//===- X86EvexToVex.cpp ---------------------------------------------------===// // Compress EVEX instructions to VEX encoding when possible to reduce code size // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file defines the pass that goes over all AVX-512 instructions which /// are encoded using the EVEX prefix and if possible replaces them by their /// corresponding VEX encoding which is usually shorter by 2 bytes. /// EVEX instructions may be encoded via the VEX prefix when the AVX-512 /// instruction has a corresponding AVX/AVX2 opcode, when vector length /// accessed by instruction is less than 512 bits and when it does not use // the xmm or the mask registers or xmm/ymm registers with indexes higher than 15. /// The pass applies code reduction on the generated code for AVX-512 instrs. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86InstComments.h" #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Pass.h" #include #include #include using namespace llvm; // Including the generated EVEX2VEX tables. struct X86EvexToVexCompressTableEntry { uint16_t EvexOpcode; uint16_t VexOpcode; bool operator<(const X86EvexToVexCompressTableEntry &RHS) const { return EvexOpcode < RHS.EvexOpcode; } friend bool operator<(const X86EvexToVexCompressTableEntry &TE, unsigned Opc) { return TE.EvexOpcode < Opc; } }; #include "X86GenEVEX2VEXTables.inc" #define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible" #define EVEX2VEX_NAME "x86-evex-to-vex-compress" #define DEBUG_TYPE EVEX2VEX_NAME namespace { class EvexToVexInstPass : public MachineFunctionPass { /// For EVEX instructions that can be encoded using VEX encoding, replace /// them by the VEX encoding in order to reduce size. bool CompressEvexToVexImpl(MachineInstr &MI) const; public: static char ID; EvexToVexInstPass() : MachineFunctionPass(ID) { } StringRef getPassName() const override { return EVEX2VEX_DESC; } /// Loop over all of the basic blocks, replacing EVEX instructions /// by equivalent VEX instructions when possible for reducing code size. bool runOnMachineFunction(MachineFunction &MF) override; // This pass runs after regalloc and doesn't support VReg operands. MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: /// Machine instruction info used throughout the class. const X86InstrInfo *TII = nullptr; const X86Subtarget *ST = nullptr; }; } // end anonymous namespace char EvexToVexInstPass::ID = 0; bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) { TII = MF.getSubtarget().getInstrInfo(); ST = &MF.getSubtarget(); if (!ST->hasAVX512()) return false; bool Changed = false; /// Go over all basic blocks in function and replace /// EVEX encoded instrs by VEX encoding when possible. for (MachineBasicBlock &MBB : MF) { // Traverse the basic block. for (MachineInstr &MI : MBB) Changed |= CompressEvexToVexImpl(MI); } return Changed; } static bool usesExtendedRegister(const MachineInstr &MI) { auto isHiRegIdx = [](unsigned Reg) { // Check for XMM register with indexes between 16 - 31. if (Reg >= X86::XMM16 && Reg <= X86::XMM31) return true; // Check for YMM register with indexes between 16 - 31. if (Reg >= X86::YMM16 && Reg <= X86::YMM31) return true; return false; }; // Check that operands are not ZMM regs or // XMM/YMM regs with hi indexes between 16 - 31. for (const MachineOperand &MO : MI.explicit_operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); assert(!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31) && "ZMM instructions should not be in the EVEX->VEX tables"); if (isHiRegIdx(Reg)) return true; } return false; } // Do any custom cleanup needed to finalize the conversion. static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc, const X86Subtarget *ST) { (void)NewOpc; unsigned Opc = MI.getOpcode(); switch (Opc) { case X86::VALIGNDZ128rri: case X86::VALIGNDZ128rmi: case X86::VALIGNQZ128rri: case X86::VALIGNQZ128rmi: { assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && "Unexpected new opcode!"); unsigned Scale = (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4; MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1); Imm.setImm(Imm.getImm() * Scale); break; } case X86::VSHUFF32X4Z256rmi: case X86::VSHUFF32X4Z256rri: case X86::VSHUFF64X2Z256rmi: case X86::VSHUFF64X2Z256rri: case X86::VSHUFI32X4Z256rmi: case X86::VSHUFI32X4Z256rri: case X86::VSHUFI64X2Z256rmi: case X86::VSHUFI64X2Z256rri: { assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr || NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) && "Unexpected new opcode!"); MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1); int64_t ImmVal = Imm.getImm(); // Set bit 5, move bit 1 to bit 4, copy bit 0. Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); break; } case X86::VRNDSCALEPDZ128rri: case X86::VRNDSCALEPDZ128rmi: case X86::VRNDSCALEPSZ128rri: case X86::VRNDSCALEPSZ128rmi: case X86::VRNDSCALEPDZ256rri: case X86::VRNDSCALEPDZ256rmi: case X86::VRNDSCALEPSZ256rri: case X86::VRNDSCALEPSZ256rmi: case X86::VRNDSCALESDZr: case X86::VRNDSCALESDZm: case X86::VRNDSCALESSZr: case X86::VRNDSCALESSZm: case X86::VRNDSCALESDZr_Int: case X86::VRNDSCALESDZm_Int: case X86::VRNDSCALESSZr_Int: case X86::VRNDSCALESSZm_Int: const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1); int64_t ImmVal = Imm.getImm(); // Ensure that only bits 3:0 of the immediate are used. if ((ImmVal & 0xf) != ImmVal) return false; break; } return true; } // For EVEX instructions that can be encoded using VEX encoding // replace them by the VEX encoding in order to reduce size. bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const { // VEX format. // # of bytes: 0,2,3 1 1 0,1 0,1,2,4 0,1 // [Prefixes] [VEX] OPCODE ModR/M [SIB] [DISP] [IMM] // // EVEX format. // # of bytes: 4 1 1 1 4 / 1 1 // [Prefixes] EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate] const MCInstrDesc &Desc = MI.getDesc(); // Check for EVEX instructions only. if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX) return false; // Check for EVEX instructions with mask or broadcast as in these cases // the EVEX prefix is needed in order to carry this information // thus preventing the transformation to VEX encoding. if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B)) return false; // Check for EVEX instructions with L2 set. These instructions are 512-bits // and can't be converted to VEX. if (Desc.TSFlags & X86II::EVEX_L2) return false; #ifndef NDEBUG // Make sure the tables are sorted. static std::atomic TableChecked(false); if (!TableChecked.load(std::memory_order_relaxed)) { assert(llvm::is_sorted(X86EvexToVex128CompressTable) && "X86EvexToVex128CompressTable is not sorted!"); assert(llvm::is_sorted(X86EvexToVex256CompressTable) && "X86EvexToVex256CompressTable is not sorted!"); TableChecked.store(true, std::memory_order_relaxed); } #endif // Use the VEX.L bit to select the 128 or 256-bit table. ArrayRef Table = (Desc.TSFlags & X86II::VEX_L) ? ArrayRef(X86EvexToVex256CompressTable) : ArrayRef(X86EvexToVex128CompressTable); const auto *I = llvm::lower_bound(Table, MI.getOpcode()); if (I == Table.end() || I->EvexOpcode != MI.getOpcode()) return false; unsigned NewOpc = I->VexOpcode; if (usesExtendedRegister(MI)) return false; if (!CheckVEXInstPredicate(MI, ST)) return false; if (!performCustomAdjustments(MI, NewOpc, ST)) return false; MI.setDesc(TII->get(NewOpc)); MI.setAsmPrinterFlag(X86::AC_EVEX_2_VEX); return true; } INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false) FunctionPass *llvm::createX86EvexToVexInsts() { return new EvexToVexInstPass(); }