#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// Compute iterated dominance frontiers using a linear time algorithm. /// /// The algorithm used here is based on: /// /// Sreedhar and Gao. A linear time algorithm for placing phi-nodes. /// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of /// Programming Languages /// POPL '95. ACM, New York, NY, 62-73. /// /// It has been modified to not explicitly use the DJ graph data structure and /// to directly compute pruned SSA using per-variable liveness information. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H #define LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/GenericDomTree.h" #include namespace llvm { namespace IDFCalculatorDetail { /// Generic utility class used for getting the children of a basic block. /// May be specialized if, for example, one wouldn't like to return nullpointer /// successors. template struct ChildrenGetterTy { using NodeRef = typename GraphTraits::NodeRef; using ChildrenTy = SmallVector; ChildrenTy get(const NodeRef &N); }; } // end of namespace IDFCalculatorDetail /// Determine the iterated dominance frontier, given a set of defining /// blocks, and optionally, a set of live-in blocks. /// /// In turn, the results can be used to place phi nodes. /// /// This algorithm is a linear time computation of Iterated Dominance Frontiers, /// pruned using the live-in set. /// By default, liveness is not used to prune the IDF computation. /// The template parameters should be of a CFG block type. template class IDFCalculatorBase { public: using OrderedNodeTy = std::conditional_t, NodeTy *>; using ChildrenGetterTy = IDFCalculatorDetail::ChildrenGetterTy; IDFCalculatorBase(DominatorTreeBase &DT) : DT(DT) {} IDFCalculatorBase(DominatorTreeBase &DT, const ChildrenGetterTy &C) : DT(DT), ChildrenGetter(C) {} /// Give the IDF calculator the set of blocks in which the value is /// defined. This is equivalent to the set of starting blocks it should be /// calculating the IDF for (though later gets pruned based on liveness). /// /// Note: This set *must* live for the entire lifetime of the IDF calculator. void setDefiningBlocks(const SmallPtrSetImpl &Blocks) { DefBlocks = &Blocks; } /// Give the IDF calculator the set of blocks in which the value is /// live on entry to the block. This is used to prune the IDF calculation to /// not include blocks where any phi insertion would be dead. /// /// Note: This set *must* live for the entire lifetime of the IDF calculator. void setLiveInBlocks(const SmallPtrSetImpl &Blocks) { LiveInBlocks = &Blocks; useLiveIn = true; } /// Reset the live-in block set to be empty, and tell the IDF /// calculator to not use liveness anymore. void resetLiveInBlocks() { LiveInBlocks = nullptr; useLiveIn = false; } /// Calculate iterated dominance frontiers /// /// This uses the linear-time phi algorithm based on DJ-graphs mentioned in /// the file-level comment. It performs DF->IDF pruning using the live-in /// set, to avoid computing the IDF for blocks where an inserted PHI node /// would be dead. void calculate(SmallVectorImpl &IDFBlocks); private: DominatorTreeBase &DT; ChildrenGetterTy ChildrenGetter; bool useLiveIn = false; const SmallPtrSetImpl *LiveInBlocks; const SmallPtrSetImpl *DefBlocks; }; //===----------------------------------------------------------------------===// // Implementation. //===----------------------------------------------------------------------===// namespace IDFCalculatorDetail { template typename ChildrenGetterTy::ChildrenTy ChildrenGetterTy::get(const NodeRef &N) { using OrderedNodeTy = typename IDFCalculatorBase::OrderedNodeTy; auto Children = children(N); return {Children.begin(), Children.end()}; } } // end of namespace IDFCalculatorDetail template void IDFCalculatorBase::calculate( SmallVectorImpl &IDFBlocks) { // Use a priority queue keyed on dominator tree level so that inserted nodes // are handled from the bottom of the dominator tree upwards. We also augment // the level with a DFS number to ensure that the blocks are ordered in a // deterministic way. using DomTreeNodePair = std::pair *, std::pair>; using IDFPriorityQueue = std::priority_queue, less_second>; IDFPriorityQueue PQ; DT.updateDFSNumbers(); SmallVector *, 32> Worklist; SmallPtrSet *, 32> VisitedPQ; SmallPtrSet *, 32> VisitedWorklist; for (NodeTy *BB : *DefBlocks) if (DomTreeNodeBase *Node = DT.getNode(BB)) { PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())}); VisitedWorklist.insert(Node); } while (!PQ.empty()) { DomTreeNodePair RootPair = PQ.top(); PQ.pop(); DomTreeNodeBase *Root = RootPair.first; unsigned RootLevel = RootPair.second.first; // Walk all dominator tree children of Root, inspecting their CFG edges with // targets elsewhere on the dominator tree. Only targets whose level is at // most Root's level are added to the iterated dominance frontier of the // definition set. assert(Worklist.empty()); Worklist.push_back(Root); while (!Worklist.empty()) { DomTreeNodeBase *Node = Worklist.pop_back_val(); NodeTy *BB = Node->getBlock(); // Succ is the successor in the direction we are calculating IDF, so it is // successor for IDF, and predecessor for Reverse IDF. auto DoWork = [&](NodeTy *Succ) { DomTreeNodeBase *SuccNode = DT.getNode(Succ); const unsigned SuccLevel = SuccNode->getLevel(); if (SuccLevel > RootLevel) return; if (!VisitedPQ.insert(SuccNode).second) return; NodeTy *SuccBB = SuccNode->getBlock(); if (useLiveIn && !LiveInBlocks->count(SuccBB)) return; IDFBlocks.emplace_back(SuccBB); if (!DefBlocks->count(SuccBB)) PQ.push(std::make_pair( SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn()))); }; for (auto Succ : ChildrenGetter.get(BB)) DoWork(Succ); for (auto DomChild : *Node) { if (VisitedWorklist.insert(DomChild).second) Worklist.push_back(DomChild); } } } } } // end of namespace llvm #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif