//===-- JSONExporter.cpp - Export Scops as JSON -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Export the Scops build by ScopInfo pass as a JSON file. // //===----------------------------------------------------------------------===// #include "polly/JSONExporter.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/ScopPass.h" #include "polly/Support/ISLTools.h" #include "polly/Support/ScopLocation.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/Module.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/JSON.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/raw_ostream.h" #include "isl/map.h" #include "isl/set.h" #include #include #include using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-import-jscop" STATISTIC(NewAccessMapFound, "Number of updated access functions"); namespace { static cl::opt ImportDir("polly-import-jscop-dir", cl::desc("The directory to import the .jscop files from."), cl::Hidden, cl::value_desc("Directory path"), cl::ValueRequired, cl::init("."), cl::cat(PollyCategory)); static cl::opt ImportPostfix("polly-import-jscop-postfix", cl::desc("Postfix to append to the import .jsop files."), cl::Hidden, cl::value_desc("File postfix"), cl::ValueRequired, cl::init(""), cl::cat(PollyCategory)); struct JSONExporter : public ScopPass { static char ID; explicit JSONExporter() : ScopPass(ID) {} /// Export the SCoP @p S to a JSON file. bool runOnScop(Scop &S) override; /// Print the SCoP @p S as it is exported. void printScop(raw_ostream &OS, Scop &S) const override; /// Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override; }; struct JSONImporter : public ScopPass { static char ID; std::vector NewAccessStrings; explicit JSONImporter() : ScopPass(ID) {} /// Import new access functions for SCoP @p S from a JSON file. bool runOnScop(Scop &S) override; /// Print the SCoP @p S and the imported access functions. void printScop(raw_ostream &OS, Scop &S) const override; /// Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override; }; } // namespace static std::string getFileName(Scop &S, StringRef Suffix = "") { std::string FunctionName = S.getFunction().getName().str(); std::string FileName = FunctionName + "___" + S.getNameStr() + ".jscop"; if (Suffix != "") FileName += "." + Suffix.str(); return FileName; } /// Export all arrays from the Scop. /// /// @param S The Scop containing the arrays. /// /// @returns Json::Value containing the arrays. static json::Array exportArrays(const Scop &S) { json::Array Arrays; std::string Buffer; llvm::raw_string_ostream RawStringOstream(Buffer); for (auto &SAI : S.arrays()) { if (!SAI->isArrayKind()) continue; json::Object Array; json::Array Sizes; Array["name"] = SAI->getName(); unsigned i = 0; if (!SAI->getDimensionSize(i)) { Sizes.push_back("*"); i++; } for (; i < SAI->getNumberOfDimensions(); i++) { SAI->getDimensionSize(i)->print(RawStringOstream); Sizes.push_back(RawStringOstream.str()); Buffer.clear(); } Array["sizes"] = std::move(Sizes); SAI->getElementType()->print(RawStringOstream); Array["type"] = RawStringOstream.str(); Buffer.clear(); Arrays.push_back(std::move(Array)); } return Arrays; } static json::Value getJSON(Scop &S) { json::Object root; unsigned LineBegin, LineEnd; std::string FileName; getDebugLocation(&S.getRegion(), LineBegin, LineEnd, FileName); std::string Location; if (LineBegin != (unsigned)-1) Location = FileName + ":" + std::to_string(LineBegin) + "-" + std::to_string(LineEnd); root["name"] = S.getNameStr(); root["context"] = S.getContextStr(); if (LineBegin != (unsigned)-1) root["location"] = Location; root["arrays"] = exportArrays(S); root["statements"]; json::Array Statements; for (ScopStmt &Stmt : S) { json::Object statement; statement["name"] = Stmt.getBaseName(); statement["domain"] = Stmt.getDomainStr(); statement["schedule"] = Stmt.getScheduleStr(); json::Array Accesses; for (MemoryAccess *MA : Stmt) { json::Object access; access["kind"] = MA->isRead() ? "read" : "write"; access["relation"] = MA->getAccessRelationStr(); Accesses.push_back(std::move(access)); } statement["accesses"] = std::move(Accesses); Statements.push_back(std::move(statement)); } root["statements"] = std::move(Statements); return json::Value(std::move(root)); } static void exportScop(Scop &S) { std::string FileName = ImportDir + "/" + getFileName(S); json::Value jscop = getJSON(S); // Write to file. std::error_code EC; ToolOutputFile F(FileName, EC, llvm::sys::fs::OF_TextWithCRLF); std::string FunctionName = S.getFunction().getName().str(); errs() << "Writing JScop '" << S.getNameStr() << "' in function '" << FunctionName << "' to '" << FileName << "'.\n"; if (!EC) { F.os() << formatv("{0:3}", jscop); F.os().close(); if (!F.os().has_error()) { errs() << "\n"; F.keep(); return; } } errs() << " error opening file for writing!\n"; F.os().clear_error(); } typedef Dependences::StatementToIslMapTy StatementToIslMapTy; /// Import a new context from JScop. /// /// @param S The scop to update. /// @param JScop The JScop file describing the new schedule. /// /// @returns True if the import succeeded, otherwise False. static bool importContext(Scop &S, const json::Object &JScop) { isl::set OldContext = S.getContext(); // Check if key 'context' is present. if (!JScop.get("context")) { errs() << "JScop file has no key named 'context'.\n"; return false; } isl::set NewContext = isl::set{S.getIslCtx().get(), JScop.getString("context").getValue().str()}; // Check whether the context was parsed successfully. if (NewContext.is_null()) { errs() << "The context was not parsed successfully by ISL.\n"; return false; } // Check if the isl_set is a parameter set. if (!NewContext.is_params()) { errs() << "The isl_set is not a parameter set.\n"; return false; } unsigned OldContextDim = unsignedFromIslSize(OldContext.dim(isl::dim::param)); unsigned NewContextDim = unsignedFromIslSize(NewContext.dim(isl::dim::param)); // Check if the imported context has the right number of parameters. if (OldContextDim != NewContextDim) { errs() << "Imported context has the wrong number of parameters : " << "Found " << NewContextDim << " Expected " << OldContextDim << "\n"; return false; } for (unsigned i = 0; i < OldContextDim; i++) { isl::id Id = OldContext.get_dim_id(isl::dim::param, i); NewContext = NewContext.set_dim_id(isl::dim::param, i, Id); } S.setContext(NewContext); return true; } /// Import a new schedule from JScop. /// /// ... and verify that the new schedule does preserve existing data /// dependences. /// /// @param S The scop to update. /// @param JScop The JScop file describing the new schedule. /// @param D The data dependences of the @p S. /// /// @returns True if the import succeeded, otherwise False. static bool importSchedule(Scop &S, const json::Object &JScop, const Dependences &D) { StatementToIslMapTy NewSchedule; // Check if key 'statements' is present. if (!JScop.get("statements")) { errs() << "JScop file has no key name 'statements'.\n"; return false; } const json::Array &statements = *JScop.getArray("statements"); // Check whether the number of indices equals the number of statements if (statements.size() != S.getSize()) { errs() << "The number of indices and the number of statements differ.\n"; return false; } int Index = 0; for (ScopStmt &Stmt : S) { // Check if key 'schedule' is present. if (!statements[Index].getAsObject()->get("schedule")) { errs() << "Statement " << Index << " has no 'schedule' key.\n"; return false; } Optional Schedule = statements[Index].getAsObject()->getString("schedule"); assert(Schedule.hasValue() && "Schedules that contain extension nodes require special handling."); isl_map *Map = isl_map_read_from_str(S.getIslCtx().get(), Schedule.getValue().str().c_str()); // Check whether the schedule was parsed successfully if (!Map) { errs() << "The schedule was not parsed successfully (index = " << Index << ").\n"; return false; } isl_space *Space = Stmt.getDomainSpace().release(); // Copy the old tuple id. This is necessary to retain the user pointer, // that stores the reference to the ScopStmt this schedule belongs to. Map = isl_map_set_tuple_id(Map, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set)); for (isl_size i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); Map = isl_map_set_dim_id(Map, isl_dim_param, i, Id); } isl_space_free(Space); NewSchedule[&Stmt] = isl::manage(Map); Index++; } // Check whether the new schedule is valid or not. if (!D.isValidSchedule(S, NewSchedule)) { errs() << "JScop file contains a schedule that changes the " << "dependences. Use -disable-polly-legality to continue anyways\n"; return false; } auto ScheduleMap = isl::union_map::empty(S.getIslCtx()); for (ScopStmt &Stmt : S) { if (NewSchedule.find(&Stmt) != NewSchedule.end()) ScheduleMap = ScheduleMap.unite(NewSchedule[&Stmt]); else ScheduleMap = ScheduleMap.unite(Stmt.getSchedule()); } S.setSchedule(ScheduleMap); return true; } /// Import new memory accesses from JScop. /// /// @param S The scop to update. /// @param JScop The JScop file describing the new schedule. /// @param DL The data layout to assume. /// @param NewAccessStrings optionally record the imported access strings /// /// @returns True if the import succeeded, otherwise False. static bool importAccesses(Scop &S, const json::Object &JScop, const DataLayout &DL, std::vector *NewAccessStrings = nullptr) { int StatementIdx = 0; // Check if key 'statements' is present. if (!JScop.get("statements")) { errs() << "JScop file has no key name 'statements'.\n"; return false; } const json::Array &statements = *JScop.getArray("statements"); // Check whether the number of indices equals the number of statements if (statements.size() != S.getSize()) { errs() << "The number of indices and the number of statements differ.\n"; return false; } for (ScopStmt &Stmt : S) { int MemoryAccessIdx = 0; const json::Object *Statement = statements[StatementIdx].getAsObject(); assert(Statement); // Check if key 'accesses' is present. if (!Statement->get("accesses")) { errs() << "Statement from JScop file has no key name 'accesses' for index " << StatementIdx << ".\n"; return false; } const json::Array &JsonAccesses = *Statement->getArray("accesses"); // Check whether the number of indices equals the number of memory // accesses if (Stmt.size() != JsonAccesses.size()) { errs() << "The number of memory accesses in the JSop file and the number " "of memory accesses differ for index " << StatementIdx << ".\n"; return false; } for (MemoryAccess *MA : Stmt) { // Check if key 'relation' is present. const json::Object *JsonMemoryAccess = JsonAccesses[MemoryAccessIdx].getAsObject(); assert(JsonMemoryAccess); if (!JsonMemoryAccess->get("relation")) { errs() << "Memory access number " << MemoryAccessIdx << " has no key name 'relation' for statement number " << StatementIdx << ".\n"; return false; } StringRef Accesses = JsonMemoryAccess->getString("relation").getValue(); isl_map *NewAccessMap = isl_map_read_from_str(S.getIslCtx().get(), Accesses.str().c_str()); // Check whether the access was parsed successfully if (!NewAccessMap) { errs() << "The access was not parsed successfully by ISL.\n"; return false; } isl_map *CurrentAccessMap = MA->getAccessRelation().release(); // Check if the number of parameter change if (isl_map_dim(NewAccessMap, isl_dim_param) != isl_map_dim(CurrentAccessMap, isl_dim_param)) { errs() << "JScop file changes the number of parameter dimensions.\n"; isl_map_free(CurrentAccessMap); isl_map_free(NewAccessMap); return false; } isl_id *NewOutId; // If the NewAccessMap has zero dimensions, it is the scalar access; it // must be the same as before. // If it has at least one dimension, it's an array access; search for // its ScopArrayInfo. if (isl_map_dim(NewAccessMap, isl_dim_out) >= 1) { NewOutId = isl_map_get_tuple_id(NewAccessMap, isl_dim_out); auto *SAI = S.getArrayInfoByName(isl_id_get_name(NewOutId)); isl_id *OutId = isl_map_get_tuple_id(CurrentAccessMap, isl_dim_out); auto *OutSAI = ScopArrayInfo::getFromId(isl::manage(OutId)); if (!SAI || SAI->getElementType() != OutSAI->getElementType()) { errs() << "JScop file contains access function with undeclared " "ScopArrayInfo\n"; isl_map_free(CurrentAccessMap); isl_map_free(NewAccessMap); isl_id_free(NewOutId); return false; } isl_id_free(NewOutId); NewOutId = SAI->getBasePtrId().release(); } else { NewOutId = isl_map_get_tuple_id(CurrentAccessMap, isl_dim_out); } NewAccessMap = isl_map_set_tuple_id(NewAccessMap, isl_dim_out, NewOutId); if (MA->isArrayKind()) { // We keep the old alignment, thus we cannot allow accesses to memory // locations that were not accessed before if the alignment of the // access is not the default alignment. bool SpecialAlignment = true; if (LoadInst *LoadI = dyn_cast(MA->getAccessInstruction())) { SpecialAlignment = LoadI->getAlignment() && DL.getABITypeAlignment(LoadI->getType()) != LoadI->getAlignment(); } else if (StoreInst *StoreI = dyn_cast(MA->getAccessInstruction())) { SpecialAlignment = StoreI->getAlignment() && DL.getABITypeAlignment(StoreI->getValueOperand()->getType()) != StoreI->getAlignment(); } if (SpecialAlignment) { isl_set *NewAccessSet = isl_map_range(isl_map_copy(NewAccessMap)); isl_set *CurrentAccessSet = isl_map_range(isl_map_copy(CurrentAccessMap)); bool IsSubset = isl_set_is_subset(NewAccessSet, CurrentAccessSet); isl_set_free(NewAccessSet); isl_set_free(CurrentAccessSet); // Check if the JScop file changes the accessed memory. if (!IsSubset) { errs() << "JScop file changes the accessed memory\n"; isl_map_free(CurrentAccessMap); isl_map_free(NewAccessMap); return false; } } } // We need to copy the isl_ids for the parameter dimensions to the new // map. Without doing this the current map would have different // ids then the new one, even though both are named identically. for (isl_size i = 0; i < isl_map_dim(CurrentAccessMap, isl_dim_param); i++) { isl_id *Id = isl_map_get_dim_id(CurrentAccessMap, isl_dim_param, i); NewAccessMap = isl_map_set_dim_id(NewAccessMap, isl_dim_param, i, Id); } // Copy the old tuple id. This is necessary to retain the user pointer, // that stores the reference to the ScopStmt this access belongs to. isl_id *Id = isl_map_get_tuple_id(CurrentAccessMap, isl_dim_in); NewAccessMap = isl_map_set_tuple_id(NewAccessMap, isl_dim_in, Id); auto NewAccessDomain = isl_map_domain(isl_map_copy(NewAccessMap)); auto CurrentAccessDomain = isl_map_domain(isl_map_copy(CurrentAccessMap)); if (!isl_set_has_equal_space(NewAccessDomain, CurrentAccessDomain)) { errs() << "JScop file contains access function with incompatible " << "dimensions\n"; isl_map_free(CurrentAccessMap); isl_map_free(NewAccessMap); isl_set_free(NewAccessDomain); isl_set_free(CurrentAccessDomain); return false; } NewAccessDomain = isl_set_intersect_params(NewAccessDomain, S.getContext().release()); CurrentAccessDomain = isl_set_intersect_params(CurrentAccessDomain, S.getContext().release()); CurrentAccessDomain = isl_set_intersect(CurrentAccessDomain, Stmt.getDomain().release()); if (MA->isRead() && isl_set_is_subset(CurrentAccessDomain, NewAccessDomain) == isl_bool_false) { errs() << "Mapping not defined for all iteration domain elements\n"; isl_set_free(CurrentAccessDomain); isl_set_free(NewAccessDomain); isl_map_free(CurrentAccessMap); isl_map_free(NewAccessMap); return false; } isl_set_free(CurrentAccessDomain); isl_set_free(NewAccessDomain); if (!isl_map_is_equal(NewAccessMap, CurrentAccessMap)) { // Statistics. ++NewAccessMapFound; if (NewAccessStrings) NewAccessStrings->push_back(Accesses.str()); MA->setNewAccessRelation(isl::manage(NewAccessMap)); } else { isl_map_free(NewAccessMap); } isl_map_free(CurrentAccessMap); MemoryAccessIdx++; } StatementIdx++; } return true; } /// Check whether @p SAI and @p Array represent the same array. static bool areArraysEqual(ScopArrayInfo *SAI, const json::Object &Array) { std::string Buffer; llvm::raw_string_ostream RawStringOstream(Buffer); // Check if key 'type' is present. if (!Array.get("type")) { errs() << "Array has no key 'type'.\n"; return false; } // Check if key 'sizes' is present. if (!Array.get("sizes")) { errs() << "Array has no key 'sizes'.\n"; return false; } // Check if key 'name' is present. if (!Array.get("name")) { errs() << "Array has no key 'name'.\n"; return false; } if (SAI->getName() != Array.getString("name").getValue()) return false; if (SAI->getNumberOfDimensions() != Array.getArray("sizes")->size()) return false; for (unsigned i = 1; i < Array.getArray("sizes")->size(); i++) { SAI->getDimensionSize(i)->print(RawStringOstream); const json::Array &SizesArray = *Array.getArray("sizes"); if (RawStringOstream.str() != SizesArray[i].getAsString().getValue()) return false; Buffer.clear(); } // Check if key 'type' differs from the current one or is not valid. SAI->getElementType()->print(RawStringOstream); if (RawStringOstream.str() != Array.getString("type").getValue()) { errs() << "Array has not a valid type.\n"; return false; } return true; } /// Get the accepted primitive type from its textual representation /// @p TypeTextRepresentation. /// /// @param TypeTextRepresentation The textual representation of the type. /// @return The pointer to the primitive type, if this type is accepted /// or nullptr otherwise. static Type *parseTextType(const std::string &TypeTextRepresentation, LLVMContext &LLVMContext) { std::map MapStrToType = { {"void", Type::getVoidTy(LLVMContext)}, {"half", Type::getHalfTy(LLVMContext)}, {"float", Type::getFloatTy(LLVMContext)}, {"double", Type::getDoubleTy(LLVMContext)}, {"x86_fp80", Type::getX86_FP80Ty(LLVMContext)}, {"fp128", Type::getFP128Ty(LLVMContext)}, {"ppc_fp128", Type::getPPC_FP128Ty(LLVMContext)}, {"i1", Type::getInt1Ty(LLVMContext)}, {"i8", Type::getInt8Ty(LLVMContext)}, {"i16", Type::getInt16Ty(LLVMContext)}, {"i32", Type::getInt32Ty(LLVMContext)}, {"i64", Type::getInt64Ty(LLVMContext)}, {"i128", Type::getInt128Ty(LLVMContext)}}; auto It = MapStrToType.find(TypeTextRepresentation); if (It != MapStrToType.end()) return It->second; errs() << "Textual representation can not be parsed: " << TypeTextRepresentation << "\n"; return nullptr; } /// Import new arrays from JScop. /// /// @param S The scop to update. /// @param JScop The JScop file describing new arrays. /// /// @returns True if the import succeeded, otherwise False. static bool importArrays(Scop &S, const json::Object &JScop) { if (!JScop.get("arrays")) return true; const json::Array &Arrays = *JScop.getArray("arrays"); if (Arrays.size() == 0) return true; unsigned ArrayIdx = 0; for (auto &SAI : S.arrays()) { if (!SAI->isArrayKind()) continue; if (ArrayIdx + 1 > Arrays.size()) { errs() << "Not enough array entries in JScop file.\n"; return false; } if (!areArraysEqual(SAI, *Arrays[ArrayIdx].getAsObject())) { errs() << "No match for array '" << SAI->getName() << "' in JScop.\n"; return false; } ArrayIdx++; } for (; ArrayIdx < Arrays.size(); ArrayIdx++) { const json::Object &Array = *Arrays[ArrayIdx].getAsObject(); auto *ElementType = parseTextType(Array.get("type")->getAsString().getValue().str(), S.getSE()->getContext()); if (!ElementType) { errs() << "Error while parsing element type for new array.\n"; return false; } const json::Array &SizesArray = *Array.getArray("sizes"); std::vector DimSizes; for (unsigned i = 0; i < SizesArray.size(); i++) { auto Size = std::stoi(SizesArray[i].getAsString().getValue().str()); // Check if the size if positive. if (Size <= 0) { errs() << "The size at index " << i << " is =< 0.