#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- CFGDiff.h - Define a CFG snapshot. -----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines specializations of GraphTraits that allows generic // algorithms to see a different snapshot of a CFG. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CFGDIFF_H #define LLVM_SUPPORT_CFGDIFF_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/CFGUpdate.h" #include "llvm/Support/type_traits.h" #include #include #include // Two booleans are used to define orders in graphs: // InverseGraph defines when we need to reverse the whole graph and is as such // also equivalent to applying updates in reverse. // InverseEdge defines whether we want to change the edges direction. E.g., for // a non-inversed graph, the children are naturally the successors when // InverseEdge is false and the predecessors when InverseEdge is true. namespace llvm { namespace detail { template auto reverse_if_helper(Range &&R, std::integral_constant) { return std::forward(R); } template auto reverse_if_helper(Range &&R, std::integral_constant) { return llvm::reverse(std::forward(R)); } template auto reverse_if(Range &&R) { return reverse_if_helper(std::forward(R), std::integral_constant{}); } } // namespace detail // GraphDiff defines a CFG snapshot: given a set of Update, provides // a getChildren method to get a Node's children based on the additional updates // in the snapshot. The current diff treats the CFG as a graph rather than a // multigraph. Added edges are pruned to be unique, and deleted edges will // remove all existing edges between two blocks. template class GraphDiff { struct DeletesInserts { SmallVector DI[2]; }; using UpdateMapType = SmallDenseMap; UpdateMapType Succ; UpdateMapType Pred; // By default, it is assumed that, given a CFG and a set of updates, we wish // to apply these updates as given. If UpdatedAreReverseApplied is set, the // updates will be applied in reverse: deleted edges are considered re-added // and inserted edges are considered deleted when returning children. bool UpdatedAreReverseApplied; // Keep the list of legalized updates for a deterministic order of updates // when using a GraphDiff for incremental updates in the DominatorTree. // The list is kept in reverse to allow popping from end. SmallVector, 4> LegalizedUpdates; void printMap(raw_ostream &OS, const UpdateMapType &M) const { StringRef DIText[2] = {"Delete", "Insert"}; for (auto Pair : M) { for (unsigned IsInsert = 0; IsInsert <= 1; ++IsInsert) { OS << DIText[IsInsert] << " edges: \n"; for (auto Child : Pair.second.DI[IsInsert]) { OS << "("; Pair.first->printAsOperand(OS, false); OS << ", "; Child->printAsOperand(OS, false); OS << ") "; } } } OS << "\n"; } public: GraphDiff() : UpdatedAreReverseApplied(false) {} GraphDiff(ArrayRef> Updates, bool ReverseApplyUpdates = false) { cfg::LegalizeUpdates(Updates, LegalizedUpdates, InverseGraph); for (auto U : LegalizedUpdates) { unsigned IsInsert = (U.getKind() == cfg::UpdateKind::Insert) == !ReverseApplyUpdates; Succ[U.getFrom()].DI[IsInsert].push_back(U.getTo()); Pred[U.getTo()].DI[IsInsert].push_back(U.getFrom()); } UpdatedAreReverseApplied = ReverseApplyUpdates; } auto getLegalizedUpdates() const { return make_range(LegalizedUpdates.begin(), LegalizedUpdates.end()); } unsigned getNumLegalizedUpdates() const { return LegalizedUpdates.size(); } cfg::Update popUpdateForIncrementalUpdates() { assert(!LegalizedUpdates.empty() && "No updates to apply!"); auto U = LegalizedUpdates.pop_back_val(); unsigned IsInsert = (U.getKind() == cfg::UpdateKind::Insert) == !UpdatedAreReverseApplied; auto &SuccDIList = Succ[U.getFrom()]; auto &SuccList = SuccDIList.DI[IsInsert]; assert(SuccList.back() == U.getTo()); SuccList.pop_back(); if (SuccList.empty() && SuccDIList.DI[!IsInsert].empty()) Succ.erase(U.getFrom()); auto &PredDIList = Pred[U.getTo()]; auto &PredList = PredDIList.DI[IsInsert]; assert(PredList.back() == U.getFrom()); PredList.pop_back(); if (PredList.empty() && PredDIList.DI[!IsInsert].empty()) Pred.erase(U.getTo()); return U; } using VectRet = SmallVector; template VectRet getChildren(NodePtr N) const { using DirectedNodeT = std::conditional_t, NodePtr>; auto R = children(N); VectRet Res = VectRet(detail::reverse_if(R)); // Remove nullptr children for clang. llvm::erase_value(Res, nullptr); auto &Children = (InverseEdge != InverseGraph) ? Pred : Succ; auto It = Children.find(N); if (It == Children.end()) return Res; // Remove children present in the CFG but not in the snapshot. for (auto *Child : It->second.DI[0]) llvm::erase_value(Res, Child); // Add children present in the snapshot for not in the real CFG. auto &AddedChildren = It->second.DI[1]; llvm::append_range(Res, AddedChildren); return Res; } void print(raw_ostream &OS) const { OS << "===== GraphDiff: CFG edge changes to create a CFG snapshot. \n" "===== (Note: notion of children/inverse_children depends on " "the direction of edges and the graph.)\n"; OS << "Children to delete/insert:\n\t"; printMap(OS, Succ); OS << "Inverse_children to delete/insert:\n\t"; printMap(OS, Pred); OS << "\n"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void dump() const { print(dbgs()); } #endif }; } // end namespace llvm #endif // LLVM_SUPPORT_CFGDIFF_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif