/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include "isl_tab.h" #include #include #include #include #include #include #include #include enum isl_lp_result isl_tab_solve_lp(__isl_keep isl_basic_map *bmap, int maximize, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol) { struct isl_tab *tab; enum isl_lp_result res; isl_size dim = isl_basic_map_dim(bmap, isl_dim_all); if (dim < 0) return isl_lp_error; if (maximize) isl_seq_neg(f, f, 1 + dim); bmap = isl_basic_map_gauss(bmap, NULL); tab = isl_tab_from_basic_map(bmap, 0); res = isl_tab_min(tab, f, denom, opt, opt_denom, 0); if (res == isl_lp_ok && sol) { *sol = isl_tab_get_sample_value(tab); if (!*sol) res = isl_lp_error; } isl_tab_free(tab); if (maximize) isl_seq_neg(f, f, 1 + dim); if (maximize && opt) isl_int_neg(*opt, *opt); return res; } /* Given a basic map "bmap" and an affine combination of the variables "f" * with denominator "denom", set *opt / *opt_denom to the minimal * (or maximal if "maximize" is true) value attained by f/d over "bmap", * assuming the basic map is not empty and the expression cannot attain * arbitrarily small (or large) values. * If opt_denom is NULL, then *opt is rounded up (or down) * to the nearest integer. * The return value reflects the nature of the result (empty, unbounded, * minimal or maximal value returned in *opt). */ enum isl_lp_result isl_basic_map_solve_lp(__isl_keep isl_basic_map *bmap, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol) { if (sol) *sol = NULL; if (!bmap) return isl_lp_error; return isl_tab_solve_lp(bmap, max, f, d, opt, opt_denom, sol); } enum isl_lp_result isl_basic_set_solve_lp(__isl_keep isl_basic_set *bset, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol) { return isl_basic_map_solve_lp(bset_to_bmap(bset), max, f, d, opt, opt_denom, sol); } enum isl_lp_result isl_map_solve_lp(__isl_keep isl_map *map, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol) { int i; isl_int o; isl_int t; isl_int opt_i; isl_int opt_denom_i; enum isl_lp_result res; int max_div; isl_vec *v = NULL; if (!map) return isl_lp_error; if (map->n == 0) return isl_lp_empty; max_div = 0; for (i = 0; i < map->n; ++i) if (map->p[i]->n_div > max_div) max_div = map->p[i]->n_div; if (max_div > 0) { isl_size total = isl_map_dim(map, isl_dim_all); if (total < 0) return isl_lp_error; v = isl_vec_alloc(map->ctx, 1 + total + max_div); if (!v) return isl_lp_error; isl_seq_cpy(v->el, f, 1 + total); isl_seq_clr(v->el + 1 + total, max_div); f = v->el; } if (!opt && map->n > 1 && sol) { isl_int_init(o); opt = &o; } if (map->n > 0) isl_int_init(opt_i); if (map->n > 0 && opt_denom) { isl_int_init(opt_denom_i); isl_int_init(t); } res = isl_basic_map_solve_lp(map->p[0], max, f, d, opt, opt_denom, sol); if (res == isl_lp_error || res == isl_lp_unbounded) goto done; if (sol) *sol = NULL; for (i = 1; i < map->n; ++i) { isl_vec *sol_i = NULL; enum isl_lp_result res_i; int better; res_i = isl_basic_map_solve_lp(map->p[i], max, f, d, &opt_i, opt_denom ? &opt_denom_i : NULL, sol ? &sol_i : NULL); if (res_i == isl_lp_error || res_i == isl_lp_unbounded) { res = res_i; goto done; } if (res_i == isl_lp_empty) continue; if (res == isl_lp_empty) { better = 1; } else if (!opt_denom) { if (max) better = isl_int_gt(opt_i, *opt); else better = isl_int_lt(opt_i, *opt); } else { isl_int_mul(t, opt_i, *opt_denom); isl_int_submul(t, *opt, opt_denom_i); if (max) better = isl_int_is_pos(t); else better = isl_int_is_neg(t); } if (better) { res = res_i; if (opt) isl_int_set(*opt, opt_i); if (opt_denom) isl_int_set(*opt_denom, opt_denom_i); if (sol) { isl_vec_free(*sol); *sol = sol_i; } } else isl_vec_free(sol_i); } done: isl_vec_free(v); if (map->n > 0 && opt_denom) { isl_int_clear(opt_denom_i); isl_int_clear(t); } if (map->n > 0) isl_int_clear(opt_i); if (opt == &o) isl_int_clear(o); return res; } enum isl_lp_result isl_set_solve_lp(__isl_keep isl_set *set, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol) { return isl_map_solve_lp(set_to_map(set), max, f, d, opt, opt_denom, sol); } /* Return the optimal (rational) value of "obj" over "bset", assuming * that "obj" and "bset" have aligned parameters and divs. * If "max" is set, then the maximal value is computed. * Otherwise, the minimal value is computed. * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. * * Call isl_basic_set_solve_lp and translate the results. */ static __isl_give isl_val *basic_set_opt_lp( __isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { isl_ctx *ctx; isl_val *res; enum isl_lp_result lp_res; if (!bset || !obj) return NULL; ctx = isl_aff_get_ctx(obj); res = isl_val_alloc(ctx); if (!res) return NULL; lp_res = isl_basic_set_solve_lp(bset, max, obj->v->el + 1, obj->v->el[0], &res->n, &res->d, NULL); if (lp_res == isl_lp_ok) return isl_val_normalize(res); isl_val_free(res); if (lp_res == isl_lp_error) return NULL; if (lp_res == isl_lp_empty) return isl_val_nan(ctx); if (max) return isl_val_infty(ctx); else return isl_val_neginfty(ctx); } /* Return the optimal (rational) value of "obj" over "bset", assuming * that "obj" and "bset" have aligned parameters. * If "max" is set, then the maximal value is computed. * Otherwise, the minimal value is computed. * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. * * Align the divs of "bset" and "obj" and call basic_set_opt_lp. */ static __isl_give isl_val *isl_basic_set_opt_lp_val_aligned( __isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { int *exp1 = NULL; int *exp2 = NULL; isl_ctx *ctx; isl_mat *bset_div = NULL; isl_mat *div = NULL; isl_val *res; isl_size bset_n_div, obj_n_div; if (!bset || !obj) return NULL; ctx = isl_aff_get_ctx(obj); if (!isl_space_is_equal(bset->dim, obj->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", return NULL); bset_n_div = isl_basic_set_dim(bset, isl_dim_div); obj_n_div = isl_aff_dim(obj, isl_dim_div); if (bset_n_div < 0 || obj_n_div < 0) return NULL; if (bset_n_div == 0 && obj_n_div == 0) return basic_set_opt_lp(bset, max, obj); bset = isl_basic_set_copy(bset); obj = isl_aff_copy(obj); bset_div = isl_basic_set_get_divs(bset); exp1 = isl_alloc_array(ctx, int, bset_n_div); exp2 = isl_alloc_array(ctx, int, obj_n_div); if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2)) goto error; div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2); bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1); obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2); res = basic_set_opt_lp(bset, max, obj); isl_mat_free(bset_div); isl_mat_free(div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return res; error: isl_mat_free(div); isl_mat_free(bset_div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return NULL; } /* Return the optimal (rational) value of "obj" over "bset". * If "max" is set, then the maximal value is computed. * Otherwise, the minimal value is computed. * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. */ static __isl_give isl_val *isl_basic_set_opt_lp_val( __isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { isl_bool equal; isl_val *res; if (!bset || !obj) return NULL; equal = isl_basic_set_space_has_equal_params(bset, obj->ls->dim); if (equal < 0) return NULL; if (equal) return isl_basic_set_opt_lp_val_aligned(bset, max, obj); bset = isl_basic_set_copy(bset); obj = isl_aff_copy(obj); bset = isl_basic_set_align_params(bset, isl_aff_get_domain_space(obj)); obj = isl_aff_align_params(obj, isl_basic_set_get_space(bset)); res = isl_basic_set_opt_lp_val_aligned(bset, max, obj); isl_basic_set_free(bset); isl_aff_free(obj); return res; } /* Return the minimal (rational) value of "obj" over "bset". * * Return negative infinity if the minimal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_basic_set_min_lp_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj) { return isl_basic_set_opt_lp_val(bset, 0, obj); } /* Return the maximal (rational) value of "obj" over "bset". * * Return infinity if the maximal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_basic_set_max_lp_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj) { return isl_basic_set_opt_lp_val(bset, 1, obj); }