#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //==- llvm/CodeGen/MachineMemOperand.h - MachineMemOperand class -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declaration of the MachineMemOperand class, which is a // description of a memory reference. It is used to help track dependencies // in the backend. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEMEMOPERAND_H #define LLVM_CODEGEN_MACHINEMEMOPERAND_H #include "llvm/ADT/BitmaskEnum.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Value.h" // PointerLikeTypeTraits #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/LowLevelTypeImpl.h" namespace llvm { class FoldingSetNodeID; class MDNode; class raw_ostream; class MachineFunction; class ModuleSlotTracker; /// This class contains a discriminated union of information about pointers in /// memory operands, relating them back to LLVM IR or to virtual locations (such /// as frame indices) that are exposed during codegen. struct MachinePointerInfo { /// This is the IR pointer value for the access, or it is null if unknown. /// If this is null, then the access is to a pointer in the default address /// space. PointerUnion V; /// Offset - This is an offset from the base Value*. int64_t Offset; unsigned AddrSpace = 0; uint8_t StackID; explicit MachinePointerInfo(const Value *v, int64_t offset = 0, uint8_t ID = 0) : V(v), Offset(offset), StackID(ID) { AddrSpace = v ? v->getType()->getPointerAddressSpace() : 0; } explicit MachinePointerInfo(const PseudoSourceValue *v, int64_t offset = 0, uint8_t ID = 0) : V(v), Offset(offset), StackID(ID) { AddrSpace = v ? v->getAddressSpace() : 0; } explicit MachinePointerInfo(unsigned AddressSpace = 0, int64_t offset = 0) : V((const Value *)nullptr), Offset(offset), AddrSpace(AddressSpace), StackID(0) {} explicit MachinePointerInfo( PointerUnion v, int64_t offset = 0, uint8_t ID = 0) : V(v), Offset(offset), StackID(ID) { if (V) { if (const auto *ValPtr = V.dyn_cast()) AddrSpace = ValPtr->getType()->getPointerAddressSpace(); else AddrSpace = V.get()->getAddressSpace(); } } MachinePointerInfo getWithOffset(int64_t O) const { if (V.isNull()) return MachinePointerInfo(AddrSpace, Offset + O); if (V.is()) return MachinePointerInfo(V.get(), Offset + O, StackID); return MachinePointerInfo(V.get(), Offset + O, StackID); } /// Return true if memory region [V, V+Offset+Size) is known to be /// dereferenceable. bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const; /// Return the LLVM IR address space number that this pointer points into. unsigned getAddrSpace() const; /// Return a MachinePointerInfo record that refers to the constant pool. static MachinePointerInfo getConstantPool(MachineFunction &MF); /// Return a MachinePointerInfo record that refers to the specified /// FrameIndex. static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset = 0); /// Return a MachinePointerInfo record that refers to a jump table entry. static MachinePointerInfo getJumpTable(MachineFunction &MF); /// Return a MachinePointerInfo record that refers to a GOT entry. static MachinePointerInfo getGOT(MachineFunction &MF); /// Stack pointer relative access. static MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID = 0); /// Stack memory without other information. static MachinePointerInfo getUnknownStack(MachineFunction &MF); }; //===----------------------------------------------------------------------===// /// A description of a memory reference used in the backend. /// Instead of holding a StoreInst or LoadInst, this class holds the address /// Value of the reference along with a byte size and offset. This allows it /// to describe lowered loads and stores. Also, the special PseudoSourceValue /// objects can be used to represent loads and stores to memory locations /// that aren't explicit in the regular LLVM IR. /// class MachineMemOperand { public: /// Flags values. These may be or'd together. enum Flags : uint16_t { // No flags set. MONone = 0, /// The memory access reads data. MOLoad = 1u << 0, /// The memory access writes data. MOStore = 1u << 1, /// The memory access is volatile. MOVolatile = 1u << 2, /// The memory access is non-temporal. MONonTemporal = 1u << 3, /// The memory access is dereferenceable (i.e., doesn't trap). MODereferenceable = 1u << 4, /// The memory access always returns the same value (or traps). MOInvariant = 1u << 5, // Reserved for use by target-specific passes. // Targets may override getSerializableMachineMemOperandTargetFlags() to // enable MIR serialization/parsing of these flags. If more of these flags // are added, the MIR printing/parsing code will need to be updated as well. MOTargetFlag1 = 1u << 6, MOTargetFlag2 = 1u << 7, MOTargetFlag3 = 1u << 8, LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ MOTargetFlag3) }; private: /// Atomic information for this memory operation. struct MachineAtomicInfo { /// Synchronization scope ID for this memory operation. unsigned SSID : 8; // SyncScope::ID /// Atomic ordering requirements for this memory operation. For cmpxchg /// atomic operations, atomic ordering requirements when store occurs. unsigned Ordering : 4; // enum AtomicOrdering /// For cmpxchg atomic operations, atomic ordering requirements when store /// does not occur. unsigned FailureOrdering : 4; // enum AtomicOrdering }; MachinePointerInfo PtrInfo; /// Track the memory type of the access. An access size which is unknown or /// too large to be represented by LLT should use the invalid LLT. LLT MemoryType; Flags FlagVals; Align BaseAlign; MachineAtomicInfo AtomicInfo; AAMDNodes AAInfo; const MDNode *Ranges; public: /// Construct a MachineMemOperand object with the specified PtrInfo, flags, /// size, and base alignment. For atomic operations the synchronization scope /// and atomic ordering requirements must also be specified. For cmpxchg /// atomic operations the atomic ordering requirements when store does not /// occur must also be specified. MachineMemOperand(MachinePointerInfo PtrInfo, Flags flags, uint64_t s, Align a, const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, AtomicOrdering Ordering = AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); MachineMemOperand(MachinePointerInfo PtrInfo, Flags flags, LLT type, Align a, const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, AtomicOrdering Ordering = AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); const MachinePointerInfo &getPointerInfo() const { return PtrInfo; } /// Return the base address of the memory access. This may either be a normal /// LLVM IR Value, or one of the special values used in CodeGen. /// Special values are those obtained via /// PseudoSourceValue::getFixedStack(int), PseudoSourceValue::getStack, and /// other PseudoSourceValue member functions which return objects which stand /// for frame/stack pointer relative references and other special references /// which are not representable in the high-level IR. const Value *getValue() const { return PtrInfo.V.dyn_cast(); } const PseudoSourceValue *getPseudoValue() const { return PtrInfo.V.dyn_cast(); } const void *getOpaqueValue() const { return PtrInfo.V.getOpaqueValue(); } /// Return the raw flags of the source value, \see Flags. Flags getFlags() const { return FlagVals; } /// Bitwise OR the current flags with the given flags. void setFlags(Flags f) { FlagVals |= f; } /// For normal values, this is a byte offset added to the base address. /// For PseudoSourceValue::FPRel values, this is the FrameIndex number. int64_t getOffset() const { return PtrInfo.Offset; } unsigned getAddrSpace() const { return PtrInfo.getAddrSpace(); } /// Return the memory type of the memory reference. This should only be relied /// on for GlobalISel G_* operation legalization. LLT getMemoryType() const { return MemoryType; } /// Return the size in bytes of the memory reference. uint64_t getSize() const { return MemoryType.isValid() ? MemoryType.getSizeInBytes() : ~UINT64_C(0); } /// Return the size in bits of the memory reference. uint64_t getSizeInBits() const { return MemoryType.isValid() ? MemoryType.getSizeInBits() : ~UINT64_C(0); } LLT getType() const { return MemoryType; } /// Return the minimum known alignment in bytes of the actual memory /// reference. Align getAlign() const; /// Return the minimum known alignment in bytes of the base address, without /// the offset. Align getBaseAlign() const { return BaseAlign; } /// Return the AA tags for the memory reference. AAMDNodes getAAInfo() const { return AAInfo; } /// Return the range tag for the memory reference. const MDNode *getRanges() const { return Ranges; } /// Returns the synchronization scope ID for this memory operation. SyncScope::ID getSyncScopeID() const { return static_cast(AtomicInfo.SSID); } /// Return the atomic ordering requirements for this memory operation. For /// cmpxchg atomic operations, return the atomic ordering requirements when /// store occurs. AtomicOrdering getSuccessOrdering() const { return static_cast(AtomicInfo.Ordering); } /// For cmpxchg atomic operations, return the atomic ordering requirements /// when store does not occur. AtomicOrdering getFailureOrdering() const { return static_cast(AtomicInfo.FailureOrdering); } /// Return a single atomic ordering that is at least as strong as both the /// success and failure orderings for an atomic operation. (For operations /// other than cmpxchg, this is equivalent to getSuccessOrdering().) AtomicOrdering getMergedOrdering() const { return getMergedAtomicOrdering(getSuccessOrdering(), getFailureOrdering()); } bool isLoad() const { return FlagVals & MOLoad; } bool isStore() const { return FlagVals & MOStore; } bool isVolatile() const { return FlagVals & MOVolatile; } bool isNonTemporal() const { return FlagVals & MONonTemporal; } bool isDereferenceable() const { return FlagVals & MODereferenceable; } bool isInvariant() const { return FlagVals & MOInvariant; } /// Returns true if this operation has an atomic ordering requirement of /// unordered or higher, false otherwise. bool isAtomic() const { return getSuccessOrdering() != AtomicOrdering::NotAtomic; } /// Returns true if this memory operation doesn't have any ordering /// constraints other than normal aliasing. Volatile and (ordered) atomic /// memory operations can't be reordered. bool isUnordered() const { return (getSuccessOrdering() == AtomicOrdering::NotAtomic || getSuccessOrdering() == AtomicOrdering::Unordered) && !isVolatile(); } /// Update this MachineMemOperand to reflect the alignment of MMO, if it has a /// greater alignment. This must only be used when the new alignment applies /// to all users of this MachineMemOperand. void refineAlignment(const MachineMemOperand *MMO); /// Change the SourceValue for this MachineMemOperand. This should only be /// used when an object is being relocated and all references to it are being /// updated. void setValue(const Value *NewSV) { PtrInfo.V = NewSV; } void setValue(const PseudoSourceValue *NewSV) { PtrInfo.V = NewSV; } void setOffset(int64_t NewOffset) { PtrInfo.Offset = NewOffset; } /// Reset the tracked memory type. void setType(LLT NewTy) { MemoryType = NewTy; } /// Profile - Gather unique data for the object. /// void Profile(FoldingSetNodeID &ID) const; /// Support for operator<<. /// @{ void print(raw_ostream &OS, ModuleSlotTracker &MST, SmallVectorImpl &SSNs, const LLVMContext &Context, const MachineFrameInfo *MFI, const TargetInstrInfo *TII) const; /// @} friend bool operator==(const MachineMemOperand &LHS, const MachineMemOperand &RHS) { return LHS.getValue() == RHS.getValue() && LHS.getPseudoValue() == RHS.getPseudoValue() && LHS.getSize() == RHS.getSize() && LHS.getOffset() == RHS.getOffset() && LHS.getFlags() == RHS.getFlags() && LHS.getAAInfo() == RHS.getAAInfo() && LHS.getRanges() == RHS.getRanges() && LHS.getAlign() == RHS.getAlign() && LHS.getAddrSpace() == RHS.getAddrSpace(); } friend bool operator!=(const MachineMemOperand &LHS, const MachineMemOperand &RHS) { return !(LHS == RHS); } }; } // End llvm namespace #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif