#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- lib/CodeGen/DIE.h - DWARF Info Entries -------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Data structures for DWARF info entries. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_DIE_H #define LLVM_CODEGEN_DIE_H #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/DwarfStringPoolEntry.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/Allocator.h" #include #include #include #include #include #include #include #include namespace llvm { class AsmPrinter; class DIE; class DIEUnit; class DwarfCompileUnit; class MCExpr; class MCSection; class MCSymbol; class raw_ostream; //===--------------------------------------------------------------------===// /// Dwarf abbreviation data, describes one attribute of a Dwarf abbreviation. class DIEAbbrevData { /// Dwarf attribute code. dwarf::Attribute Attribute; /// Dwarf form code. dwarf::Form Form; /// Dwarf attribute value for DW_FORM_implicit_const int64_t Value = 0; public: DIEAbbrevData(dwarf::Attribute A, dwarf::Form F) : Attribute(A), Form(F) {} DIEAbbrevData(dwarf::Attribute A, int64_t V) : Attribute(A), Form(dwarf::DW_FORM_implicit_const), Value(V) {} /// Accessors. /// @{ dwarf::Attribute getAttribute() const { return Attribute; } dwarf::Form getForm() const { return Form; } int64_t getValue() const { return Value; } /// @} /// Used to gather unique data for the abbreviation folding set. void Profile(FoldingSetNodeID &ID) const; }; //===--------------------------------------------------------------------===// /// Dwarf abbreviation, describes the organization of a debug information /// object. class DIEAbbrev : public FoldingSetNode { /// Unique number for node. unsigned Number = 0; /// Dwarf tag code. dwarf::Tag Tag; /// Whether or not this node has children. /// /// This cheats a bit in all of the uses since the values in the standard /// are 0 and 1 for no children and children respectively. bool Children; /// Raw data bytes for abbreviation. SmallVector Data; public: DIEAbbrev(dwarf::Tag T, bool C) : Tag(T), Children(C) {} /// Accessors. /// @{ dwarf::Tag getTag() const { return Tag; } unsigned getNumber() const { return Number; } bool hasChildren() const { return Children; } const SmallVectorImpl &getData() const { return Data; } void setChildrenFlag(bool hasChild) { Children = hasChild; } void setNumber(unsigned N) { Number = N; } /// @} /// Adds another set of attribute information to the abbreviation. void AddAttribute(dwarf::Attribute Attribute, dwarf::Form Form) { Data.push_back(DIEAbbrevData(Attribute, Form)); } /// Adds attribute with DW_FORM_implicit_const value void AddImplicitConstAttribute(dwarf::Attribute Attribute, int64_t Value) { Data.push_back(DIEAbbrevData(Attribute, Value)); } /// Used to gather unique data for the abbreviation folding set. void Profile(FoldingSetNodeID &ID) const; /// Print the abbreviation using the specified asm printer. void Emit(const AsmPrinter *AP) const; void print(raw_ostream &O) const; void dump() const; }; //===--------------------------------------------------------------------===// /// Helps unique DIEAbbrev objects and assigns abbreviation numbers. /// /// This class will unique the DIE abbreviations for a llvm::DIE object and /// assign a unique abbreviation number to each unique DIEAbbrev object it /// finds. The resulting collection of DIEAbbrev objects can then be emitted /// into the .debug_abbrev section. class DIEAbbrevSet { /// The bump allocator to use when creating DIEAbbrev objects in the uniqued /// storage container. BumpPtrAllocator &Alloc; /// FoldingSet that uniques the abbreviations. FoldingSet AbbreviationsSet; /// A list of all the unique abbreviations in use. std::vector Abbreviations; public: DIEAbbrevSet(BumpPtrAllocator &A) : Alloc(A) {} ~DIEAbbrevSet(); /// Generate the abbreviation declaration for a DIE and return a pointer to /// the generated abbreviation. /// /// \param Die the debug info entry to generate the abbreviation for. /// \returns A reference to the uniqued abbreviation declaration that is /// owned by this class. DIEAbbrev &uniqueAbbreviation(DIE &Die); /// Print all abbreviations using the specified asm printer. void Emit(const AsmPrinter *AP, MCSection *Section) const; }; //===--------------------------------------------------------------------===// /// An integer value DIE. /// class DIEInteger { uint64_t Integer; public: explicit DIEInteger(uint64_t I) : Integer(I) {} /// Choose the best form for integer. static dwarf::Form BestForm(bool IsSigned, uint64_t Int) { if (IsSigned) { const int64_t SignedInt = Int; if ((char)Int == SignedInt) return dwarf::DW_FORM_data1; if ((short)Int == SignedInt) return dwarf::DW_FORM_data2; if ((int)Int == SignedInt) return dwarf::DW_FORM_data4; } else { if ((unsigned char)Int == Int) return dwarf::DW_FORM_data1; if ((unsigned short)Int == Int) return dwarf::DW_FORM_data2; if ((unsigned int)Int == Int) return dwarf::DW_FORM_data4; } return dwarf::DW_FORM_data8; } uint64_t getValue() const { return Integer; } void setValue(uint64_t Val) { Integer = Val; } void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// An expression DIE. class DIEExpr { const MCExpr *Expr; public: explicit DIEExpr(const MCExpr *E) : Expr(E) {} /// Get MCExpr. const MCExpr *getValue() const { return Expr; } void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// A label DIE. class DIELabel { const MCSymbol *Label; public: explicit DIELabel(const MCSymbol *L) : Label(L) {} /// Get MCSymbol. const MCSymbol *getValue() const { return Label; } void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// A BaseTypeRef DIE. class DIEBaseTypeRef { const DwarfCompileUnit *CU; const uint64_t Index; static constexpr unsigned ULEB128PadSize = 4; public: explicit DIEBaseTypeRef(const DwarfCompileUnit *TheCU, uint64_t Idx) : CU(TheCU), Index(Idx) {} /// EmitValue - Emit base type reference. void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; /// sizeOf - Determine size of the base type reference in bytes. unsigned sizeOf(const dwarf::FormParams &, dwarf::Form) const; void print(raw_ostream &O) const; uint64_t getIndex() const { return Index; } }; //===--------------------------------------------------------------------===// /// A simple label difference DIE. /// class DIEDelta { const MCSymbol *LabelHi; const MCSymbol *LabelLo; public: DIEDelta(const MCSymbol *Hi, const MCSymbol *Lo) : LabelHi(Hi), LabelLo(Lo) {} void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// A container for string pool string values. /// /// This class is used with the DW_FORM_strp and DW_FORM_GNU_str_index forms. class DIEString { DwarfStringPoolEntryRef S; public: DIEString(DwarfStringPoolEntryRef S) : S(S) {} /// Grab the string out of the object. StringRef getString() const { return S.getString(); } void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// A container for inline string values. /// /// This class is used with the DW_FORM_string form. class DIEInlineString { StringRef S; public: template explicit DIEInlineString(StringRef Str, Allocator &A) : S(Str.copy(A)) {} ~DIEInlineString() = default; /// Grab the string out of the object. StringRef getString() const { return S; } void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &, dwarf::Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// A pointer to another debug information entry. An instance of this class can /// also be used as a proxy for a debug information entry not yet defined /// (ie. types.) class DIEEntry { DIE *Entry; public: DIEEntry() = delete; explicit DIEEntry(DIE &E) : Entry(&E) {} DIE &getEntry() const { return *Entry; } void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// Represents a pointer to a location list in the debug_loc /// section. class DIELocList { /// Index into the .debug_loc vector. size_t Index; public: DIELocList(size_t I) : Index(I) {} /// Grab the current index out. size_t getValue() const { return Index; } void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// A BaseTypeRef DIE. class DIEAddrOffset { DIEInteger Addr; DIEDelta Offset; public: explicit DIEAddrOffset(uint64_t Idx, const MCSymbol *Hi, const MCSymbol *Lo) : Addr(Idx), Offset(Hi, Lo) {} void emitValue(const AsmPrinter *AP, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// A debug information entry value. Some of these roughly correlate /// to DWARF attribute classes. class DIEBlock; class DIELoc; class DIEValue { public: enum Type { isNone, #define HANDLE_DIEVALUE(T) is##T, #include "llvm/CodeGen/DIEValue.def" }; private: /// Type of data stored in the value. Type Ty = isNone; dwarf::Attribute Attribute = (dwarf::Attribute)0; dwarf::Form Form = (dwarf::Form)0; /// Storage for the value. /// /// All values that aren't standard layout (or are larger than 8 bytes) /// should be stored by reference instead of by value. using ValTy = AlignedCharArrayUnion; static_assert(sizeof(ValTy) <= sizeof(uint64_t) || sizeof(ValTy) <= sizeof(void *), "Expected all large types to be stored via pointer"); /// Underlying stored value. ValTy Val; template void construct(T V) { static_assert(std::is_standard_layout::value || std::is_pointer::value, "Expected standard layout or pointer"); new (reinterpret_cast(&Val)) T(V); } template T *get() { return reinterpret_cast(&Val); } template const T *get() const { return reinterpret_cast(&Val); } template void destruct() { get()->~T(); } /// Destroy the underlying value. /// /// This should get optimized down to a no-op. We could skip it if we could /// add a static assert on \a std::is_trivially_copyable(), but we currently /// support versions of GCC that don't understand that. void destroyVal() { switch (Ty) { case isNone: return; #define HANDLE_DIEVALUE_SMALL(T) \ case is##T: \ destruct(); \ return; #define HANDLE_DIEVALUE_LARGE(T) \ case is##T: \ destruct(); \ return; #include "llvm/CodeGen/DIEValue.def" } } /// Copy the underlying value. /// /// This should get optimized down to a simple copy. We need to actually /// construct the value, rather than calling memcpy, to satisfy strict /// aliasing rules. void copyVal(const DIEValue &X) { switch (Ty) { case isNone: return; #define HANDLE_DIEVALUE_SMALL(T) \ case is##T: \ construct(*X.get()); \ return; #define HANDLE_DIEVALUE_LARGE(T) \ case is##T: \ construct(*X.get()); \ return; #include "llvm/CodeGen/DIEValue.def" } } public: DIEValue() = default; DIEValue(const DIEValue &X) : Ty(X.Ty), Attribute(X.Attribute), Form(X.Form) { copyVal(X); } DIEValue &operator=(const DIEValue &X) { destroyVal(); Ty = X.Ty; Attribute = X.Attribute; Form = X.Form; copyVal(X); return *this; } ~DIEValue() { destroyVal(); } #define HANDLE_DIEVALUE_SMALL(T) \ DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T &V) \ : Ty(is##T), Attribute(Attribute), Form(Form) { \ construct(V); \ } #define HANDLE_DIEVALUE_LARGE(T) \ DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T *V) \ : Ty(is##T), Attribute(Attribute), Form(Form) { \ assert(V && "Expected valid value"); \ construct(V); \ } #include "llvm/CodeGen/DIEValue.def" /// Accessors. /// @{ Type getType() const { return Ty; } dwarf::Attribute getAttribute() const { return Attribute; } dwarf::Form getForm() const { return Form; } explicit operator bool() const { return Ty; } /// @} #define HANDLE_DIEVALUE_SMALL(T) \ const DIE##T &getDIE##T() const { \ assert(getType() == is##T && "Expected " #T); \ return *get(); \ } #define HANDLE_DIEVALUE_LARGE(T) \ const DIE##T &getDIE##T() const { \ assert(getType() == is##T && "Expected " #T); \ return **get(); \ } #include "llvm/CodeGen/DIEValue.def" /// Emit value via the Dwarf writer. void emitValue(const AsmPrinter *AP) const; /// Return the size of a value in bytes. unsigned sizeOf(const dwarf::FormParams &FormParams) const; void print(raw_ostream &O) const; void dump() const; }; struct IntrusiveBackListNode { PointerIntPair Next; IntrusiveBackListNode() : Next(this, true) {} IntrusiveBackListNode *getNext() const { return Next.getInt() ? nullptr : Next.getPointer(); } }; struct IntrusiveBackListBase { using Node = IntrusiveBackListNode; Node *Last = nullptr; bool empty() const { return !Last; } void push_back(Node &N) { assert(N.Next.getPointer() == &N && "Expected unlinked node"); assert(N.Next.getInt() == true && "Expected unlinked node"); if (Last) { N.Next = Last->Next; Last->Next.setPointerAndInt(&N, false); } Last = &N; } void push_front(Node &N) { assert(N.Next.getPointer() == &N && "Expected unlinked node"); assert(N.Next.getInt() == true && "Expected unlinked node"); if (Last) { N.Next.setPointerAndInt(Last->Next.getPointer(), false); Last->Next.setPointerAndInt(&N, true); } else { Last = &N; } } }; template class IntrusiveBackList : IntrusiveBackListBase { public: using IntrusiveBackListBase::empty; void push_back(T &N) { IntrusiveBackListBase::push_back(N); } void push_front(T &N) { IntrusiveBackListBase::push_front(N); } T &back() { return *static_cast(Last); } const T &back() const { return *static_cast(Last); } T &front() { return *static_cast(Last ? Last->Next.getPointer() : nullptr); } const T &front() const { return *static_cast(Last ? Last->Next.getPointer() : nullptr); } void takeNodes(IntrusiveBackList &Other) { if (Other.empty()) return; T *FirstNode = static_cast(Other.Last->Next.getPointer()); T *IterNode = FirstNode; do { // Keep a pointer to the node and increment the iterator. T *TmpNode = IterNode; IterNode = static_cast(IterNode->Next.getPointer()); // Unlink the node and push it back to this list. TmpNode->Next.setPointerAndInt(TmpNode, true); push_back(*TmpNode); } while (IterNode != FirstNode); Other.Last = nullptr; } class const_iterator; class iterator : public iterator_facade_base { friend class const_iterator; Node *N = nullptr; public: iterator() = default; explicit iterator(T *N) : N(N) {} iterator &operator++() { N = N->getNext(); return *this; } explicit operator bool() const { return N; } T &operator*() const { return *static_cast(N); } bool operator==(const iterator &X) const { return N == X.N; } }; class const_iterator : public iterator_facade_base { const Node *N = nullptr; public: const_iterator() = default; // Placate MSVC by explicitly scoping 'iterator'. const_iterator(typename IntrusiveBackList::iterator X) : N(X.N) {} explicit const_iterator(const T *N) : N(N) {} const_iterator &operator++() { N = N->getNext(); return *this; } explicit operator bool() const { return N; } const T &operator*() const { return *static_cast(N); } bool operator==(const const_iterator &X) const { return N == X.N; } }; iterator begin() { return Last ? iterator(static_cast(Last->Next.getPointer())) : end(); } const_iterator begin() const { return const_cast(this)->begin(); } iterator end() { return iterator(); } const_iterator end() const { return const_iterator(); } static iterator toIterator(T &N) { return iterator(&N); } static const_iterator toIterator(const T &N) { return const_iterator(&N); } }; /// A list of DIE values. /// /// This is a singly-linked list, but instead of reversing the order of /// insertion, we keep a pointer to the back of the list so we can push in /// order. /// /// There are two main reasons to choose a linked list over a customized /// vector-like data structure. /// /// 1. For teardown efficiency, we want DIEs to be BumpPtrAllocated. Using a /// linked list here makes this way easier to accomplish. /// 2. Carrying an extra pointer per \a DIEValue isn't expensive. 45% of DIEs /// have 2 or fewer values, and 90% have 5 or fewer. A vector would be /// over-allocated by 50% on average anyway, the same cost as the /// linked-list node. class DIEValueList { struct Node : IntrusiveBackListNode { DIEValue V; explicit Node(DIEValue V) : V(V) {} }; using ListTy = IntrusiveBackList; ListTy List; public: class const_value_iterator; class value_iterator : public iterator_adaptor_base { friend class const_value_iterator; using iterator_adaptor = iterator_adaptor_base; public: value_iterator() = default; explicit value_iterator(ListTy::iterator X) : iterator_adaptor(X) {} explicit operator bool() const { return bool(wrapped()); } DIEValue &operator*() const { return wrapped()->V; } }; class const_value_iterator : public iterator_adaptor_base< const_value_iterator, ListTy::const_iterator, std::forward_iterator_tag, const DIEValue> { using iterator_adaptor = iterator_adaptor_base; public: const_value_iterator() = default; const_value_iterator(DIEValueList::value_iterator X) : iterator_adaptor(X.wrapped()) {} explicit const_value_iterator(ListTy::const_iterator X) : iterator_adaptor(X) {} explicit operator bool() const { return bool(wrapped()); } const DIEValue &operator*() const { return wrapped()->V; } }; using value_range = iterator_range; using const_value_range = iterator_range; value_iterator addValue(BumpPtrAllocator &Alloc, const DIEValue &V) { List.push_back(*new (Alloc) Node(V)); return value_iterator(ListTy::toIterator(List.back())); } template value_iterator addValue(BumpPtrAllocator &Alloc, dwarf::Attribute Attribute, dwarf::Form Form, T &&Value) { return addValue(Alloc, DIEValue(Attribute, Form, std::forward(Value))); } /// Take ownership of the nodes in \p Other, and append them to the back of /// the list. void takeValues(DIEValueList &Other) { List.takeNodes(Other.List); } value_range values() { return make_range(value_iterator(List.begin()), value_iterator(List.end())); } const_value_range values() const { return make_range(const_value_iterator(List.begin()), const_value_iterator(List.end())); } }; //===--------------------------------------------------------------------===// /// A structured debug information entry. Has an abbreviation which /// describes its organization. class DIE : IntrusiveBackListNode, public DIEValueList { friend class IntrusiveBackList; friend class DIEUnit; /// Dwarf unit relative offset. unsigned Offset = 0; /// Size of instance + children. unsigned Size = 0; unsigned AbbrevNumber = ~0u; /// Dwarf tag code. dwarf::Tag Tag = (dwarf::Tag)0; /// Set to true to force a DIE to emit an abbreviation that says it has /// children even when it doesn't. This is used for unit testing purposes. bool ForceChildren = false; /// Children DIEs. IntrusiveBackList Children; /// The owner is either the parent DIE for children of other DIEs, or a /// DIEUnit which contains this DIE as its unit DIE. PointerUnion Owner; explicit DIE(dwarf::Tag Tag) : Tag(Tag) {} public: DIE() = delete; DIE(const DIE &RHS) = delete; DIE(DIE &&RHS) = delete; DIE &operator=(const DIE &RHS) = delete; DIE &operator=(const DIE &&RHS) = delete; static DIE *get(BumpPtrAllocator &Alloc, dwarf::Tag Tag) { return new (Alloc) DIE(Tag); } // Accessors. unsigned getAbbrevNumber() const { return AbbrevNumber; } dwarf::Tag getTag() const { return Tag; } /// Get the compile/type unit relative offset of this DIE. unsigned getOffset() const { // A real Offset can't be zero because the unit headers are at offset zero. assert(Offset && "Offset being queried before it's been computed."); return Offset; } unsigned getSize() const { // A real Size can't be zero because it includes the non-empty abbrev code. assert(Size && "Size being queried before it's been ocmputed."); return Size; } bool hasChildren() const { return ForceChildren || !Children.empty(); } void setForceChildren(bool B) { ForceChildren = B; } using child_iterator = IntrusiveBackList::iterator; using const_child_iterator = IntrusiveBackList::const_iterator; using child_range = iterator_range; using const_child_range = iterator_range; child_range children() { return make_range(Children.begin(), Children.end()); } const_child_range children() const { return make_range(Children.begin(), Children.end()); } DIE *getParent() const; /// Generate the abbreviation for this DIE. /// /// Calculate the abbreviation for this, which should be uniqued and /// eventually used to call \a setAbbrevNumber(). DIEAbbrev generateAbbrev() const; /// Set the abbreviation number for this DIE. void setAbbrevNumber(unsigned I) { AbbrevNumber = I; } /// Get the absolute offset within the .debug_info or .debug_types section /// for this DIE. uint64_t getDebugSectionOffset() const; /// Compute the offset of this DIE and all its children. /// /// This function gets called just before we are going to generate the debug /// information and gives each DIE a chance to figure out its CU relative DIE /// offset, unique its abbreviation and fill in the abbreviation code, and /// return the unit offset that points to where the next DIE will be emitted /// within the debug unit section. After this function has been called for all /// DIE objects, the DWARF can be generated since all DIEs will be able to /// properly refer to other DIE objects since all DIEs have calculated their /// offsets. /// /// \param FormParams Used when calculating sizes. /// \param AbbrevSet the abbreviation used to unique DIE abbreviations. /// \param CUOffset the compile/type unit relative offset in bytes. /// \returns the offset for the DIE that follows this DIE within the /// current compile/type unit. unsigned computeOffsetsAndAbbrevs(const dwarf::FormParams &FormParams, DIEAbbrevSet &AbbrevSet, unsigned CUOffset); /// Climb up the parent chain to get the compile unit or type unit DIE that /// this DIE belongs to. /// /// \returns the compile or type unit DIE that owns this DIE, or NULL if /// this DIE hasn't been added to a unit DIE. const DIE *getUnitDie() const; /// Climb up the parent chain to get the compile unit or type unit that this /// DIE belongs to. /// /// \returns the DIEUnit that represents the compile or type unit that owns /// this DIE, or NULL if this DIE hasn't been added to a unit DIE. DIEUnit *getUnit() const; void setOffset(unsigned O) { Offset = O; } void setSize(unsigned S) { Size = S; } /// Add a child to the DIE. DIE &addChild(DIE *Child) { assert(!Child->getParent() && "Child should be orphaned"); Child->Owner = this; Children.push_back(*Child); return Children.back(); } DIE &addChildFront(DIE *Child) { assert(!Child->getParent() && "Child should be orphaned"); Child->Owner = this; Children.push_front(*Child); return Children.front(); } /// Find a value in the DIE with the attribute given. /// /// Returns a default-constructed DIEValue (where \a DIEValue::getType() /// gives \a DIEValue::isNone) if no such attribute exists. DIEValue findAttribute(dwarf::Attribute Attribute) const; void print(raw_ostream &O, unsigned IndentCount = 0) const; void dump() const; }; //===--------------------------------------------------------------------===// /// Represents a compile or type unit. class DIEUnit { /// The compile unit or type unit DIE. This variable must be an instance of /// DIE so that we can calculate the DIEUnit from any DIE by traversing the /// parent backchain and getting the Unit DIE, and then casting itself to a /// DIEUnit. This allows us to be able to find the DIEUnit for any DIE without /// having to store a pointer to the DIEUnit in each DIE instance. DIE Die; /// The section this unit will be emitted in. This may or may not be set to /// a valid section depending on the client that is emitting DWARF. MCSection *Section = nullptr; uint64_t Offset = 0; /// .debug_info or .debug_types absolute section offset. protected: virtual ~DIEUnit() = default; public: explicit DIEUnit(dwarf::Tag UnitTag); DIEUnit(const DIEUnit &RHS) = delete; DIEUnit(DIEUnit &&RHS) = delete; void operator=(const DIEUnit &RHS) = delete; void operator=(const DIEUnit &&RHS) = delete; /// Set the section that this DIEUnit will be emitted into. /// /// This function is used by some clients to set the section. Not all clients /// that emit DWARF use this section variable. void setSection(MCSection *Section) { assert(!this->Section); this->Section = Section; } virtual const MCSymbol *getCrossSectionRelativeBaseAddress() const { return nullptr; } /// Return the section that this DIEUnit will be emitted into. /// /// \returns Section pointer which can be NULL. MCSection *getSection() const { return Section; } void setDebugSectionOffset(uint64_t O) { Offset = O; } uint64_t getDebugSectionOffset() const { return Offset; } DIE &getUnitDie() { return Die; } const DIE &getUnitDie() const { return Die; } }; struct BasicDIEUnit final : DIEUnit { explicit BasicDIEUnit(dwarf::Tag UnitTag) : DIEUnit(UnitTag) {} }; //===--------------------------------------------------------------------===// /// DIELoc - Represents an expression location. // class DIELoc : public DIEValueList { mutable unsigned Size = 0; // Size in bytes excluding size header. public: DIELoc() = default; /// Calculate the size of the location expression. unsigned computeSize(const dwarf::FormParams &FormParams) const; // TODO: move setSize() and Size to DIEValueList. void setSize(unsigned size) { Size = size; } /// BestForm - Choose the best form for data. /// dwarf::Form BestForm(unsigned DwarfVersion) const { if (DwarfVersion > 3) return dwarf::DW_FORM_exprloc; // Pre-DWARF4 location expressions were blocks and not exprloc. if ((unsigned char)Size == Size) return dwarf::DW_FORM_block1; if ((unsigned short)Size == Size) return dwarf::DW_FORM_block2; if ((unsigned int)Size == Size) return dwarf::DW_FORM_block4; return dwarf::DW_FORM_block; } void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &, dwarf::Form Form) const; void print(raw_ostream &O) const; }; //===--------------------------------------------------------------------===// /// DIEBlock - Represents a block of values. // class DIEBlock : public DIEValueList { mutable unsigned Size = 0; // Size in bytes excluding size header. public: DIEBlock() = default; /// Calculate the size of the location expression. unsigned computeSize(const dwarf::FormParams &FormParams) const; // TODO: move setSize() and Size to DIEValueList. void setSize(unsigned size) { Size = size; } /// BestForm - Choose the best form for data. /// dwarf::Form BestForm() const { if ((unsigned char)Size == Size) return dwarf::DW_FORM_block1; if ((unsigned short)Size == Size) return dwarf::DW_FORM_block2; if ((unsigned int)Size == Size) return dwarf::DW_FORM_block4; return dwarf::DW_FORM_block; } void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const; unsigned sizeOf(const dwarf::FormParams &, dwarf::Form Form) const; void print(raw_ostream &O) const; }; } // end namespace llvm #endif // LLVM_CODEGEN_DIE_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif