#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //==-- llvm/CodeGen/GlobalISel/Utils.h ---------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file declares the API of helper functions used throughout the /// GlobalISel pipeline. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_GLOBALISEL_UTILS_H #define LLVM_CODEGEN_GLOBALISEL_UTILS_H #include "GISelWorkList.h" #include "LostDebugLocObserver.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/Register.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/LowLevelTypeImpl.h" #include namespace llvm { class AnalysisUsage; class BlockFrequencyInfo; class GISelKnownBits; class MachineFunction; class MachineInstr; class MachineOperand; class MachineOptimizationRemarkEmitter; class MachineOptimizationRemarkMissed; struct MachinePointerInfo; class MachineRegisterInfo; class MCInstrDesc; class ProfileSummaryInfo; class RegisterBankInfo; class TargetInstrInfo; class TargetLowering; class TargetPassConfig; class TargetRegisterInfo; class TargetRegisterClass; class ConstantFP; class APFloat; class MachineIRBuilder; // Convenience macros for dealing with vector reduction opcodes. #define GISEL_VECREDUCE_CASES_ALL \ case TargetOpcode::G_VECREDUCE_SEQ_FADD: \ case TargetOpcode::G_VECREDUCE_SEQ_FMUL: \ case TargetOpcode::G_VECREDUCE_FADD: \ case TargetOpcode::G_VECREDUCE_FMUL: \ case TargetOpcode::G_VECREDUCE_FMAX: \ case TargetOpcode::G_VECREDUCE_FMIN: \ case TargetOpcode::G_VECREDUCE_ADD: \ case TargetOpcode::G_VECREDUCE_MUL: \ case TargetOpcode::G_VECREDUCE_AND: \ case TargetOpcode::G_VECREDUCE_OR: \ case TargetOpcode::G_VECREDUCE_XOR: \ case TargetOpcode::G_VECREDUCE_SMAX: \ case TargetOpcode::G_VECREDUCE_SMIN: \ case TargetOpcode::G_VECREDUCE_UMAX: \ case TargetOpcode::G_VECREDUCE_UMIN: #define GISEL_VECREDUCE_CASES_NONSEQ \ case TargetOpcode::G_VECREDUCE_FADD: \ case TargetOpcode::G_VECREDUCE_FMUL: \ case TargetOpcode::G_VECREDUCE_FMAX: \ case TargetOpcode::G_VECREDUCE_FMIN: \ case TargetOpcode::G_VECREDUCE_ADD: \ case TargetOpcode::G_VECREDUCE_MUL: \ case TargetOpcode::G_VECREDUCE_AND: \ case TargetOpcode::G_VECREDUCE_OR: \ case TargetOpcode::G_VECREDUCE_XOR: \ case TargetOpcode::G_VECREDUCE_SMAX: \ case TargetOpcode::G_VECREDUCE_SMIN: \ case TargetOpcode::G_VECREDUCE_UMAX: \ case TargetOpcode::G_VECREDUCE_UMIN: /// Try to constrain Reg to the specified register class. If this fails, /// create a new virtual register in the correct class. /// /// \return The virtual register constrained to the right register class. Register constrainRegToClass(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, Register Reg, const TargetRegisterClass &RegClass); /// Constrain the Register operand OpIdx, so that it is now constrained to the /// TargetRegisterClass passed as an argument (RegClass). /// If this fails, create a new virtual register in the correct class and insert /// a COPY before \p InsertPt if it is a use or after if it is a definition. /// In both cases, the function also updates the register of RegMo. The debug /// location of \p InsertPt is used for the new copy. /// /// \return The virtual register constrained to the right register class. Register constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const TargetRegisterClass &RegClass, MachineOperand &RegMO); /// Try to constrain Reg so that it is usable by argument OpIdx of the provided /// MCInstrDesc \p II. If this fails, create a new virtual register in the /// correct class and insert a COPY before \p InsertPt if it is a use or after /// if it is a definition. In both cases, the function also updates the register /// of RegMo. /// This is equivalent to constrainOperandRegClass(..., RegClass, ...) /// with RegClass obtained from the MCInstrDesc. The debug location of \p /// InsertPt is used for the new copy. /// /// \return The virtual register constrained to the right register class. Register constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, MachineOperand &RegMO, unsigned OpIdx); /// Mutate the newly-selected instruction \p I to constrain its (possibly /// generic) virtual register operands to the instruction's register class. /// This could involve inserting COPYs before (for uses) or after (for defs). /// This requires the number of operands to match the instruction description. /// \returns whether operand regclass constraining succeeded. /// // FIXME: Not all instructions have the same number of operands. We should // probably expose a constrain helper per operand and let the target selector // constrain individual registers, like fast-isel. bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI); /// Check if DstReg can be replaced with SrcReg depending on the register /// constraints. bool canReplaceReg(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI); /// Check whether an instruction \p MI is dead: it only defines dead virtual /// registers, and doesn't have other side effects. bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI); /// Report an ISel error as a missed optimization remark to the LLVMContext's /// diagnostic stream. Set the FailedISel MachineFunction property. void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R); void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, const char *PassName, StringRef Msg, const MachineInstr &MI); /// Report an ISel warning as a missed optimization remark to the LLVMContext's /// diagnostic stream. void reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R); /// If \p VReg is defined by a G_CONSTANT, return the corresponding value. Optional getIConstantVRegVal(Register VReg, const MachineRegisterInfo &MRI); /// If \p VReg is defined by a G_CONSTANT fits in int64_t returns it. Optional getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI); /// Simple struct used to hold a constant integer value and a virtual /// register. struct ValueAndVReg { APInt Value; Register VReg; }; /// If \p VReg is defined by a statically evaluable chain of instructions rooted /// on a G_CONSTANT returns its APInt value and def register. Optional getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs = true); /// If \p VReg is defined by a statically evaluable chain of instructions rooted /// on a G_CONSTANT or G_FCONSTANT returns its value as APInt and def register. Optional getAnyConstantVRegValWithLookThrough( Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs = true, bool LookThroughAnyExt = false); struct FPValueAndVReg { APFloat Value; Register VReg; }; /// If \p VReg is defined by a statically evaluable chain of instructions rooted /// on a G_FCONSTANT returns its APFloat value and def register. Optional getFConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs = true); const ConstantFP* getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI); /// See if Reg is defined by an single def instruction that is /// Opcode. Also try to do trivial folding if it's a COPY with /// same types. Returns null otherwise. MachineInstr *getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI); /// Simple struct used to hold a Register value and the instruction which /// defines it. struct DefinitionAndSourceRegister { MachineInstr *MI; Register Reg; }; /// Find the def instruction for \p Reg, and underlying value Register folding /// away any copies. /// /// Also walks through hints such as G_ASSERT_ZEXT. Optional getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI); /// Find the def instruction for \p Reg, folding away any trivial copies. May /// return nullptr if \p Reg is not a generic virtual register. /// /// Also walks through hints such as G_ASSERT_ZEXT. MachineInstr *getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI); /// Find the source register for \p Reg, folding away any trivial copies. It /// will be an output register of the instruction that getDefIgnoringCopies /// returns. May return an invalid register if \p Reg is not a generic virtual /// register. /// /// Also walks through hints such as G_ASSERT_ZEXT. Register getSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI); // Templated variant of getOpcodeDef returning a MachineInstr derived T. /// See if Reg is defined by an single def instruction of type T /// Also try to do trivial folding if it's a COPY with /// same types. Returns null otherwise. template T *getOpcodeDef(Register Reg, const MachineRegisterInfo &MRI) { MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); return dyn_cast_or_null(DefMI); } /// Returns an APFloat from Val converted to the appropriate size. APFloat getAPFloatFromSize(double Val, unsigned Size); /// Modify analysis usage so it preserves passes required for the SelectionDAG /// fallback. void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU); Optional ConstantFoldBinOp(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI); Optional ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI); /// Tries to constant fold a vector binop with sources \p Op1 and \p Op2. /// If successful, returns the G_BUILD_VECTOR representing the folded vector /// constant. \p MIB should have an insertion point already set to create new /// G_CONSTANT instructions as needed. Register ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI, MachineIRBuilder &MIB); Optional ConstantFoldExtOp(unsigned Opcode, const Register Op1, uint64_t Imm, const MachineRegisterInfo &MRI); Optional ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, const MachineRegisterInfo &MRI); /// Tries to constant fold a G_CTLZ operation on \p Src. If \p Src is a vector /// then it tries to do an element-wise constant fold. Optional> ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI); /// Test if the given value is known to have exactly one bit set. This differs /// from computeKnownBits in that it doesn't necessarily determine which bit is /// set. bool isKnownToBeAPowerOfTwo(Register Val, const MachineRegisterInfo &MRI, GISelKnownBits *KnownBits = nullptr); /// Returns true if \p Val can be assumed to never be a NaN. If \p SNaN is true, /// this returns if \p Val can be assumed to never be a signaling NaN. bool isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, bool SNaN = false); /// Returns true if \p Val can be assumed to never be a signaling NaN. inline bool isKnownNeverSNaN(Register Val, const MachineRegisterInfo &MRI) { return isKnownNeverNaN(Val, MRI, true); } Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO); /// Return a virtual register corresponding to the incoming argument register \p /// PhysReg. This register is expected to have class \p RC, and optional type \p /// RegTy. This assumes all references to the register will use the same type. /// /// If there is an existing live-in argument register, it will be returned. /// This will also ensure there is a valid copy Register getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, const DebugLoc &DL, LLT RegTy = LLT()); /// Return the least common multiple type of \p OrigTy and \p TargetTy, by changing the /// number of vector elements or scalar bitwidth. The intent is a /// G_MERGE_VALUES, G_BUILD_VECTOR, or G_CONCAT_VECTORS can be constructed from /// \p OrigTy elements, and unmerged into \p TargetTy LLVM_READNONE LLT getLCMType(LLT OrigTy, LLT TargetTy); LLVM_READNONE /// Return smallest type that covers both \p OrigTy and \p TargetTy and is /// multiple of TargetTy. LLT getCoverTy(LLT OrigTy, LLT TargetTy); /// Return a type where the total size is the greatest common divisor of \p /// OrigTy and \p TargetTy. This will try to either change the number of vector /// elements, or bitwidth of scalars. The intent is the result type can be used /// as the result of a G_UNMERGE_VALUES from \p OrigTy, and then some /// combination of G_MERGE_VALUES, G_BUILD_VECTOR and G_CONCAT_VECTORS (possibly /// with intermediate casts) can re-form \p TargetTy. /// /// If these are vectors with different element types, this will try to produce /// a vector with a compatible total size, but the element type of \p OrigTy. If /// this can't be satisfied, this will produce a scalar smaller than the /// original vector elements. /// /// In the worst case, this returns LLT::scalar(1) LLVM_READNONE LLT getGCDType(LLT OrigTy, LLT TargetTy); /// Represents a value which can be a Register or a constant. /// /// This is useful in situations where an instruction may have an interesting /// register operand or interesting constant operand. For a concrete example, /// \see getVectorSplat. class RegOrConstant { int64_t Cst; Register Reg; bool IsReg; public: explicit RegOrConstant(Register Reg) : Reg(Reg), IsReg(true) {} explicit RegOrConstant(int64_t Cst) : Cst(Cst), IsReg(false) {} bool isReg() const { return IsReg; } bool isCst() const { return !IsReg; } Register getReg() const { assert(isReg() && "Expected a register!"); return Reg; } int64_t getCst() const { assert(isCst() && "Expected a constant!"); return Cst; } }; /// \returns The splat index of a G_SHUFFLE_VECTOR \p MI when \p MI is a splat. /// If \p MI is not a splat, returns None. Optional getSplatIndex(MachineInstr &MI); /// Returns a scalar constant of a G_BUILD_VECTOR splat if it exists. Optional getBuildVectorConstantSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI); /// Returns a floating point scalar constant of a build vector splat if it /// exists. When \p AllowUndef == true some elements can be undef but not all. Optional getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, bool AllowUndef = true); /// Return true if the specified register is defined by G_BUILD_VECTOR or /// G_BUILD_VECTOR_TRUNC where all of the elements are \p SplatValue or undef. bool isBuildVectorConstantSplat(const Register Reg, const MachineRegisterInfo &MRI, int64_t SplatValue, bool AllowUndef); /// Return true if the specified instruction is a G_BUILD_VECTOR or /// G_BUILD_VECTOR_TRUNC where all of the elements are \p SplatValue or undef. bool isBuildVectorConstantSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, int64_t SplatValue, bool AllowUndef); /// Return true if the specified instruction is a G_BUILD_VECTOR or /// G_BUILD_VECTOR_TRUNC where all of the elements are 0 or undef. bool isBuildVectorAllZeros(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndef = false); /// Return true if the specified instruction is a G_BUILD_VECTOR or /// G_BUILD_VECTOR_TRUNC where all of the elements are ~0 or undef. bool isBuildVectorAllOnes(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndef = false); /// \returns a value when \p MI is a vector splat. The splat can be either a /// Register or a constant. /// /// Examples: /// /// \code /// %reg = COPY $physreg /// %reg_splat = G_BUILD_VECTOR %reg, %reg, ..., %reg /// \endcode /// /// If called on the G_BUILD_VECTOR above, this will return a RegOrConstant /// containing %reg. /// /// \code /// %cst = G_CONSTANT iN 4 /// %constant_splat = G_BUILD_VECTOR %cst, %cst, ..., %cst /// \endcode /// /// In the above case, this will return a RegOrConstant containing 4. Optional getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI); /// Determines if \p MI defines a constant integer or a build vector of /// constant integers. Treats undef values as constants. bool isConstantOrConstantVector(MachineInstr &MI, const MachineRegisterInfo &MRI); /// Determines if \p MI defines a constant integer or a splat vector of /// constant integers. /// \returns the scalar constant or None. Optional isConstantOrConstantSplatVector(MachineInstr &MI, const MachineRegisterInfo &MRI); /// Attempt to match a unary predicate against a scalar/splat constant or every /// element of a constant G_BUILD_VECTOR. If \p ConstVal is null, the source /// value was undef. bool matchUnaryPredicate(const MachineRegisterInfo &MRI, Register Reg, std::function Match, bool AllowUndefs = false); /// Returns true if given the TargetLowering's boolean contents information, /// the value \p Val contains a true value. bool isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP); /// Returns an integer representing true, as defined by the /// TargetBooleanContents. int64_t getICmpTrueVal(const TargetLowering &TLI, bool IsVector, bool IsFP); /// Returns true if the given block should be optimized for size. bool shouldOptForSize(const MachineBasicBlock &MBB, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI); using SmallInstListTy = GISelWorkList<4>; void saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver, SmallInstListTy &DeadInstChain); void eraseInstrs(ArrayRef DeadInstrs, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver = nullptr); void eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver = nullptr); } // End namespace llvm. #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif