#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file provides interfaces used to build and manipulate a call graph, /// which is a very useful tool for interprocedural optimization. /// /// Every function in a module is represented as a node in the call graph. The /// callgraph node keeps track of which functions are called by the function /// corresponding to the node. /// /// A call graph may contain nodes where the function that they correspond to /// is null. These 'external' nodes are used to represent control flow that is /// not represented (or analyzable) in the module. In particular, this /// analysis builds one external node such that: /// 1. All functions in the module without internal linkage will have edges /// from this external node, indicating that they could be called by /// functions outside of the module. /// 2. All functions whose address is used for something more than a direct /// call, for example being stored into a memory location will also have /// an edge from this external node. Since they may be called by an /// unknown caller later, they must be tracked as such. /// /// There is a second external node added for calls that leave this module. /// Functions have a call edge to the external node iff: /// 1. The function is external, reflecting the fact that they could call /// anything without internal linkage or that has its address taken. /// 2. The function contains an indirect function call. /// /// As an extension in the future, there may be multiple nodes with a null /// function. These will be used when we can prove (through pointer analysis) /// that an indirect call site can call only a specific set of functions. /// /// Because of these properties, the CallGraph captures a conservative superset /// of all of the caller-callee relationships, which is useful for /// transformations. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_CALLGRAPH_H #define LLVM_ANALYSIS_CALLGRAPH_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include #include #include #include #include namespace llvm { class CallGraphNode; class Module; class raw_ostream; /// The basic data container for the call graph of a \c Module of IR. /// /// This class exposes both the interface to the call graph for a module of IR. /// /// The core call graph itself can also be updated to reflect changes to the IR. class CallGraph { Module &M; using FunctionMapTy = std::map>; /// A map from \c Function* to \c CallGraphNode*. FunctionMapTy FunctionMap; /// This node has edges to all external functions and those internal /// functions that have their address taken. CallGraphNode *ExternalCallingNode; /// This node has edges to it from all functions making indirect calls /// or calling an external function. std::unique_ptr CallsExternalNode; public: explicit CallGraph(Module &M); CallGraph(CallGraph &&Arg); ~CallGraph(); void print(raw_ostream &OS) const; void dump() const; using iterator = FunctionMapTy::iterator; using const_iterator = FunctionMapTy::const_iterator; /// Returns the module the call graph corresponds to. Module &getModule() const { return M; } bool invalidate(Module &, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &); inline iterator begin() { return FunctionMap.begin(); } inline iterator end() { return FunctionMap.end(); } inline const_iterator begin() const { return FunctionMap.begin(); } inline const_iterator end() const { return FunctionMap.end(); } /// Returns the call graph node for the provided function. inline const CallGraphNode *operator[](const Function *F) const { const_iterator I = FunctionMap.find(F); assert(I != FunctionMap.end() && "Function not in callgraph!"); return I->second.get(); } /// Returns the call graph node for the provided function. inline CallGraphNode *operator[](const Function *F) { const_iterator I = FunctionMap.find(F); assert(I != FunctionMap.end() && "Function not in callgraph!"); return I->second.get(); } /// Returns the \c CallGraphNode which is used to represent /// undetermined calls into the callgraph. CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; } CallGraphNode *getCallsExternalNode() const { return CallsExternalNode.get(); } /// Old node has been deleted, and New is to be used in its place, update the /// ExternalCallingNode. void ReplaceExternalCallEdge(CallGraphNode *Old, CallGraphNode *New); //===--------------------------------------------------------------------- // Functions to keep a call graph up to date with a function that has been // modified. // /// Unlink the function from this module, returning it. /// /// Because this removes the function from the module, the call graph node is /// destroyed. This is only valid if the function does not call any other /// functions (ie, there are no edges in it's CGN). The easiest way to do /// this is to dropAllReferences before calling this. Function *removeFunctionFromModule(CallGraphNode *CGN); /// Similar to operator[], but this will insert a new CallGraphNode for /// \c F if one does not already exist. CallGraphNode *getOrInsertFunction(const Function *F); /// Populate \p CGN based on the calls inside the associated function. void populateCallGraphNode(CallGraphNode *CGN); /// Add a function to the call graph, and link the node to all of the /// functions that it calls. void addToCallGraph(Function *F); }; /// A node in the call graph for a module. /// /// Typically represents a function in the call graph. There are also special /// "null" nodes used to represent theoretical entries in the call graph. class CallGraphNode { public: /// A pair of the calling instruction (a call or invoke) /// and the call graph node being called. /// Call graph node may have two types of call records which represent an edge /// in the call graph - reference or a call edge. Reference edges are not /// associated with any call instruction and are created with the first field /// set to `None`, while real call edges have instruction address in this /// field. Therefore, all real call edges are expected to have a value in the /// first field and it is not supposed to be `nullptr`. /// Reference edges, for example, are used for connecting broker function /// caller to the callback function for callback call sites. using CallRecord = std::pair, CallGraphNode *>; public: using CalledFunctionsVector = std::vector; /// Creates a node for the specified function. inline CallGraphNode(CallGraph *CG, Function *F) : CG(CG), F(F) {} CallGraphNode(const CallGraphNode &) = delete; CallGraphNode &operator=(const CallGraphNode &) = delete; ~CallGraphNode() { assert(NumReferences == 0 && "Node deleted while references remain"); } using iterator = std::vector::iterator; using const_iterator = std::vector::const_iterator; /// Returns the function that this call graph node represents. Function *getFunction() const { return F; } inline iterator begin() { return CalledFunctions.begin(); } inline iterator end() { return CalledFunctions.end(); } inline const_iterator begin() const { return CalledFunctions.begin(); } inline const_iterator end() const { return CalledFunctions.end(); } inline bool empty() const { return CalledFunctions.empty(); } inline unsigned size() const { return (unsigned)CalledFunctions.size(); } /// Returns the number of other CallGraphNodes in this CallGraph that /// reference this node in their callee list. unsigned getNumReferences() const { return NumReferences; } /// Returns the i'th called function. CallGraphNode *operator[](unsigned i) const { assert(i < CalledFunctions.size() && "Invalid index"); return CalledFunctions[i].second; } /// Print out this call graph node. void dump() const; void print(raw_ostream &OS) const; //===--------------------------------------------------------------------- // Methods to keep a call graph up to date with a function that has been // modified // /// Removes all edges from this CallGraphNode to any functions it /// calls. void removeAllCalledFunctions() { while (!CalledFunctions.empty()) { CalledFunctions.back().second->DropRef(); CalledFunctions.pop_back(); } } /// Moves all the callee information from N to this node. void stealCalledFunctionsFrom(CallGraphNode *N) { assert(CalledFunctions.empty() && "Cannot steal callsite information if I already have some"); std::swap(CalledFunctions, N->CalledFunctions); } /// Adds a function to the list of functions called by this one. void addCalledFunction(CallBase *Call, CallGraphNode *M) { assert(!Call || !Call->getCalledFunction() || !Call->getCalledFunction()->isIntrinsic() || !Intrinsic::isLeaf(Call->getCalledFunction()->getIntrinsicID())); CalledFunctions.emplace_back( Call ? Optional(Call) : Optional(), M); M->AddRef(); } void removeCallEdge(iterator I) { I->second->DropRef(); *I = CalledFunctions.back(); CalledFunctions.pop_back(); } /// Removes the edge in the node for the specified call site. /// /// Note that this method takes linear time, so it should be used sparingly. void removeCallEdgeFor(CallBase &Call); /// Removes all call edges from this node to the specified callee /// function. /// /// This takes more time to execute than removeCallEdgeTo, so it should not /// be used unless necessary. void removeAnyCallEdgeTo(CallGraphNode *Callee); /// Removes one edge associated with a null callsite from this node to /// the specified callee function. void removeOneAbstractEdgeTo(CallGraphNode *Callee); /// Replaces the edge in the node for the specified call site with a /// new one. /// /// Note that this method takes linear time, so it should be used sparingly. void replaceCallEdge(CallBase &Call, CallBase &NewCall, CallGraphNode *NewNode); private: friend class CallGraph; CallGraph *CG; Function *F; std::vector CalledFunctions; /// The number of times that this CallGraphNode occurs in the /// CalledFunctions array of this or other CallGraphNodes. unsigned NumReferences = 0; void DropRef() { --NumReferences; } void AddRef() { ++NumReferences; } /// A special function that should only be used by the CallGraph class. void allReferencesDropped() { NumReferences = 0; } }; /// An analysis pass to compute the \c CallGraph for a \c Module. /// /// This class implements the concept of an analysis pass used by the \c /// ModuleAnalysisManager to run an analysis over a module and cache the /// resulting data. class CallGraphAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static AnalysisKey Key; public: /// A formulaic type to inform clients of the result type. using Result = CallGraph; /// Compute the \c CallGraph for the module \c M. /// /// The real work here is done in the \c CallGraph constructor. CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); } }; /// Printer pass for the \c CallGraphAnalysis results. class CallGraphPrinterPass : public PassInfoMixin { raw_ostream &OS; public: explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); }; /// The \c ModulePass which wraps up a \c CallGraph and the logic to /// build it. /// /// This class exposes both the interface to the call graph container and the /// module pass which runs over a module of IR and produces the call graph. The /// call graph interface is entirelly a wrapper around a \c CallGraph object /// which is stored internally for each module. class CallGraphWrapperPass : public ModulePass { std::unique_ptr G; public: static char ID; // Class identification, replacement for typeinfo CallGraphWrapperPass(); ~CallGraphWrapperPass() override; /// The internal \c CallGraph around which the rest of this interface /// is wrapped. const CallGraph &getCallGraph() const { return *G; } CallGraph &getCallGraph() { return *G; } using iterator = CallGraph::iterator; using const_iterator = CallGraph::const_iterator; /// Returns the module the call graph corresponds to. Module &getModule() const { return G->getModule(); } inline iterator begin() { return G->begin(); } inline iterator end() { return G->end(); } inline const_iterator begin() const { return G->begin(); } inline const_iterator end() const { return G->end(); } /// Returns the call graph node for the provided function. inline const CallGraphNode *operator[](const Function *F) const { return (*G)[F]; } /// Returns the call graph node for the provided function. inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; } /// Returns the \c CallGraphNode which is used to represent /// undetermined calls into the callgraph. CallGraphNode *getExternalCallingNode() const { return G->getExternalCallingNode(); } CallGraphNode *getCallsExternalNode() const { return G->getCallsExternalNode(); } //===--------------------------------------------------------------------- // Functions to keep a call graph up to date with a function that has been // modified. // /// Unlink the function from this module, returning it. /// /// Because this removes the function from the module, the call graph node is /// destroyed. This is only valid if the function does not call any other /// functions (ie, there are no edges in it's CGN). The easiest way to do /// this is to dropAllReferences before calling this. Function *removeFunctionFromModule(CallGraphNode *CGN) { return G->removeFunctionFromModule(CGN); } /// Similar to operator[], but this will insert a new CallGraphNode for /// \c F if one does not already exist. CallGraphNode *getOrInsertFunction(const Function *F) { return G->getOrInsertFunction(F); } //===--------------------------------------------------------------------- // Implementation of the ModulePass interface needed here. // void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnModule(Module &M) override; void releaseMemory() override; void print(raw_ostream &o, const Module *) const override; void dump() const; }; //===----------------------------------------------------------------------===// // GraphTraits specializations for call graphs so that they can be treated as // graphs by the generic graph algorithms. // // Provide graph traits for traversing call graphs using standard graph // traversals. template <> struct GraphTraits { using NodeRef = CallGraphNode *; using CGNPairTy = CallGraphNode::CallRecord; static NodeRef getEntryNode(CallGraphNode *CGN) { return CGN; } static CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; } using ChildIteratorType = mapped_iterator; static ChildIteratorType child_begin(NodeRef N) { return ChildIteratorType(N->begin(), &CGNGetValue); } static ChildIteratorType child_end(NodeRef N) { return ChildIteratorType(N->end(), &CGNGetValue); } }; template <> struct GraphTraits { using NodeRef = const CallGraphNode *; using CGNPairTy = CallGraphNode::CallRecord; using EdgeRef = const CallGraphNode::CallRecord &; static NodeRef getEntryNode(const CallGraphNode *CGN) { return CGN; } static const CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; } using ChildIteratorType = mapped_iterator; using ChildEdgeIteratorType = CallGraphNode::const_iterator; static ChildIteratorType child_begin(NodeRef N) { return ChildIteratorType(N->begin(), &CGNGetValue); } static ChildIteratorType child_end(NodeRef N) { return ChildIteratorType(N->end(), &CGNGetValue); } static ChildEdgeIteratorType child_edge_begin(NodeRef N) { return N->begin(); } static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); } static NodeRef edge_dest(EdgeRef E) { return E.second; } }; template <> struct GraphTraits : public GraphTraits { using PairTy = std::pair>; static NodeRef getEntryNode(CallGraph *CGN) { return CGN->getExternalCallingNode(); // Start at the external node! } static CallGraphNode *CGGetValuePtr(const PairTy &P) { return P.second.get(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = mapped_iterator; static nodes_iterator nodes_begin(CallGraph *CG) { return nodes_iterator(CG->begin(), &CGGetValuePtr); } static nodes_iterator nodes_end(CallGraph *CG) { return nodes_iterator(CG->end(), &CGGetValuePtr); } }; template <> struct GraphTraits : public GraphTraits< const CallGraphNode *> { using PairTy = std::pair>; static NodeRef getEntryNode(const CallGraph *CGN) { return CGN->getExternalCallingNode(); // Start at the external node! } static const CallGraphNode *CGGetValuePtr(const PairTy &P) { return P.second.get(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = mapped_iterator; static nodes_iterator nodes_begin(const CallGraph *CG) { return nodes_iterator(CG->begin(), &CGGetValuePtr); } static nodes_iterator nodes_end(const CallGraph *CG) { return nodes_iterator(CG->end(), &CGGetValuePtr); } }; } // end namespace llvm #endif // LLVM_ANALYSIS_CALLGRAPH_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif