_die(ctx, isl_error_internal, "unable to map array reference group to registers", return -1); return 0; } /* Compute the private and/or shared memory tiles for the array * reference group "group" of array "array" and set the tile depth. * Return 0 on success and -1 on error. */ static int compute_group_bounds(struct ppcg_kernel *kernel, struct gpu_array_ref_group *group, struct gpu_group_data *data) { if (!group) return -1; if (compute_group_bounds_core(kernel, group, data) < 0) return -1; if (set_depth(data, group) < 0) return -1; return 0; } /* If two groups have overlapping access relations (as determined by * the "overlap" function) and if one of them involves a write, * then merge the two groups into one. * If "compute_bounds" is set, then call compute_group_bounds * on the merged groups. * * Return the updated number of groups. * Return -1 on error. */ static int group_writes(struct ppcg_kernel *kernel, int n, struct gpu_array_ref_group **groups, int (*overlap)(struct gpu_array_ref_group *group1, struct gpu_array_ref_group *group2), int compute_bounds, struct gpu_group_data *data) { int i, j; for (i = 0; i < n; ++i) { for (j = n - 1; j > i; --j) { if (!groups[i]->write && !groups[j]->write) continue; if (!overlap(groups[i], groups[j])) continue; groups[i] = join_groups_and_free(groups[i], groups[j]); if (j != n - 1) groups[j] = groups[n - 1]; groups[n - 1] = NULL; n--; if (!groups[i]) return -1; if (compute_bounds && compute_group_bounds(kernel, groups[i], data) < 0) return -1; } } return n; } /* If two groups have overlapping access relations (within the innermost * loop) and if one of them involves a write, then merge the two groups * into one. * * Return the updated number of groups. */ static int group_overlapping_writes(struct ppcg_kernel *kernel, int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data) { return group_writes(kernel, n, groups, &accesses_overlap, 0, data); } /* Check if the access relations of group1 and group2 overlap within * the outermost min(group1->min_depth, group2->min_depth) loops. */ static int depth_accesses_overlap(struct gpu_array_ref_group *group1, struct gpu_array_ref_group *group2) { int depth; int dim; int empty; isl_map *map_i, *map_j, *map; depth = group1->min_depth; if (group2->min_depth < depth) depth = group2->min_depth; map_i = isl_map_copy(group1->access); dim = isl_map_dim(map_i, isl_dim_in); map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth); map_j = isl_map_copy(group2->access); map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth); map = isl_map_intersect(map_i, map_j); empty = isl_map_is_empty(map); isl_map_free(map); return !empty; } /* If two groups have overlapping access relations (within the outer * depth loops) and if one of them involves a write, * then merge the two groups into one. * * Return the updated number of groups. */ static int group_depth_overlapping_writes(struct ppcg_kernel *kernel, int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data) { return group_writes(kernel, n, groups, &depth_accesses_overlap, 1, data); } /* Is the size of the tile specified by "tile" smaller than the sum of * the sizes of the tiles specified by "tile1" and "tile2"? */ static int smaller_tile(struct gpu_array_tile *tile, struct gpu_array_tile *tile1, struct gpu_array_tile *tile2) { int smaller; isl_val *size, *size1, *size2; size = gpu_array_tile_size(tile); size1 = gpu_array_tile_size(tile1); size2 = gpu_array_tile_size(tile2); size = isl_val_sub(size, size1); size = isl_val_sub(size, size2); smaller = isl_val_is_neg(size); isl_val_free(size); return smaller; } /* Given an initial grouping of array references and shared memory tiles * for each group that allows for a shared memory tile, merge two groups * if both have a shared memory tile, the merged group also has * a shared memory tile and the size of the tile for the merge group * is smaller than the sum of the tile sizes of the individual groups. * * If merging two groups decreases the depth of the tile of * one or both of the two groups, then we need to check for overlapping * writes again. * * Return the number of groups after merging. * Return -1 on error. */ static int group_common_shared_memory_tile(struct ppcg_kernel *kernel, struct gpu_array_info *array, int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data) { int i, j; int recompute_overlap = 0; for (i = 0; i < n; ++i) { if (!groups[i]->shared_tile) continue; for (j = n - 1; j > i; --j) { struct gpu_array_ref_group *group; if (!groups[j]->shared_tile) continue; if (!depth_accesses_overlap(groups[i], groups[j])) continue; group = join_groups(groups[i], groups[j]); if (compute_group_bounds(kernel, group, data) < 0) { gpu_array_ref_group_free(group); return -1; } if (!group->shared_tile || !smaller_tile(group->shared_tile, groups[i]->shared_tile, groups[j]->shared_tile)) { gpu_array_ref_group_free(group); continue; } if (group->min_depth < groups[i]->min_depth || group->min_depth < groups[j]->min_depth) recompute_overlap = 1; gpu_array_ref_group_free(groups[i]); gpu_array_ref_group_free(groups[j]); groups[i] = group; if (j != n - 1) groups[j] = groups[n - 1]; n--; } } if (recompute_overlap) n = group_depth_overlapping_writes(kernel, n, groups, data); return n; } /* Set array->n_group and array->groups to n and groups. * * Additionally, set the "nr" field of each group. */ static void set_array_groups(struct gpu_local_array_info *array, int n, struct gpu_array_ref_group **groups) { int i; array->n_group = n; array->groups = groups; for (i = 0; i < n; ++i) groups[i]->nr = i; } /* Combine all groups in "groups" into a single group and return * the new number of groups (1 or 0 if there were no groups to start with). */ static int join_all_groups(int n, struct gpu_array_ref_group **groups) { int i; for (i = n - 1; i > 0; --i) { groups[0] = join_groups_and_free(groups[0], groups[i]); groups[i] = NULL; n--; } return n; } /* Group array references that should be considered together when * deciding whether to access them from private, shared or global memory. * Return -1 on error. * * In particular, if two array references overlap and if one of them * is a write, then the two references are grouped together. * We first perform an initial grouping based only on the access relation. * After computing shared and private memory tiles, we check for * overlapping writes again, but this time taking into account * the depth of the effective tile. * * Furthermore, if two groups admit a shared memory tile and if the * combination of the two also admits a shared memory tile, we merge * the two groups. * * If the array contains structures, then we compute a single * reference group without trying to find any tiles * since we do not map such arrays to private or shared * memory. The only exception is when those arrays of structures * are required to be mapped to private memory. */ static int group_array_references(struct ppcg_kernel *kernel, struct gpu_local_array_info *local, struct gpu_group_data *data) { int i; int n; isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched); struct gpu_array_ref_group **groups; groups = isl_calloc_array(ctx, struct gpu_array_ref_group *, local->array->n_ref); if (!groups) return -1; n = populate_array_references(local, groups, data); if (local->array->has_compound_element && !local->force_private) { n = join_all_groups(n, groups); set_array_groups(local, n, groups); return 0; } n = group_overlapping_writes(kernel, n, groups, data); for (i = 0; i < n; ++i) if (compute_group_bounds(kernel, groups[i], data) < 0) n = -1; n = group_depth_overlapping_writes(kernel, n, groups, data); n = group_common_shared_memory_tile(kernel, local->array, n, groups, data); set_array_groups(local, n, groups); if (n >= 0) return 0; for (i = 0; i < local->array->n_ref; ++i) gpu_array_ref_group_free(groups[i]); return -1; } /* For each array in the input program that can be mapped to private memory, * check if there are any order dependences active inside the current kernel, * within the same iteration of the host schedule, i.e., the prefix * schedule at "node". * If so, mark the array as force_private so that its reference groups will be * mapped to a registers. * * Note that the arrays that cannot be mapped to private memory have * had their order dependences added to prog->array_order and * subsequently to the coincidence constraints. */ static void check_can_be_private_live_ranges(struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node) { int i; isl_union_set *domain; isl_multi_union_pw_aff *prefix; isl_union_pw_multi_aff *contraction; if (!kernel->options->live_range_reordering) return; kernel->any_force_private = 0; prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node); contraction = isl_union_pw_multi_aff_copy(kernel->contraction); prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix, contraction); domain = isl_union_set_copy(kernel->expanded_domain); domain = isl_union_set_universe(domain); for (i = 0; i < kernel->n_array; ++i) { struct gpu_local_array_info *local = &kernel->array[i]; isl_union_map *order; local->force_private = 0; if (!gpu_array_can_be_private(local->array)) continue; order = isl_union_map_copy(local->array->dep_order); order = isl_union_map_intersect_domain(order, isl_union_set_copy(domain)); order = isl_union_map_intersect_range(order, isl_union_set_copy(domain)); order = isl_union_map_eq_at_multi_union_pw_aff(order, isl_multi_union_pw_aff_copy(prefix)); if (!isl_union_map_is_empty(order)) { local->force_private = 1; kernel->any_force_private = 1; } isl_union_map_free(order); } isl_multi_union_pw_aff_free(prefix); isl_union_set_free(domain); } /* Expand the domain of the schedule "s" by plugging in * the contraction "contraction" and return the result. */ static __isl_give isl_union_map *expand(__isl_take isl_union_map *s, __isl_keep isl_union_pw_multi_aff *contraction) { contraction = isl_union_pw_multi_aff_copy(contraction); s = isl_union_map_preimage_domain_union_pw_multi_aff(s, contraction); return s; } /* Create a set of dimension data->thread_depth + data->n_thread * that equates the residue of the final data->n_thread dimensions * modulo the kernel->block_dim sizes to the thread identifiers. * Store the computed set in data->privatization. * * The construction starts with the space of kernel->thread_filter, * which is known to reference all thread identifiers. */ static void compute_privatization(struct gpu_group_data *data, struct ppcg_kernel *kernel) { int i; isl_ctx *ctx; isl_space *space; isl_local_space *ls; isl_set *set; ctx = isl_union_map_get_ctx(data->shared_sched); space = isl_union_set_get_space(kernel->thread_filter); space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, data->thread_depth + data->n_thread); set = isl_set_universe(space); space = isl_set_get_space(set); ls = isl_local_space_from_space(space); for (i = 0; i < data->n_thread; ++i) { isl_aff *aff, *aff2; isl_constraint *c; isl_val *v; isl_id *id; int pos; aff = isl_aff_var_on_domain(isl_local_space_copy(ls), isl_dim_set, data->thread_depth + i); v = isl_val_int_from_si(ctx, kernel->block_dim[i]); aff = isl_aff_mod_val(aff, v); id = isl_id_list_get_id(kernel->thread_ids, i); pos = isl_set_find_dim_by_id(set, isl_dim_param, id); isl_id_free(id); aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls), isl_dim_param, pos); aff = isl_aff_sub(aff, aff2); c = isl_equality_from_aff(aff); set = isl_set_add_constraint(set, c); } isl_local_space_free(ls); data->privatization = set; } /* Return the prefix schedule at "node" as a relation * between domain elements and schedule dimensions after detecting * equalities in this relation. */ static __isl_give isl_union_map *prefix_with_equalities( __isl_keep isl_schedule_node *node) { isl_union_map *schedule; schedule = isl_schedule_node_get_prefix_schedule_relation(node); schedule = isl_union_map_detect_equalities(schedule); return schedule; } /* Group references of all arrays in "kernel". * "node" points to the kernel mark. * The mapping to shared memory in computed at the "shared" mark. * * We first extract all required schedule information into * a gpu_group_data structure and then consider each array * in turn. */ int gpu_group_references(struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node) { int i; int r = 0; isl_union_pw_multi_aff *contraction; struct gpu_group_data data; check_can_be_private_live_ranges(kernel, node); data.scop = kernel->prog->scop; data.kernel_depth = isl_schedule_node_get_schedule_depth(node); data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node); node = isl_schedule_node_copy(node); node = gpu_tree_move_down_to_shared(node, kernel->core); data.shared_depth = isl_schedule_node_get_schedule_depth(node); data.shared_sched = prefix_with_equalities(node); node = gpu_tree_move_down_to_thread(node, kernel->core); node = isl_schedule_node_child(node, 0); data.thread_depth = isl_schedule_node_get_schedule_depth(node); data.n_thread = isl_schedule_node_band_n_member(node); if (data.thread_depth == data.shared_depth) data.copy_sched = isl_union_map_copy(data.shared_sched); else data.copy_sched = prefix_with_equalities(node); data.thread_sched = isl_union_map_copy(data.copy_sched); data.thread_sched = isl_union_map_flat_range_product(data.thread_sched, isl_schedule_node_band_get_partial_schedule_union_map(node)); data.thread_sched = isl_union_map_detect_equalities(data.thread_sched); contraction = isl_union_pw_multi_aff_copy(kernel->contraction); data.host_sched = expand(data.host_sched, contraction); data.shared_sched = expand(data.shared_sched, contraction); if (data.thread_depth == data.shared_depth) { isl_union_map_free(data.copy_sched); data.copy_sched = isl_union_map_copy(data.shared_sched); } else { data.copy_sched = expand(data.copy_sched, contraction); } data.thread_sched = expand(data.thread_sched, contraction); isl_union_pw_multi_aff_free(contraction); node = isl_schedule_node_child(node, 0); data.full_sched = isl_union_map_copy(data.thread_sched); data.full_sched = isl_union_map_flat_range_product(data.full_sched, isl_schedule_node_get_subtree_schedule_union_map(node)); isl_schedule_node_free(node); compute_privatization(&data, kernel); for (i = 0; i < kernel->n_array; ++i) { r = group_array_references(kernel, &kernel->array[i], &data); if (r < 0) break; } isl_union_map_free(data.host_sched); isl_union_map_free(data.shared_sched); isl_union_map_free(data.copy_sched); isl_union_map_free(data.thread_sched); isl_union_map_free(data.full_sched); isl_set_free(data.privatization); return r; } /* Given a description of an array tile "tile" and the "space" * * { D -> A } * * where D represents the first tile->depth schedule dimensions * and A represents the array, construct an isl_multi_aff * * { [D[i] -> A[a]] -> A'[a'] } * * with A' a scaled down copy of A according to the shifts and strides * in "tile". In particular, * * a' = (a + shift(i))/stride * * "insert_array" represents * * { [D -> A] -> D } * * and is used to insert A into the domain of functions that only * reference D. */ static __isl_give isl_multi_aff *strided_tile( struct gpu_array_tile *tile, __isl_keep isl_space *space, __isl_keep isl_multi_aff *insert_array) { int i; isl_ctx *ctx; isl_multi_aff *shift; isl_multi_val *stride; isl_space *space2; isl_local_space *ls; isl_multi_aff *tiling; ctx = isl_space_get_ctx(space); space2 = isl_space_domain(isl_space_copy(space)); ls = isl_local_space_from_space(space2); space2 = isl_space_range(isl_space_copy(space)); stride = isl_multi_val_zero(space2); shift = isl_multi_aff_zero(isl_space_copy(space)); for (i = 0; i < tile->n; ++i) { struct gpu_array_bound *bound = &tile->bound[i]; isl_val *stride_i; isl_aff *shift_i; if (tile->bound[i].shift) { stride_i = isl_val_copy(bound->stride); shift_i = isl_aff_copy(bound->shift); } else { stride_i = isl_val_one(ctx); shift_i = isl_aff_zero_on_domain( isl_local_space_copy(ls)); } stride = isl_multi_val_set_val(stride, i, stride_i); shift = isl_multi_aff_set_aff(shift, i, shift_i); } isl_local_space_free(ls); shift = isl_multi_aff_pullback_multi_aff(shift, isl_multi_aff_copy(insert_array)); tiling = isl_multi_aff_range_map(isl_space_copy(space)); tiling = isl_multi_aff_add(tiling, shift); tiling = isl_multi_aff_scale_down_multi_val(tiling, stride); return tiling; } /* Compute a tiling for the array reference group "group". * * The tiling is of the form * * { [D[i] -> A[a]] -> T[t] } * * where D represents the first tile->depth schedule dimensions, * A represents the global array and T represents the shared or * private memory tile. The name of T is the name of the local * array. * * If there is any stride in the accesses, then the mapping is * * t = (a + shift(i))/stride - lb(i) * * otherwise, it is simply * * t = a - lb(i) */ void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group) { int i; struct gpu_array_tile *tile; isl_space *space; isl_multi_aff *tiling, *lb, *insert_array; isl_printer *p; char *local_name; tile = gpu_array_ref_group_tile(group); if (!tile) return; space = isl_map_get_space(group->access); space = isl_space_from_range(isl_space_range(space)); space = isl_space_add_dims(space, isl_dim_in, tile->depth); insert_array = isl_multi_aff_domain_map(isl_space_copy(space)); for (i = 0; i < tile->n; ++i) if (tile->bound[i].shift) break; if (i < tile->n) tiling = strided_tile(tile, space, insert_array); else tiling = isl_multi_aff_range_map(isl_space_copy(space)); lb = isl_multi_aff_zero(space); for (i = 0; i < tile->n; ++i) { isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb); lb = isl_multi_aff_set_aff(lb, i, lb_i); } lb = isl_multi_aff_pullback_multi_aff(lb, insert_array); tiling = isl_multi_aff_sub(tiling, lb); p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling)); p = gpu_array_ref_group_print_name(group, p); local_name = isl_printer_get_str(p); isl_printer_free(p); tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name); free(local_name); tile->tiling = tiling; }