//===-- WindowsManifestMerger.cpp ------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// // // This file implements the .manifest merger class. // //===---------------------------------------------------------------------===// #include "llvm/WindowsManifest/WindowsManifestMerger.h" #include "llvm/Config/config.h" #include "llvm/Support/MemoryBuffer.h" #if LLVM_ENABLE_LIBXML2 #error #include #endif #define TO_XML_CHAR(X) reinterpret_cast(X) #define FROM_XML_CHAR(X) reinterpret_cast(X) using namespace llvm; using namespace windows_manifest; char WindowsManifestError::ID = 0; WindowsManifestError::WindowsManifestError(const Twine &Msg) : Msg(Msg.str()) {} void WindowsManifestError::log(raw_ostream &OS) const { OS << Msg; } class WindowsManifestMerger::WindowsManifestMergerImpl { public: ~WindowsManifestMergerImpl(); Error merge(MemoryBufferRef Manifest); std::unique_ptr getMergedManifest(); private: static void errorCallback(void *Ctx, const char *Format, ...); Error getParseError(); #if LLVM_ENABLE_LIBXML2 xmlDocPtr CombinedDoc = nullptr; std::vector MergedDocs; bool Merged = false; struct XmlDeleter { void operator()(xmlChar *Ptr) { xmlFree(Ptr); } void operator()(xmlDoc *Ptr) { xmlFreeDoc(Ptr); } }; int BufferSize = 0; std::unique_ptr Buffer; #endif bool ParseErrorOccurred = false; }; #if LLVM_ENABLE_LIBXML2 static constexpr std::pair MtNsHrefsPrefixes[] = { {"urn:schemas-microsoft-com:asm.v1", "ms_asmv1"}, {"urn:schemas-microsoft-com:asm.v2", "ms_asmv2"}, {"urn:schemas-microsoft-com:asm.v3", "ms_asmv3"}, {"http://schemas.microsoft.com/SMI/2005/WindowsSettings", "ms_windowsSettings"}, {"urn:schemas-microsoft-com:compatibility.v1", "ms_compatibilityv1"}}; static bool xmlStringsEqual(const unsigned char *A, const unsigned char *B) { // Handle null pointers. Comparison of 2 null pointers returns true because // this indicates the prefix of a default namespace. if (!A || !B) return A == B; return strcmp(FROM_XML_CHAR(A), FROM_XML_CHAR(B)) == 0; } static bool isMergeableElement(const unsigned char *ElementName) { for (StringRef S : {"application", "assembly", "assemblyIdentity", "compatibility", "noInherit", "requestedExecutionLevel", "requestedPrivileges", "security", "trustInfo"}) { if (S == FROM_XML_CHAR(ElementName)) { return true; } } return false; } static xmlNodePtr getChildWithName(xmlNodePtr Parent, const unsigned char *ElementName) { for (xmlNodePtr Child = Parent->children; Child; Child = Child->next) { if (xmlStringsEqual(Child->name, ElementName)) { return Child; } } return nullptr; } static xmlAttrPtr getAttribute(xmlNodePtr Node, const unsigned char *AttributeName) { for (xmlAttrPtr Attribute = Node->properties; Attribute != nullptr; Attribute = Attribute->next) { if (xmlStringsEqual(Attribute->name, AttributeName)) { return Attribute; } } return nullptr; } // Check if namespace specified by HRef1 overrides that of HRef2. static bool namespaceOverrides(const unsigned char *HRef1, const unsigned char *HRef2) { auto HRef1Position = llvm::find_if( MtNsHrefsPrefixes, [=](const std::pair &Element) { return xmlStringsEqual(HRef1, TO_XML_CHAR(Element.first.data())); }); auto HRef2Position = llvm::find_if( MtNsHrefsPrefixes, [=](const std::pair &Element) { return xmlStringsEqual(HRef2, TO_XML_CHAR(Element.first.data())); }); return HRef1Position < HRef2Position; } // Search for prefix-defined namespace specified by HRef, starting on Node and // continuing recursively upwards. Returns the namespace or nullptr if not // found. static xmlNsPtr search(const unsigned char *HRef, xmlNodePtr Node) { for (xmlNsPtr Def = Node->nsDef; Def; Def = Def->next) { if (Def->prefix && xmlStringsEqual(Def->href, HRef)) { return Def; } } if (Node->parent) { return search(HRef, Node->parent); } return nullptr; } // Return the prefix that corresponds to the HRef. If HRef is not a recognized // URI, then just return the HRef itself to use as the prefix. static const unsigned char *getPrefixForHref(const unsigned char *HRef) { for (auto &Ns : MtNsHrefsPrefixes) { if (xmlStringsEqual(HRef, TO_XML_CHAR(Ns.first.data()))) { return TO_XML_CHAR(Ns.second.data()); } } return HRef; } // Search for prefix-defined namespace specified by HRef, starting on Node and // continuing recursively upwards. If it is found, then return it. If it is // not found, then prefix-define that namespace on the node and return a // reference to it. static Expected searchOrDefine(const unsigned char *HRef, xmlNodePtr Node) { if (xmlNsPtr Def = search(HRef, Node)) return Def; if (xmlNsPtr Def = xmlNewNs(Node, HRef, getPrefixForHref(HRef))) return Def; return make_error("failed to create new namespace"); } // Set the namespace of OrigionalAttribute on OriginalNode to be that of // AdditionalAttribute's. static Error copyAttributeNamespace(xmlAttrPtr OriginalAttribute, xmlNodePtr OriginalNode, xmlAttrPtr AdditionalAttribute) { Expected ExplicitOrError = searchOrDefine(AdditionalAttribute->ns->href, OriginalNode); if (!ExplicitOrError) return ExplicitOrError.takeError(); OriginalAttribute->ns = std::move(ExplicitOrError.get()); return Error::success(); } // Return the corresponding namespace definition for the prefix, defined on the // given Node. Returns nullptr if there is no such definition. static xmlNsPtr getNamespaceWithPrefix(const unsigned char *Prefix, xmlNodePtr Node) { if (Node == nullptr) return nullptr; for (xmlNsPtr Def = Node->nsDef; Def; Def = Def->next) { if (xmlStringsEqual(Def->prefix, Prefix)) { return Def; } } return nullptr; } // Search for the closest inheritable default namespace, starting on (and // including) the Node and traveling upwards through parent nodes. Returns // nullptr if there are no inheritable default namespaces. static xmlNsPtr getClosestDefault(xmlNodePtr Node) { if (xmlNsPtr Ret = getNamespaceWithPrefix(nullptr, Node)) return Ret; if (Node->parent == nullptr) return nullptr; return getClosestDefault(Node->parent); } // Merge the attributes of AdditionalNode into OriginalNode. If attributes // with identical types are present, they are not duplicated but rather if // their values are not consistent and error is thrown. In addition, the // higher priority namespace is used for each attribute, EXCEPT in the case // of merging two default namespaces and the lower priority namespace // definition occurs closer than the higher priority one. static Error mergeAttributes(xmlNodePtr OriginalNode, xmlNodePtr AdditionalNode) { xmlNsPtr ClosestDefault = getClosestDefault(OriginalNode); for (xmlAttrPtr Attribute = AdditionalNode->properties; Attribute; Attribute = Attribute->next) { if (xmlAttrPtr OriginalAttribute = getAttribute(OriginalNode, Attribute->name)) { if (!xmlStringsEqual(OriginalAttribute->children->content, Attribute->children->content)) { return make_error( Twine("conflicting attributes for ") + FROM_XML_CHAR(OriginalNode->name)); } if (!Attribute->ns) { continue; } if (!OriginalAttribute->ns) { if (auto E = copyAttributeNamespace(OriginalAttribute, OriginalNode, Attribute)) { return E; } continue; } if (namespaceOverrides(OriginalAttribute->ns->href, Attribute->ns->href)) { // In this case, the original attribute has a higher priority namespace // than the incomiing attribute, however the namespace definition of // the lower priority namespace occurs first traveling upwards in the // tree. Therefore the lower priority namespace is applied. if (!OriginalAttribute->ns->prefix && !Attribute->ns->prefix && ClosestDefault && xmlStringsEqual(Attribute->ns->href, ClosestDefault->href)) { if (auto E = copyAttributeNamespace(OriginalAttribute, OriginalNode, Attribute)) { return E; } continue; } continue; // This covers the case where the incoming attribute has the higher // priority. The higher priority namespace is applied in all cases // EXCEPT when both of the namespaces are default inherited, and the // closest inherited default is the lower priority one. } if (Attribute->ns->prefix || OriginalAttribute->ns->prefix || (ClosestDefault && !xmlStringsEqual(OriginalAttribute->ns->href, ClosestDefault->href))) { if (auto E = copyAttributeNamespace(OriginalAttribute, OriginalNode, Attribute)) { return E; } continue; } continue; } // If the incoming attribute is not already found on the node, append it // to the end of the properties list. Also explicitly apply its // namespace as a prefix because it might be contained in a separate // namespace that doesn't use the attribute. xmlAttrPtr NewProp = xmlNewProp(OriginalNode, Attribute->name, Attribute->children->content); Expected ExplicitOrError = searchOrDefine(Attribute->ns->href, OriginalNode); if (!ExplicitOrError) return ExplicitOrError.takeError(); NewProp->ns = std::move(ExplicitOrError.get()); } return Error::success(); } // Given two nodes, return the one with the higher priority namespace. static xmlNodePtr getDominantNode(xmlNodePtr Node1, xmlNodePtr Node2) { if (!Node1 || !Node1->ns) return Node2; if (!Node2 || !Node2->ns) return Node1; if (namespaceOverrides(Node1->ns->href, Node2->ns->href)) return Node1; return Node2; } // Checks if this Node's namespace is inherited or one it defined itself. static bool hasInheritedNs(xmlNodePtr Node) { return Node->ns && Node->ns != getNamespaceWithPrefix(Node->ns->prefix, Node); } // Check if this Node's namespace is a default namespace that it inherited, as // opposed to defining itself. static bool hasInheritedDefaultNs(xmlNodePtr Node) { return hasInheritedNs(Node) && Node->ns->prefix == nullptr; } // Check if this Node's namespace is a default namespace it defined itself. static bool hasDefinedDefaultNamespace(xmlNodePtr Node) { return Node->ns && (Node->ns == getNamespaceWithPrefix(nullptr, Node)); } // For the given explicit prefix-definition of a namespace, travel downwards // from a node recursively, and for every implicit, inherited default usage of // that namespace replace it with that explicit prefix use. This is important // when namespace overriding occurs when merging, so that elements unique to a // namespace will still stay in that namespace. static void explicateNamespace(xmlNsPtr PrefixDef, xmlNodePtr Node) { // If a node as its own default namespace definition it clearly cannot have // inherited the given default namespace, and neither will any of its // children. if (hasDefinedDefaultNamespace(Node)) return; if (Node->ns && xmlStringsEqual(Node->ns->href, PrefixDef->href) && hasInheritedDefaultNs(Node)) Node->ns = PrefixDef; for (xmlAttrPtr Attribute = Node->properties; Attribute; Attribute = Attribute->next) { if (Attribute->ns && xmlStringsEqual(Attribute->ns->href, PrefixDef->href)) { Attribute->ns = PrefixDef; } } for (xmlNodePtr Child = Node->children; Child; Child = Child->next) { explicateNamespace(PrefixDef, Child); } } // Perform the namespace merge between two nodes. static Error mergeNamespaces(xmlNodePtr OriginalNode, xmlNodePtr AdditionalNode) { // Save the original default namespace definition in case the incoming node // overrides it. const unsigned char *OriginalDefinedDefaultHref = nullptr; if (xmlNsPtr OriginalDefinedDefaultNs = getNamespaceWithPrefix(nullptr, OriginalNode)) { OriginalDefinedDefaultHref = xmlStrdup(OriginalDefinedDefaultNs->href); } const unsigned char *NewDefinedDefaultHref = nullptr; // Copy all namespace definitions. There can only be one default namespace // definition per node, so the higher priority one takes precedence in the // case of collision. for (xmlNsPtr Def = AdditionalNode->nsDef; Def; Def = Def->next) { if (xmlNsPtr OriginalNsDef = getNamespaceWithPrefix(Def->prefix, OriginalNode)) { if (!Def->prefix) { if (namespaceOverrides(Def->href, OriginalNsDef->href)) { NewDefinedDefaultHref = TO_XML_CHAR(strdup(FROM_XML_CHAR(Def->href))); } } else if (!xmlStringsEqual(OriginalNsDef->href, Def->href)) { return make_error( Twine("conflicting namespace definitions for ") + FROM_XML_CHAR(Def->prefix)); } } else { xmlNsPtr NewDef = xmlCopyNamespace(Def); NewDef->next = OriginalNode->nsDef; OriginalNode->nsDef = NewDef; } } // Check whether the original node or the incoming node has the higher // priority namespace. Depending on which one is dominant, we will have // to recursively apply namespace changes down to children of the original // node. xmlNodePtr DominantNode = getDominantNode(OriginalNode, AdditionalNode); xmlNodePtr NonDominantNode = DominantNode == OriginalNode ? AdditionalNode : OriginalNode; if (DominantNode == OriginalNode) { if (OriginalDefinedDefaultHref) { xmlNsPtr NonDominantDefinedDefault = getNamespaceWithPrefix(nullptr, NonDominantNode); // In this case, both the nodes defined a default namespace. However // the lower priority node ended up having a higher priority default // definition. This can occur if the higher priority node is prefix // namespace defined. In this case we have to define an explicit // prefix for the overridden definition and apply it to all children // who relied on that definition. if (NonDominantDefinedDefault && namespaceOverrides(NonDominantDefinedDefault->href, OriginalDefinedDefaultHref)) { Expected EC = searchOrDefine(OriginalDefinedDefaultHref, DominantNode); if (!EC) { return EC.takeError(); } xmlNsPtr PrefixDominantDefinedDefault = std::move(EC.get()); explicateNamespace(PrefixDominantDefinedDefault, DominantNode); } // In this case the node with a higher priority namespace did not have a // default namespace definition, but the lower priority node did. In this // case the new default namespace definition is copied. A side effect of // this is that all children will suddenly find themselves in a different // default namespace. To maintain correctness we need to ensure that all // children now explicitly refer to the namespace that they had previously // implicitly inherited. } else if (getNamespaceWithPrefix(nullptr, NonDominantNode)) { if (DominantNode->parent) { xmlNsPtr ClosestDefault = getClosestDefault(DominantNode->parent); Expected EC = searchOrDefine(ClosestDefault->href, DominantNode); if (!EC) { return EC.takeError(); } xmlNsPtr ExplicitDefault = std::move(EC.get()); explicateNamespace(ExplicitDefault, DominantNode); } } } else { // Covers case where the incoming node has a default namespace definition // that overrides the original node's namespace. This always leads to // the original node receiving that new default namespace. if (hasDefinedDefaultNamespace(DominantNode)) { NonDominantNode->ns = getNamespaceWithPrefix(nullptr, NonDominantNode); } else { // This covers the case where the incoming node either has a prefix // namespace, or an inherited default namespace. Since the namespace // may not yet be defined in the original tree we do a searchOrDefine // for it, and then set the namespace equal to it. Expected EC = searchOrDefine(DominantNode->ns->href, NonDominantNode); if (!EC) { return EC.takeError(); } xmlNsPtr Explicit = std::move(EC.get()); NonDominantNode->ns = Explicit; } // This covers cases where the incoming dominant node HAS a default // namespace definition, but MIGHT NOT NECESSARILY be in that namespace. if (xmlNsPtr DominantDefaultDefined = getNamespaceWithPrefix(nullptr, DominantNode)) { if (OriginalDefinedDefaultHref) { if (namespaceOverrides(DominantDefaultDefined->href, OriginalDefinedDefaultHref)) { // In this case, the incoming node's default definition overrides // the original default definition, all children who relied on that // definition must be updated accordingly. Expected EC = searchOrDefine(OriginalDefinedDefaultHref, NonDominantNode); if (!EC) { return EC.takeError(); } xmlNsPtr ExplicitDefault = std::move(EC.get()); explicateNamespace(ExplicitDefault, NonDominantNode); } } else { // The original did not define a default definition, however the new // default definition still applies to all children, so they must be // updated to explicitly refer to the namespace they had previously // been inheriting implicitly. xmlNsPtr ClosestDefault = getClosestDefault(NonDominantNode); Expected EC = searchOrDefine(ClosestDefault->href, NonDominantNode); if (!EC) { return EC.takeError(); } xmlNsPtr ExplicitDefault = std::move(EC.get()); explicateNamespace(ExplicitDefault, NonDominantNode); } } } if (NewDefinedDefaultHref) { xmlNsPtr OriginalNsDef = getNamespaceWithPrefix(nullptr, OriginalNode); xmlFree(const_cast(OriginalNsDef->href)); OriginalNsDef->href = NewDefinedDefaultHref; } xmlFree(const_cast(OriginalDefinedDefaultHref)); return Error::success(); } static bool isRecognizedNamespace(const unsigned char *NsHref) { for (auto &Ns : MtNsHrefsPrefixes) { if (xmlStringsEqual(NsHref, TO_XML_CHAR(Ns.first.data()))) { return true; } } return false; } static bool hasRecognizedNamespace(xmlNodePtr Node) { return isRecognizedNamespace(Node->ns->href); } // Ensure a node's inherited namespace is actually defined in the tree it // resides in. static Error reconcileNamespaces(xmlNodePtr Node) { if (!Node) { return Error::success(); } if (hasInheritedNs(Node)) { Expected ExplicitOrError = searchOrDefine(Node->ns->href, Node); if (!ExplicitOrError) { return ExplicitOrError.takeError(); } xmlNsPtr Explicit = std::move(ExplicitOrError.get()); Node->ns = Explicit; } for (xmlNodePtr Child = Node->children; Child; Child = Child->next) { if (auto E = reconcileNamespaces(Child)) { return E; } } return Error::success(); } // Recursively merge the two given manifest trees, depending on which elements // are of a mergeable type, and choose namespaces according to which have // higher priority. static Error treeMerge(xmlNodePtr OriginalRoot, xmlNodePtr AdditionalRoot) { if (auto E = mergeAttributes(OriginalRoot, AdditionalRoot)) return E; if (auto E = mergeNamespaces(OriginalRoot, AdditionalRoot)) return E; xmlNodePtr AdditionalFirstChild = AdditionalRoot->children; xmlNode StoreNext; for (xmlNodePtr Child = AdditionalFirstChild; Child; Child = Child->next) { xmlNodePtr OriginalChildWithName; if (!isMergeableElement(Child->name) || !(OriginalChildWithName = getChildWithName(OriginalRoot, Child->name)) || !hasRecognizedNamespace(Child)) { StoreNext.next = Child->next; xmlUnlinkNode(Child); if (!xmlAddChild(OriginalRoot, Child)) { return make_error(Twine("could not merge ") + FROM_XML_CHAR(Child->name)); } if (auto E = reconcileNamespaces(Child)) { return E; } Child = &StoreNext; } else if (auto E = treeMerge(OriginalChildWithName, Child)) { return E; } } return Error::success(); } static void stripComments(xmlNodePtr Root) { xmlNode StoreNext; for (xmlNodePtr Child = Root->children; Child; Child = Child->next) { if (!xmlStringsEqual(Child->name, TO_XML_CHAR("comment"))) { stripComments(Child); continue; } StoreNext.next = Child->next; xmlNodePtr Remove = Child; Child = &StoreNext; xmlUnlinkNode(Remove); xmlFreeNode(Remove); } } // libxml2 assumes that attributes do not inherit default namespaces, whereas // the original mt.exe does make this assumption. This function reconciles // this by setting all attributes to have the inherited default namespace. static void setAttributeNamespaces(xmlNodePtr Node) { for (xmlAttrPtr Attribute = Node->properties; Attribute; Attribute = Attribute->next) { if (!Attribute->ns) { Attribute->ns = getClosestDefault(Node); } } for (xmlNodePtr Child = Node->children; Child; Child = Child->next) { setAttributeNamespaces(Child); } } // The merging process may create too many prefix defined namespaces. This // function removes all unnecessary ones from the tree. static void checkAndStripPrefixes(xmlNodePtr Node, std::vector &RequiredPrefixes) { for (xmlNodePtr Child = Node->children; Child; Child = Child->next) { checkAndStripPrefixes(Child, RequiredPrefixes); } if (Node->ns && Node->ns->prefix != nullptr) { xmlNsPtr ClosestDefault = getClosestDefault(Node); if (ClosestDefault && xmlStringsEqual(ClosestDefault->href, Node->ns->href)) { Node->ns = ClosestDefault; } else if (!llvm::is_contained(RequiredPrefixes, Node->ns)) { RequiredPrefixes.push_back(Node->ns); } } for (xmlAttrPtr Attribute = Node->properties; Attribute; Attribute = Attribute->next) { if (Attribute->ns && Attribute->ns->prefix != nullptr) { xmlNsPtr ClosestDefault = getClosestDefault(Node); if (ClosestDefault && xmlStringsEqual(ClosestDefault->href, Attribute->ns->href)) { Attribute->ns = ClosestDefault; } else if (!llvm::is_contained(RequiredPrefixes, Node->ns)) { RequiredPrefixes.push_back(Attribute->ns); } } } xmlNsPtr Prev; xmlNs Temp; for (xmlNsPtr Def = Node->nsDef; Def; Def = Def->next) { if (!Def->prefix || llvm::is_contained(RequiredPrefixes, Def)) { Prev = Def; continue; } if (Def == Node->nsDef) { Node->nsDef = Def->next; } else { Prev->next = Def->next; } Temp.next = Def->next; xmlFreeNs(Def); Def = &Temp; } } WindowsManifestMerger::WindowsManifestMergerImpl::~WindowsManifestMergerImpl() { for (auto &Doc : MergedDocs) xmlFreeDoc(Doc); } Error WindowsManifestMerger::WindowsManifestMergerImpl::merge( MemoryBufferRef Manifest) { if (Merged) return make_error( "merge after getMergedManifest is not supported"); if (Manifest.getBufferSize() == 0) return make_error( "attempted to merge empty manifest"); xmlSetGenericErrorFunc((void *)this, WindowsManifestMergerImpl::errorCallback); xmlDocPtr ManifestXML = xmlReadMemory( Manifest.getBufferStart(), Manifest.getBufferSize(), "manifest.xml", nullptr, XML_PARSE_NOBLANKS | XML_PARSE_NODICT); xmlSetGenericErrorFunc(nullptr, nullptr); if (auto E = getParseError()) return E; xmlNodePtr AdditionalRoot = xmlDocGetRootElement(ManifestXML); stripComments(AdditionalRoot); setAttributeNamespaces(AdditionalRoot); if (CombinedDoc == nullptr) { CombinedDoc = ManifestXML; } else { xmlNodePtr CombinedRoot = xmlDocGetRootElement(CombinedDoc); if (!xmlStringsEqual(CombinedRoot->name, AdditionalRoot->name) || !isMergeableElement(AdditionalRoot->name) || !hasRecognizedNamespace(AdditionalRoot)) { return make_error("multiple root nodes"); } if (auto E = treeMerge(CombinedRoot, AdditionalRoot)) { return E; } } MergedDocs.push_back(ManifestXML); return Error::success(); } std::unique_ptr WindowsManifestMerger::WindowsManifestMergerImpl::getMergedManifest() { if (!Merged) { Merged = true; if (!CombinedDoc) return nullptr; xmlNodePtr CombinedRoot = xmlDocGetRootElement(CombinedDoc); std::vector RequiredPrefixes; checkAndStripPrefixes(CombinedRoot, RequiredPrefixes); std::unique_ptr OutputDoc( xmlNewDoc((const unsigned char *)"1.0")); xmlDocSetRootElement(OutputDoc.get(), CombinedRoot); assert(nullptr == xmlDocGetRootElement(CombinedDoc)); xmlKeepBlanksDefault(0); xmlChar *Buff = nullptr; xmlDocDumpFormatMemoryEnc(OutputDoc.get(), &Buff, &BufferSize, "UTF-8", 1); Buffer.reset(Buff); } return BufferSize ? MemoryBuffer::getMemBufferCopy(StringRef( FROM_XML_CHAR(Buffer.get()), (size_t)BufferSize)) : nullptr; } bool windows_manifest::isAvailable() { return true; } #else WindowsManifestMerger::WindowsManifestMergerImpl::~WindowsManifestMergerImpl() { } Error WindowsManifestMerger::WindowsManifestMergerImpl::merge( MemoryBufferRef Manifest) { return make_error("no libxml2"); } std::unique_ptr WindowsManifestMerger::WindowsManifestMergerImpl::getMergedManifest() { return nullptr; } bool windows_manifest::isAvailable() { return false; } #endif WindowsManifestMerger::WindowsManifestMerger() : Impl(std::make_unique()) {} WindowsManifestMerger::~WindowsManifestMerger() = default; Error WindowsManifestMerger::merge(MemoryBufferRef Manifest) { return Impl->merge(Manifest); } std::unique_ptr WindowsManifestMerger::getMergedManifest() { return Impl->getMergedManifest(); } void WindowsManifestMerger::WindowsManifestMergerImpl::errorCallback( void *Ctx, const char *Format, ...) { auto *Merger = (WindowsManifestMergerImpl *)Ctx; Merger->ParseErrorOccurred = true; } Error WindowsManifestMerger::WindowsManifestMergerImpl::getParseError() { if (!ParseErrorOccurred) return Error::success(); return make_error("invalid xml document"); }