\n"; return false; } DimSizes.push_back(Size); } auto NewSAI = S.createScopArrayInfo( ElementType, Array.getString("name").getValue().str(), DimSizes); if (Array.get("allocation")) { NewSAI->setIsOnHeap(Array.getString("allocation").getValue() == "heap"); } } return true; } /// Import a Scop from a JSCOP file /// @param S The scop to be modified /// @param D Dependence Info /// @param DL The DataLayout of the function /// @param NewAccessStrings Optionally record the imported access strings /// /// @returns true on success, false otherwise. Beware that if this returns /// false, the Scop may still have been modified. In this case the Scop contains /// invalid information. static bool importScop(Scop &S, const Dependences &D, const DataLayout &DL, std::vector *NewAccessStrings = nullptr) { std::string FileName = ImportDir + "/" + getFileName(S, ImportPostfix); std::string FunctionName = S.getFunction().getName().str(); errs() << "Reading JScop '" << S.getNameStr() << "' in function '" << FunctionName << "' from '" << FileName << "'.\n"; ErrorOr> result = MemoryBuffer::getFile(FileName); std::error_code ec = result.getError(); if (ec) { errs() << "File could not be read: " << ec.message() << "\n"; return false; } Expected ParseResult = json::parse(result.get().get()->getBuffer()); if (Error E = ParseResult.takeError()) { errs() << "JSCoP file could not be parsed\n"; errs() << E << "\n"; consumeError(std::move(E)); return false; } json::Object &jscop = *ParseResult.get().getAsObject(); bool Success = importContext(S, jscop); if (!Success) return false; Success = importSchedule(S, jscop, D); if (!Success) return false; Success = importArrays(S, jscop); if (!Success) return false; Success = importAccesses(S, jscop, DL, NewAccessStrings); if (!Success) return false; return true; } char JSONExporter::ID = 0; void JSONExporter::printScop(raw_ostream &OS, Scop &S) const { OS << S; } bool JSONExporter::runOnScop(Scop &S) { exportScop(S); return false; } void JSONExporter::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } Pass *polly::createJSONExporterPass() { return new JSONExporter(); } PreservedAnalyses JSONExportPass::run(Scop &S, ScopAnalysisManager &SAM, ScopStandardAnalysisResults &SAR, SPMUpdater &) { exportScop(S); return PreservedAnalyses::all(); } char JSONImporter::ID = 0; void JSONImporter::printScop(raw_ostream &OS, Scop &S) const { OS << S; for (std::vector::const_iterator I = NewAccessStrings.begin(), E = NewAccessStrings.end(); I != E; I++) OS << "New access function '" << *I << "' detected in JSCOP file\n"; } bool JSONImporter::runOnScop(Scop &S) { const Dependences &D = getAnalysis().getDependences(Dependences::AL_Statement); const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); if (!importScop(S, D, DL, &NewAccessStrings)) report_fatal_error("Tried to import a malformed jscop file."); return false; } void JSONImporter::getAnalysisUsage(AnalysisUsage &AU) const { ScopPass::getAnalysisUsage(AU); AU.addRequired(); // TODO: JSONImporter should throw away DependenceInfo. AU.addPreserved(); } Pass *polly::createJSONImporterPass() { return new JSONImporter(); } PreservedAnalyses JSONImportPass::run(Scop &S, ScopAnalysisManager &SAM, ScopStandardAnalysisResults &SAR, SPMUpdater &) { const Dependences &D = SAM.getResult(S, SAR).getDependences( Dependences::AL_Statement); const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); if (!importScop(S, D, DL)) report_fatal_error("Tried to import a malformed jscop file."); // This invalidates all analyses on Scop. PreservedAnalyses PA; PA.preserveSet>(); PA.preserveSet>(); PA.preserveSet>(); return PA; } INITIALIZE_PASS_BEGIN(JSONExporter, "polly-export-jscop", "Polly - Export Scops as JSON" " (Writes a .jscop file for each Scop)", false, false); INITIALIZE_PASS_DEPENDENCY(DependenceInfo) INITIALIZE_PASS_END(JSONExporter, "polly-export-jscop", "Polly - Export Scops as JSON" " (Writes a .jscop file for each Scop)", false, false) INITIALIZE_PASS_BEGIN(JSONImporter, "polly-import-jscop", "Polly - Import Scops from JSON" " (Reads a .jscop file for each Scop)", false, false); INITIALIZE_PASS_DEPENDENCY(DependenceInfo) INITIALIZE_PASS_END(JSONImporter, "polly-import-jscop", "Polly - Import Scops from JSON" " (Reads a .jscop file for each Scop)", false, false)