#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- SampleProfReader.h - Read LLVM sample profile data -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains definitions needed for reading sample profiles. // // NOTE: If you are making changes to this file format, please remember // to document them in the Clang documentation at // tools/clang/docs/UsersManual.rst. // // Text format // ----------- // // Sample profiles are written as ASCII text. The file is divided into // sections, which correspond to each of the functions executed at runtime. // Each section has the following format // // function1:total_samples:total_head_samples // offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ] // offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ] // ... // offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ] // offsetA[.discriminator]: fnA:num_of_total_samples // offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ] // ... // !CFGChecksum: num // !Attribute: flags // // This is a nested tree in which the indentation represents the nesting level // of the inline stack. There are no blank lines in the file. And the spacing // within a single line is fixed. Additional spaces will result in an error // while reading the file. // // Any line starting with the '#' character is completely ignored. // // Inlined calls are represented with indentation. The Inline stack is a // stack of source locations in which the top of the stack represents the // leaf function, and the bottom of the stack represents the actual // symbol to which the instruction belongs. // // Function names must be mangled in order for the profile loader to // match them in the current translation unit. The two numbers in the // function header specify how many total samples were accumulated in the // function (first number), and the total number of samples accumulated // in the prologue of the function (second number). This head sample // count provides an indicator of how frequently the function is invoked. // // There are three types of lines in the function body. // // * Sampled line represents the profile information of a source location. // * Callsite line represents the profile information of a callsite. // * Metadata line represents extra metadata of the function. // // Each sampled line may contain several items. Some are optional (marked // below): // // a. Source line offset. This number represents the line number // in the function where the sample was collected. The line number is // always relative to the line where symbol of the function is // defined. So, if the function has its header at line 280, the offset // 13 is at line 293 in the file. // // Note that this offset should never be a negative number. This could // happen in cases like macros. The debug machinery will register the // line number at the point of macro expansion. So, if the macro was // expanded in a line before the start of the function, the profile // converter should emit a 0 as the offset (this means that the optimizers // will not be able to associate a meaningful weight to the instructions // in the macro). // // b. [OPTIONAL] Discriminator. This is used if the sampled program // was compiled with DWARF discriminator support // (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). // DWARF discriminators are unsigned integer values that allow the // compiler to distinguish between multiple execution paths on the // same source line location. // // For example, consider the line of code ``if (cond) foo(); else bar();``. // If the predicate ``cond`` is true 80% of the time, then the edge // into function ``foo`` should be considered to be taken most of the // time. But both calls to ``foo`` and ``bar`` are at the same source // line, so a sample count at that line is not sufficient. The // compiler needs to know which part of that line is taken more // frequently. // // This is what discriminators provide. In this case, the calls to // ``foo`` and ``bar`` will be at the same line, but will have // different discriminator values. This allows the compiler to correctly // set edge weights into ``foo`` and ``bar``. // // c. Number of samples. This is an integer quantity representing the // number of samples collected by the profiler at this source // location. // // d. [OPTIONAL] Potential call targets and samples. If present, this // line contains a call instruction. This models both direct and // number of samples. For example, // // 130: 7 foo:3 bar:2 baz:7 // // The above means that at relative line offset 130 there is a call // instruction that calls one of ``foo()``, ``bar()`` and ``baz()``, // with ``baz()`` being the relatively more frequently called target. // // Each callsite line may contain several items. Some are optional. // // a. Source line offset. This number represents the line number of the // callsite that is inlined in the profiled binary. // // b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line. // // c. Number of samples. This is an integer quantity representing the // total number of samples collected for the inlined instance at this // callsite // // Metadata line can occur in lines with one indent only, containing extra // information for the top-level function. Furthermore, metadata can only // occur after all the body samples and callsite samples. // Each metadata line may contain a particular type of metadata, marked by // the starting characters annotated with !. We process each metadata line // independently, hence each metadata line has to form an independent piece // of information that does not require cross-line reference. // We support the following types of metadata: // // a. CFG Checksum (a.k.a. function hash): // !CFGChecksum: 12345 // b. CFG Checksum (see ContextAttributeMask): // !Atribute: 1 // // // Binary format // ------------- // // This is a more compact encoding. Numbers are encoded as ULEB128 values // and all strings are encoded in a name table. The file is organized in // the following sections: // // MAGIC (uint64_t) // File identifier computed by function SPMagic() (0x5350524f463432ff) // // VERSION (uint32_t) // File format version number computed by SPVersion() // // SUMMARY // TOTAL_COUNT (uint64_t) // Total number of samples in the profile. // MAX_COUNT (uint64_t) // Maximum value of samples on a line. // MAX_FUNCTION_COUNT (uint64_t) // Maximum number of samples at function entry (head samples). // NUM_COUNTS (uint64_t) // Number of lines with samples. // NUM_FUNCTIONS (uint64_t) // Number of functions with samples. // NUM_DETAILED_SUMMARY_ENTRIES (size_t) // Number of entries in detailed summary // DETAILED_SUMMARY // A list of detailed summary entry. Each entry consists of // CUTOFF (uint32_t) // Required percentile of total sample count expressed as a fraction // multiplied by 1000000. // MIN_COUNT (uint64_t) // The minimum number of samples required to reach the target // CUTOFF. // NUM_COUNTS (uint64_t) // Number of samples to get to the desrired percentile. // // NAME TABLE // SIZE (uint32_t) // Number of entries in the name table. // NAMES // A NUL-separated list of SIZE strings. // // FUNCTION BODY (one for each uninlined function body present in the profile) // HEAD_SAMPLES (uint64_t) [only for top-level functions] // Total number of samples collected at the head (prologue) of the // function. // NOTE: This field should only be present for top-level functions // (i.e., not inlined into any caller). Inlined function calls // have no prologue, so they don't need this. // NAME_IDX (uint32_t) // Index into the name table indicating the function name. // SAMPLES (uint64_t) // Total number of samples collected in this function. // NRECS (uint32_t) // Total number of sampling records this function's profile. // BODY RECORDS // A list of NRECS entries. Each entry contains: // OFFSET (uint32_t) // Line offset from the start of the function. // DISCRIMINATOR (uint32_t) // Discriminator value (see description of discriminators // in the text format documentation above). // SAMPLES (uint64_t) // Number of samples collected at this location. // NUM_CALLS (uint32_t) // Number of non-inlined function calls made at this location. In the // case of direct calls, this number will always be 1. For indirect // calls (virtual functions and function pointers) this will // represent all the actual functions called at runtime. // CALL_TARGETS // A list of NUM_CALLS entries for each called function: // NAME_IDX (uint32_t) // Index into the name table with the callee name. // SAMPLES (uint64_t) // Number of samples collected at the call site. // NUM_INLINED_FUNCTIONS (uint32_t) // Number of callees inlined into this function. // INLINED FUNCTION RECORDS // A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined // callees. // OFFSET (uint32_t) // Line offset from the start of the function. // DISCRIMINATOR (uint32_t) // Discriminator value (see description of discriminators // in the text format documentation above). // FUNCTION BODY // A FUNCTION BODY entry describing the inlined function. //===----------------------------------------------------------------------===// #ifndef LLVM_PROFILEDATA_SAMPLEPROFREADER_H #define LLVM_PROFILEDATA_SAMPLEPROFREADER_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/ProfileSummary.h" #include "llvm/ProfileData/GCOV.h" #include "llvm/ProfileData/SampleProf.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Discriminator.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SymbolRemappingReader.h" #include #include #include #include #include #include #include #include namespace llvm { class raw_ostream; class Twine; namespace sampleprof { class SampleProfileReader; /// SampleProfileReaderItaniumRemapper remaps the profile data from a /// sample profile data reader, by applying a provided set of equivalences /// between components of the symbol names in the profile. class SampleProfileReaderItaniumRemapper { public: SampleProfileReaderItaniumRemapper(std::unique_ptr B, std::unique_ptr SRR, SampleProfileReader &R) : Buffer(std::move(B)), Remappings(std::move(SRR)), Reader(R) { assert(Remappings && "Remappings cannot be nullptr"); } /// Create a remapper from the given remapping file. The remapper will /// be used for profile read in by Reader. static ErrorOr> create(const std::string Filename, SampleProfileReader &Reader, LLVMContext &C); /// Create a remapper from the given Buffer. The remapper will /// be used for profile read in by Reader. static ErrorOr> create(std::unique_ptr &B, SampleProfileReader &Reader, LLVMContext &C); /// Apply remappings to the profile read by Reader. void applyRemapping(LLVMContext &Ctx); bool hasApplied() { return RemappingApplied; } /// Insert function name into remapper. void insert(StringRef FunctionName) { Remappings->insert(FunctionName); } /// Query whether there is equivalent in the remapper which has been /// inserted. bool exist(StringRef FunctionName) { return Remappings->lookup(FunctionName); } /// Return the equivalent name in the profile for \p FunctionName if /// it exists. Optional lookUpNameInProfile(StringRef FunctionName); private: // The buffer holding the content read from remapping file. std::unique_ptr Buffer; std::unique_ptr Remappings; // Map remapping key to the name in the profile. By looking up the // key in the remapper, a given new name can be mapped to the // cannonical name using the NameMap. DenseMap NameMap; // The Reader the remapper is servicing. SampleProfileReader &Reader; // Indicate whether remapping has been applied to the profile read // by Reader -- by calling applyRemapping. bool RemappingApplied = false; }; /// Sample-based profile reader. /// /// Each profile contains sample counts for all the functions /// executed. Inside each function, statements are annotated with the /// collected samples on all the instructions associated with that /// statement. /// /// For this to produce meaningful data, the program needs to be /// compiled with some debug information (at minimum, line numbers: /// -gline-tables-only). Otherwise, it will be impossible to match IR /// instructions to the line numbers collected by the profiler. /// /// From the profile file, we are interested in collecting the /// following information: /// /// * A list of functions included in the profile (mangled names). /// /// * For each function F: /// 1. The total number of samples collected in F. /// /// 2. The samples collected at each line in F. To provide some /// protection against source code shuffling, line numbers should /// be relative to the start of the function. /// /// The reader supports two file formats: text and binary. The text format /// is useful for debugging and testing, while the binary format is more /// compact and I/O efficient. They can both be used interchangeably. class SampleProfileReader { public: SampleProfileReader(std::unique_ptr B, LLVMContext &C, SampleProfileFormat Format = SPF_None) : Profiles(0), Ctx(C), Buffer(std::move(B)), Format(Format) {} virtual ~SampleProfileReader() = default; /// Read and validate the file header. virtual std::error_code readHeader() = 0; /// Set the bits for FS discriminators. Parameter Pass specify the sequence /// number, Pass == i is for the i-th round of adding FS discriminators. /// Pass == 0 is for using base discriminators. void setDiscriminatorMaskedBitFrom(FSDiscriminatorPass P) { MaskedBitFrom = getFSPassBitEnd(P); } /// Get the bitmask the discriminators: For FS profiles, return the bit /// mask for this pass. For non FS profiles, return (unsigned) -1. uint32_t getDiscriminatorMask() const { if (!ProfileIsFS) return 0xFFFFFFFF; assert((MaskedBitFrom != 0) && "MaskedBitFrom is not set properly"); return getN1Bits(MaskedBitFrom); } /// The interface to read sample profiles from the associated file. std::error_code read() { if (std::error_code EC = readImpl()) return EC; if (Remapper) Remapper->applyRemapping(Ctx); FunctionSamples::UseMD5 = useMD5(); return sampleprof_error::success; } /// The implementaion to read sample profiles from the associated file. virtual std::error_code readImpl() = 0; /// Print the profile for \p FContext on stream \p OS. void dumpFunctionProfile(SampleContext FContext, raw_ostream &OS = dbgs()); /// Collect functions with definitions in Module M. For reader which /// support loading function profiles on demand, return true when the /// reader has been given a module. Always return false for reader /// which doesn't support loading function profiles on demand. virtual bool collectFuncsFromModule() { return false; } /// Print all the profiles on stream \p OS. void dump(raw_ostream &OS = dbgs()); /// Return the samples collected for function \p F. FunctionSamples *getSamplesFor(const Function &F) { // The function name may have been updated by adding suffix. Call // a helper to (optionally) strip off suffixes so that we can // match against the original function name in the profile. StringRef CanonName = FunctionSamples::getCanonicalFnName(F); return getSamplesFor(CanonName); } /// Return the samples collected for function \p F, create empty /// FunctionSamples if it doesn't exist. FunctionSamples *getOrCreateSamplesFor(const Function &F) { std::string FGUID; StringRef CanonName = FunctionSamples::getCanonicalFnName(F); CanonName = getRepInFormat(CanonName, useMD5(), FGUID); auto It = Profiles.find(CanonName); if (It != Profiles.end()) return &It->second; if (!FGUID.empty()) { assert(useMD5() && "New name should only be generated for md5 profile"); CanonName = *MD5NameBuffer.insert(FGUID).first; } return &Profiles[CanonName]; } /// Return the samples collected for function \p F. virtual FunctionSamples *getSamplesFor(StringRef Fname) { std::string FGUID; Fname = getRepInFormat(Fname, useMD5(), FGUID); auto It = Profiles.find(Fname); if (It != Profiles.end()) return &It->second; if (Remapper) { if (auto NameInProfile = Remapper->lookUpNameInProfile(Fname)) { auto It = Profiles.find(*NameInProfile); if (It != Profiles.end()) return &It->second; } } return nullptr; } /// Return all the profiles. SampleProfileMap &getProfiles() { return Profiles; } /// Report a parse error message. void reportError(int64_t LineNumber, const Twine &Msg) const { Ctx.diagnose(DiagnosticInfoSampleProfile(Buffer->getBufferIdentifier(), LineNumber, Msg)); } /// Create a sample profile reader appropriate to the file format. /// Create a remapper underlying if RemapFilename is not empty. /// Parameter P specifies the FSDiscriminatorPass. static ErrorOr> create(const std::string Filename, LLVMContext &C, FSDiscriminatorPass P = FSDiscriminatorPass::Base, const std::string RemapFilename = ""); /// Create a sample profile reader from the supplied memory buffer. /// Create a remapper underlying if RemapFilename is not empty. /// Parameter P specifies the FSDiscriminatorPass. static ErrorOr> create(std::unique_ptr &B, LLVMContext &C, FSDiscriminatorPass P = FSDiscriminatorPass::Base, const std::string RemapFilename = ""); /// Return the profile summary. ProfileSummary &getSummary() const { return *(Summary.get()); } MemoryBuffer *getBuffer() const { return Buffer.get(); } /// \brief Return the profile format. SampleProfileFormat getFormat() const { return Format; } /// Whether input profile is based on pseudo probes. bool profileIsProbeBased() const { return ProfileIsProbeBased; } /// Whether input profile is fully context-sensitive and flat. bool profileIsCSFlat() const { return ProfileIsCSFlat; } /// Whether input profile is fully context-sensitive and nested. bool profileIsCSNested() const { return ProfileIsCSNested; } virtual std::unique_ptr getProfileSymbolList() { return nullptr; }; /// It includes all the names that have samples either in outline instance /// or inline instance. virtual std::vector *getNameTable() { return nullptr; } virtual bool dumpSectionInfo(raw_ostream &OS = dbgs()) { return false; }; /// Return whether names in the profile are all MD5 numbers. virtual bool useMD5() { return false; } /// Don't read profile without context if the flag is set. This is only meaningful /// for ExtBinary format. virtual void setSkipFlatProf(bool Skip) {} /// Return whether any name in the profile contains ".__uniq." suffix. virtual bool hasUniqSuffix() { return false; } SampleProfileReaderItaniumRemapper *getRemapper() { return Remapper.get(); } void setModule(const Module *Mod) { M = Mod; } protected: /// Map every function to its associated profile. /// /// The profile of every function executed at runtime is collected /// in the structure FunctionSamples. This maps function objects /// to their corresponding profiles. SampleProfileMap Profiles; /// LLVM context used to emit diagnostics. LLVMContext &Ctx; /// Memory buffer holding the profile file. std::unique_ptr Buffer; /// Extra name buffer holding names created on demand. /// This should only be needed for md5 profiles. std::unordered_set MD5NameBuffer; /// Profile summary information. std::unique_ptr Summary; /// Take ownership of the summary of this reader. static std::unique_ptr takeSummary(SampleProfileReader &Reader) { return std::move(Reader.Summary); } /// Compute summary for this profile. void computeSummary(); std::unique_ptr Remapper; /// \brief Whether samples are collected based on pseudo probes. bool ProfileIsProbeBased = false; /// Whether function profiles are context-sensitive flat profiles. bool ProfileIsCSFlat = false; /// Whether function profiles are context-sensitive nested profiles. bool ProfileIsCSNested = false; /// Number of context-sensitive profiles. uint32_t CSProfileCount = 0; /// Whether the function profiles use FS discriminators. bool ProfileIsFS = false; /// \brief The format of sample. SampleProfileFormat Format = SPF_None; /// \brief The current module being compiled if SampleProfileReader /// is used by compiler. If SampleProfileReader is used by other /// tools which are not compiler, M is usually nullptr. const Module *M = nullptr; /// Zero out the discriminator bits higher than bit MaskedBitFrom (0 based). /// The default is to keep all the bits. uint32_t MaskedBitFrom = 31; }; class SampleProfileReaderText : public SampleProfileReader { public: SampleProfileReaderText(std::unique_ptr B, LLVMContext &C) : SampleProfileReader(std::move(B), C, SPF_Text) {} /// Read and validate the file header. std::error_code readHeader() override { return sampleprof_error::success; } /// Read sample profiles from the associated file. std::error_code readImpl() override; /// Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); private: /// CSNameTable is used to save full context vectors. This serves as an /// underlying immutable buffer for all clients. std::list CSNameTable; }; class SampleProfileReaderBinary : public SampleProfileReader { public: SampleProfileReaderBinary(std::unique_ptr B, LLVMContext &C, SampleProfileFormat Format = SPF_None) : SampleProfileReader(std::move(B), C, Format) {} /// Read and validate the file header. virtual std::error_code readHeader() override; /// Read sample profiles from the associated file. std::error_code readImpl() override; /// It includes all the names that have samples either in outline instance /// or inline instance. virtual std::vector *getNameTable() override { return &NameTable; } protected: /// Read a numeric value of type T from the profile. /// /// If an error occurs during decoding, a diagnostic message is emitted and /// EC is set. /// /// \returns the read value. template ErrorOr readNumber(); /// Read a numeric value of type T from the profile. The value is saved /// without encoded. template ErrorOr readUnencodedNumber(); /// Read a string from the profile. /// /// If an error occurs during decoding, a diagnostic message is emitted and /// EC is set. /// /// \returns the read value. ErrorOr readString(); /// Read the string index and check whether it overflows the table. template inline ErrorOr readStringIndex(T &Table); /// Return true if we've reached the end of file. bool at_eof() const { return Data >= End; } /// Read the next function profile instance. std::error_code readFuncProfile(const uint8_t *Start); /// Read the contents of the given profile instance. std::error_code readProfile(FunctionSamples &FProfile); /// Read the contents of Magic number and Version number. std::error_code readMagicIdent(); /// Read profile summary. std::error_code readSummary(); /// Read the whole name table. virtual std::error_code readNameTable(); /// Points to the current location in the buffer. const uint8_t *Data = nullptr; /// Points to the end of the buffer. const uint8_t *End = nullptr; /// Function name table. std::vector NameTable; /// Read a string indirectly via the name table. virtual ErrorOr readStringFromTable(); virtual ErrorOr readSampleContextFromTable(); private: std::error_code readSummaryEntry(std::vector &Entries); virtual std::error_code verifySPMagic(uint64_t Magic) = 0; }; class SampleProfileReaderRawBinary : public SampleProfileReaderBinary { private: virtual std::error_code verifySPMagic(uint64_t Magic) override; public: SampleProfileReaderRawBinary(std::unique_ptr B, LLVMContext &C, SampleProfileFormat Format = SPF_Binary) : SampleProfileReaderBinary(std::move(B), C, Format) {} /// \brief Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); }; /// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase defines /// the basic structure of the extensible binary format. /// The format is organized in sections except the magic and version number /// at the beginning. There is a section table before all the sections, and /// each entry in the table describes the entry type, start, size and /// attributes. The format in each section is defined by the section itself. /// /// It is easy to add a new section while maintaining the backward /// compatibility of the profile. Nothing extra needs to be done. If we want /// to extend an existing section, like add cache misses information in /// addition to the sample count in the profile body, we can add a new section /// with the extension and retire the existing section, and we could choose /// to keep the parser of the old section if we want the reader to be able /// to read both new and old format profile. /// /// SampleProfileReaderExtBinary/SampleProfileWriterExtBinary define the /// commonly used sections of a profile in extensible binary format. It is /// possible to define other types of profile inherited from /// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase. class SampleProfileReaderExtBinaryBase : public SampleProfileReaderBinary { private: std::error_code decompressSection(const uint8_t *SecStart, const uint64_t SecSize, const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize); BumpPtrAllocator Allocator; protected: std::vector SecHdrTable; std::error_code readSecHdrTableEntry(uint32_t Idx); std::error_code readSecHdrTable(); std::error_code readFuncMetadata(bool ProfileHasAttribute); std::error_code readFuncMetadata(bool ProfileHasAttribute, FunctionSamples *FProfile); std::error_code readFuncOffsetTable(); std::error_code readFuncProfiles(); std::error_code readMD5NameTable(); std::error_code readNameTableSec(bool IsMD5); std::error_code readCSNameTableSec(); std::error_code readProfileSymbolList(); virtual std::error_code readHeader() override; virtual std::error_code verifySPMagic(uint64_t Magic) override = 0; virtual std::error_code readOneSection(const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry); // placeholder for subclasses to dispatch their own section readers. virtual std::error_code readCustomSection(const SecHdrTableEntry &Entry) = 0; virtual ErrorOr readStringFromTable() override; virtual ErrorOr readSampleContextFromTable() override; ErrorOr readContextFromTable(); std::unique_ptr ProfSymList; /// The table mapping from function context to the offset of its /// FunctionSample towards file start. DenseMap FuncOffsetTable; /// Function offset mapping ordered by contexts. std::unique_ptr>> OrderedFuncOffsets; /// The set containing the functions to use when compiling a module. DenseSet FuncsToUse; /// Use fixed length MD5 instead of ULEB128 encoding so NameTable doesn't /// need to be read in up front and can be directly accessed using index. bool FixedLengthMD5 = false; /// The starting address of NameTable containing fixed length MD5. const uint8_t *MD5NameMemStart = nullptr; /// If MD5 is used in NameTable section, the section saves uint64_t data. /// The uint64_t data has to be converted to a string and then the string /// will be used to initialize StringRef in NameTable. /// Note NameTable contains StringRef so it needs another buffer to own /// the string data. MD5StringBuf serves as the string buffer that is /// referenced by NameTable (vector of StringRef). We make sure /// the lifetime of MD5StringBuf is not shorter than that of NameTable. std::unique_ptr> MD5StringBuf; /// CSNameTable is used to save full context vectors. This serves as an /// underlying immutable buffer for all clients. std::unique_ptr> CSNameTable; /// If SkipFlatProf is true, skip the sections with /// SecFlagFlat flag. bool SkipFlatProf = false; bool FuncOffsetsOrdered = false; public: SampleProfileReaderExtBinaryBase(std::unique_ptr B, LLVMContext &C, SampleProfileFormat Format) : SampleProfileReaderBinary(std::move(B), C, Format) {} /// Read sample profiles in extensible format from the associated file. std::error_code readImpl() override; /// Get the total size of all \p Type sections. uint64_t getSectionSize(SecType Type); /// Get the total size of header and all sections. uint64_t getFileSize(); virtual bool dumpSectionInfo(raw_ostream &OS = dbgs()) override; /// Collect functions with definitions in Module M. Return true if /// the reader has been given a module. bool collectFuncsFromModule() override; /// Return whether names in the profile are all MD5 numbers. virtual bool useMD5() override { return MD5StringBuf.get(); } virtual std::unique_ptr getProfileSymbolList() override { return std::move(ProfSymList); }; virtual void setSkipFlatProf(bool Skip) override { SkipFlatProf = Skip; } }; class SampleProfileReaderExtBinary : public SampleProfileReaderExtBinaryBase { private: virtual std::error_code verifySPMagic(uint64_t Magic) override; virtual std::error_code readCustomSection(const SecHdrTableEntry &Entry) override { // Update the data reader pointer to the end of the section. Data = End; return sampleprof_error::success; }; public: SampleProfileReaderExtBinary(std::unique_ptr B, LLVMContext &C, SampleProfileFormat Format = SPF_Ext_Binary) : SampleProfileReaderExtBinaryBase(std::move(B), C, Format) {} /// \brief Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); }; class SampleProfileReaderCompactBinary : public SampleProfileReaderBinary { private: /// Function name table. std::vector NameTable; /// The table mapping from function name to the offset of its FunctionSample /// towards file start. DenseMap FuncOffsetTable; /// The set containing the functions to use when compiling a module. DenseSet FuncsToUse; virtual std::error_code verifySPMagic(uint64_t Magic) override; virtual std::error_code readNameTable() override; /// Read a string indirectly via the name table. virtual ErrorOr readStringFromTable() override; virtual std::error_code readHeader() override; std::error_code readFuncOffsetTable(); public: SampleProfileReaderCompactBinary(std::unique_ptr B, LLVMContext &C) : SampleProfileReaderBinary(std::move(B), C, SPF_Compact_Binary) {} /// \brief Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); /// Read samples only for functions to use. std::error_code readImpl() override; /// Collect functions with definitions in Module M. Return true if /// the reader has been given a module. bool collectFuncsFromModule() override; /// Return whether names in the profile are all MD5 numbers. virtual bool useMD5() override { return true; } }; using InlineCallStack = SmallVector; // Supported histogram types in GCC. Currently, we only need support for // call target histograms. enum HistType { HIST_TYPE_INTERVAL, HIST_TYPE_POW2, HIST_TYPE_SINGLE_VALUE, HIST_TYPE_CONST_DELTA, HIST_TYPE_INDIR_CALL, HIST_TYPE_AVERAGE, HIST_TYPE_IOR, HIST_TYPE_INDIR_CALL_TOPN }; class SampleProfileReaderGCC : public SampleProfileReader { public: SampleProfileReaderGCC(std::unique_ptr B, LLVMContext &C) : SampleProfileReader(std::move(B), C, SPF_GCC), GcovBuffer(Buffer.get()) {} /// Read and validate the file header. std::error_code readHeader() override; /// Read sample profiles from the associated file. std::error_code readImpl() override; /// Return true if \p Buffer is in the format supported by this class. static bool hasFormat(const MemoryBuffer &Buffer); protected: std::error_code readNameTable(); std::error_code readOneFunctionProfile(const InlineCallStack &InlineStack, bool Update, uint32_t Offset); std::error_code readFunctionProfiles(); std::error_code skipNextWord(); template ErrorOr readNumber(); ErrorOr readString(); /// Read the section tag and check that it's the same as \p Expected. std::error_code readSectionTag(uint32_t Expected); /// GCOV buffer containing the profile. GCOVBuffer GcovBuffer; /// Function names in this profile. std::vector Names; /// GCOV tags used to separate sections in the profile file. static const uint32_t GCOVTagAFDOFileNames = 0xaa000000; static const uint32_t GCOVTagAFDOFunction = 0xac000000; }; } // end namespace sampleprof } // end namespace llvm #endif // LLVM_PROFILEDATA_SAMPLEPROFREADER_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif