#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// Defines the fixed point number interface. /// This is a class for abstracting various operations performed on fixed point /// types. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APFIXEDPOINT_H #define LLVM_ADT_APFIXEDPOINT_H #include "llvm/ADT/APSInt.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" namespace llvm { class APFloat; struct fltSemantics; /// The fixed point semantics work similarly to fltSemantics. The width /// specifies the whole bit width of the underlying scaled integer (with padding /// if any). The scale represents the number of fractional bits in this type. /// When HasUnsignedPadding is true and this type is unsigned, the first bit /// in the value this represents is treated as padding. class FixedPointSemantics { public: FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned, bool IsSaturated, bool HasUnsignedPadding) : Width(Width), Scale(Scale), IsSigned(IsSigned), IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) { assert(Width >= Scale && "Not enough room for the scale"); assert(!(IsSigned && HasUnsignedPadding) && "Cannot have unsigned padding on a signed type."); } unsigned getWidth() const { return Width; } unsigned getScale() const { return Scale; } bool isSigned() const { return IsSigned; } bool isSaturated() const { return IsSaturated; } bool hasUnsignedPadding() const { return HasUnsignedPadding; } void setSaturated(bool Saturated) { IsSaturated = Saturated; } /// Return the number of integral bits represented by these semantics. These /// are separate from the fractional bits and do not include the sign or /// padding bit. unsigned getIntegralBits() const { if (IsSigned || (!IsSigned && HasUnsignedPadding)) return Width - Scale - 1; else return Width - Scale; } /// Return the FixedPointSemantics that allows for calculating the full /// precision semantic that can precisely represent the precision and ranges /// of both input values. This does not compute the resulting semantics for a /// given binary operation. FixedPointSemantics getCommonSemantics(const FixedPointSemantics &Other) const; /// Returns true if this fixed-point semantic with its value bits interpreted /// as an integer can fit in the given floating point semantic without /// overflowing to infinity. /// For example, a signed 8-bit fixed-point semantic has a maximum and /// minimum integer representation of 127 and -128, respectively. If both of /// these values can be represented (possibly inexactly) in the floating /// point semantic without overflowing, this returns true. bool fitsInFloatSemantics(const fltSemantics &FloatSema) const; /// Return the FixedPointSemantics for an integer type. static FixedPointSemantics GetIntegerSemantics(unsigned Width, bool IsSigned) { return FixedPointSemantics(Width, /*Scale=*/0, IsSigned, /*IsSaturated=*/false, /*HasUnsignedPadding=*/false); } private: unsigned Width : 16; unsigned Scale : 13; unsigned IsSigned : 1; unsigned IsSaturated : 1; unsigned HasUnsignedPadding : 1; }; /// The APFixedPoint class works similarly to APInt/APSInt in that it is a /// functional replacement for a scaled integer. It is meant to replicate the /// fixed point types proposed in ISO/IEC JTC1 SC22 WG14 N1169. The class carries /// info about the fixed point type's width, sign, scale, and saturation, and /// provides different operations that would normally be performed on fixed point /// types. class APFixedPoint { public: APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema) : Val(Val, !Sema.isSigned()), Sema(Sema) { assert(Val.getBitWidth() == Sema.getWidth() && "The value should have a bit width that matches the Sema width"); } APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema) : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {} // Zero initialization. APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {} APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); } inline unsigned getWidth() const { return Sema.getWidth(); } inline unsigned getScale() const { return Sema.getScale(); } inline bool isSaturated() const { return Sema.isSaturated(); } inline bool isSigned() const { return Sema.isSigned(); } inline bool hasPadding() const { return Sema.hasUnsignedPadding(); } FixedPointSemantics getSemantics() const { return Sema; } bool getBoolValue() const { return Val.getBoolValue(); } // Convert this number to match the semantics provided. If the overflow // parameter is provided, set this value to true or false to indicate if this // operation results in an overflow. APFixedPoint convert(const FixedPointSemantics &DstSema, bool *Overflow = nullptr) const; // Perform binary operations on a fixed point type. The resulting fixed point // value will be in the common, full precision semantics that can represent // the precision and ranges of both input values. See convert() for an // explanation of the Overflow parameter. APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const; APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const; APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const; APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const; // Perform shift operations on a fixed point type. Unlike the other binary // operations, the resulting fixed point value will be in the original // semantic. APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const; APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const { // Right shift cannot overflow. if (Overflow) *Overflow = false; return APFixedPoint(Val >> Amt, Sema); } /// Perform a unary negation (-X) on this fixed point type, taking into /// account saturation if applicable. APFixedPoint negate(bool *Overflow = nullptr) const; /// Return the integral part of this fixed point number, rounded towards /// zero. (-2.5k -> -2) APSInt getIntPart() const { if (Val < 0 && Val != -Val) // Cover the case when we have the min val return -(-Val >> getScale()); else return Val >> getScale(); } /// Return the integral part of this fixed point number, rounded towards /// zero. The value is stored into an APSInt with the provided width and sign. /// If the overflow parameter is provided, and the integral value is not able /// to be fully stored in the provided width and sign, the overflow parameter /// is set to true. APSInt convertToInt(unsigned DstWidth, bool DstSign, bool *Overflow = nullptr) const; /// Convert this fixed point number to a floating point value with the /// provided semantics. APFloat convertToFloat(const fltSemantics &FloatSema) const; void toString(SmallVectorImpl &Str) const; std::string toString() const { SmallString<40> S; toString(S); return std::string(S.str()); } // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1. int compare(const APFixedPoint &Other) const; bool operator==(const APFixedPoint &Other) const { return compare(Other) == 0; } bool operator!=(const APFixedPoint &Other) const { return compare(Other) != 0; } bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; } bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; } bool operator>=(const APFixedPoint &Other) const { return compare(Other) >= 0; } bool operator<=(const APFixedPoint &Other) const { return compare(Other) <= 0; } static APFixedPoint getMax(const FixedPointSemantics &Sema); static APFixedPoint getMin(const FixedPointSemantics &Sema); /// Given a floating point semantic, return the next floating point semantic /// with a larger exponent and larger or equal mantissa. static const fltSemantics *promoteFloatSemantics(const fltSemantics *S); /// Create an APFixedPoint with a value equal to that of the provided integer, /// and in the same semantics as the provided target semantics. If the value /// is not able to fit in the specified fixed point semantics, and the /// overflow parameter is provided, it is set to true. static APFixedPoint getFromIntValue(const APSInt &Value, const FixedPointSemantics &DstFXSema, bool *Overflow = nullptr); /// Create an APFixedPoint with a value equal to that of the provided /// floating point value, in the provided target semantics. If the value is /// not able to fit in the specified fixed point semantics and the overflow /// parameter is specified, it is set to true. /// For NaN, the Overflow flag is always set. For +inf and -inf, if the /// semantic is saturating, the value saturates. Otherwise, the Overflow flag /// is set. static APFixedPoint getFromFloatValue(const APFloat &Value, const FixedPointSemantics &DstFXSema, bool *Overflow = nullptr); private: APSInt Val; FixedPointSemantics Sema; }; inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) { OS << FX.toString(); return OS; } } // namespace llvm #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif