//===- Delta.cpp - Delta Debugging Algorithm Implementation ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the implementation for the Delta Debugging Algorithm: // it splits a given set of Targets (i.e. Functions, Instructions, BBs, etc.) // into chunks and tries to reduce the number chunks that are interesting. // //===----------------------------------------------------------------------===// #include "Delta.h" #include "ReducerWorkItem.h" #include "TestRunner.h" #include "Utils.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/ModuleSummaryAnalysis.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MemoryBufferRef.h" #include "llvm/Support/ThreadPool.h" #include #include using namespace llvm; extern cl::OptionCategory LLVMReduceOptions; static cl::opt AbortOnInvalidReduction( "abort-on-invalid-reduction", cl::desc("Abort if any reduction results in invalid IR"), cl::cat(LLVMReduceOptions)); static cl::opt StartingGranularityLevel( "starting-granularity-level", cl::desc("Number of times to divide chunks prior to first test"), cl::cat(LLVMReduceOptions)); #ifdef LLVM_ENABLE_THREADS static cl::opt NumJobs( "j", cl::desc("Maximum number of threads to use to process chunks. Set to 1 to " "disable parallelism."), cl::init(1), cl::cat(LLVMReduceOptions)); #else unsigned NumJobs = 1; #endif /// Splits Chunks in half and prints them. /// If unable to split (when chunk size is 1) returns false. static bool increaseGranularity(std::vector &Chunks) { if (Verbose) errs() << "Increasing granularity..."; std::vector NewChunks; bool SplitAny = false; for (Chunk C : Chunks) { if (C.End - C.Begin == 0) NewChunks.push_back(C); else { int Half = (C.Begin + C.End) / 2; NewChunks.push_back({C.Begin, Half}); NewChunks.push_back({Half + 1, C.End}); SplitAny = true; } } if (SplitAny) { Chunks = NewChunks; if (Verbose) { errs() << "Success! " << NewChunks.size() << " New Chunks:\n"; for (auto C : Chunks) { errs() << '\t'; C.print(); errs() << '\n'; } } } return SplitAny; } // Check if \p ChunkToCheckForUninterestingness is interesting. Returns the // modified module if the chunk resulted in a reduction. static std::unique_ptr CheckChunk(const Chunk ChunkToCheckForUninterestingness, std::unique_ptr Clone, const TestRunner &Test, ReductionFunc ExtractChunksFromModule, const DenseSet &UninterestingChunks, const std::vector &ChunksStillConsideredInteresting) { // Take all of ChunksStillConsideredInteresting chunks, except those we've // already deemed uninteresting (UninterestingChunks) but didn't remove // from ChunksStillConsideredInteresting yet, and additionally ignore // ChunkToCheckForUninterestingness chunk. std::vector CurrentChunks; CurrentChunks.reserve(ChunksStillConsideredInteresting.size() - UninterestingChunks.size() - 1); copy_if(ChunksStillConsideredInteresting, std::back_inserter(CurrentChunks), [&](const Chunk &C) { return C != ChunkToCheckForUninterestingness && !UninterestingChunks.count(C); }); // Generate Module with only Targets inside Current Chunks Oracle O(CurrentChunks); ExtractChunksFromModule(O, *Clone); // Some reductions may result in invalid IR. Skip such reductions. if (Clone->verify(&errs())) { if (AbortOnInvalidReduction) { errs() << "Invalid reduction, aborting.\n"; Clone->print(errs()); exit(1); } if (Verbose) { errs() << " **** WARNING | reduction resulted in invalid module, " "skipping\n"; } return nullptr; } if (Verbose) { errs() << "Ignoring: "; ChunkToCheckForUninterestingness.print(); for (const Chunk &C : UninterestingChunks) C.print(); errs() << "\n"; } if (!Clone->isReduced(Test)) { // Program became non-reduced, so this chunk appears to be interesting. if (Verbose) errs() << "\n"; return nullptr; } return Clone; } static SmallString<0> ProcessChunkFromSerializedBitcode( const Chunk ChunkToCheckForUninterestingness, const TestRunner &Test, ReductionFunc ExtractChunksFromModule, const DenseSet &UninterestingChunks, ArrayRef ChunksStillConsideredInteresting, StringRef OriginalBC, std::atomic &AnyReduced) { LLVMContext Ctx; auto CloneMMM = std::make_unique(); MemoryBufferRef Data(OriginalBC, ""); CloneMMM->readBitcode(Data, Ctx, Test.getToolName()); SmallString<0> Result; if (std::unique_ptr ChunkResult = CheckChunk(ChunkToCheckForUninterestingness, std::move(CloneMMM), Test, ExtractChunksFromModule, UninterestingChunks, ChunksStillConsideredInteresting)) { raw_svector_ostream BCOS(Result); ChunkResult->writeBitcode(BCOS); // Communicate that the task reduced a chunk. AnyReduced = true; } return Result; } using SharedTaskQueue = std::deque>>; static void waitAndDiscardResultsBarrier(SharedTaskQueue &TaskQueue) { while (!TaskQueue.empty()) { auto &Future = TaskQueue.front(); Future.wait(); TaskQueue.pop_front(); } } /// Runs the Delta Debugging algorithm, splits the code into chunks and /// reduces the amount of chunks that are considered interesting by the /// given test. The number of chunks is determined by a preliminary run of the /// reduction pass where no change must be made to the module. void llvm::runDeltaPass(TestRunner &Test, ReductionFunc ExtractChunksFromModule, StringRef Message) { assert(!Test.getProgram().verify(&errs()) && "input module is broken before making changes"); errs() << "*** " << Message << "...\n"; int Targets; { // Count the number of chunks by counting the number of calls to // Oracle::shouldKeep() but always returning true so no changes are // made. std::vector AllChunks = {{0, INT_MAX}}; Oracle Counter(AllChunks); ExtractChunksFromModule(Counter, Test.getProgram()); Targets = Counter.count(); assert(!Test.getProgram().verify(&errs()) && "input module is broken after counting chunks"); assert(Test.getProgram().isReduced(Test) && "input module no longer interesting after counting chunks"); #ifndef NDEBUG // Make sure that the number of chunks does not change as we reduce. std::vector NoChunks = {{0, INT_MAX}}; Oracle NoChunksCounter(NoChunks); std::unique_ptr Clone = Test.getProgram().clone(Test.getTargetMachine()); ExtractChunksFromModule(NoChunksCounter, *Clone); assert(Targets == NoChunksCounter.count() && "number of chunks changes when reducing"); #endif } if (!Targets) { if (Verbose) errs() << "\nNothing to reduce\n"; errs() << "----------------------------\n"; return; } std::vector ChunksStillConsideredInteresting = {{0, Targets - 1}}; std::unique_ptr ReducedProgram; for (unsigned int Level = 0; Level < StartingGranularityLevel; Level++) { increaseGranularity(ChunksStillConsideredInteresting); } std::atomic AnyReduced; std::unique_ptr ChunkThreadPoolPtr; if (NumJobs > 1) ChunkThreadPoolPtr = std::make_unique(hardware_concurrency(NumJobs)); bool FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity; do { FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity = false; DenseSet UninterestingChunks; // When running with more than one thread, serialize the original bitcode // to OriginalBC. SmallString<0> OriginalBC; if (NumJobs > 1) { raw_svector_ostream BCOS(OriginalBC); Test.getProgram().writeBitcode(BCOS); } SharedTaskQueue TaskQueue; for (auto I = ChunksStillConsideredInteresting.rbegin(), E = ChunksStillConsideredInteresting.rend(); I != E; ++I) { std::unique_ptr Result = nullptr; unsigned WorkLeft = std::distance(I, E); // Run in parallel mode, if the user requested more than one thread and // there are at least a few chunks to process. if (NumJobs > 1 && WorkLeft > 1) { unsigned NumInitialTasks = std::min(WorkLeft, unsigned(NumJobs)); unsigned NumChunksProcessed = 0; ThreadPool &ChunkThreadPool = *ChunkThreadPoolPtr; TaskQueue.clear(); AnyReduced = false; // Queue jobs to process NumInitialTasks chunks in parallel using // ChunkThreadPool. When the tasks are added to the pool, parse the // original module from OriginalBC with a fresh LLVMContext object. This // ensures that the cloned module of each task uses an independent // LLVMContext object. If a task reduces the input, serialize the result // back in the corresponding Result element. for (unsigned J = 0; J < NumInitialTasks; ++J) { Chunk ChunkToCheck = *(I + J); TaskQueue.emplace_back(ChunkThreadPool.async( ProcessChunkFromSerializedBitcode, ChunkToCheck, std::ref(Test), ExtractChunksFromModule, UninterestingChunks, ChunksStillConsideredInteresting, OriginalBC, std::ref(AnyReduced))); } // Start processing results of the queued tasks. We wait for the first // task in the queue to finish. If it reduced a chunk, we parse the // result and exit the loop. // Otherwise we will try to schedule a new task, if // * no other pending job reduced a chunk and // * we have not reached the end of the chunk. while (!TaskQueue.empty()) { auto &Future = TaskQueue.front(); Future.wait(); NumChunksProcessed++; SmallString<0> Res = Future.get(); TaskQueue.pop_front(); if (Res.empty()) { unsigned NumScheduledTasks = NumChunksProcessed + TaskQueue.size(); if (!AnyReduced && I + NumScheduledTasks != E) { Chunk ChunkToCheck = *(I + NumScheduledTasks); TaskQueue.emplace_back(ChunkThreadPool.async( ProcessChunkFromSerializedBitcode, ChunkToCheck, std::ref(Test), ExtractChunksFromModule, UninterestingChunks, ChunksStillConsideredInteresting, OriginalBC, std::ref(AnyReduced))); } continue; } Result = std::make_unique(); MemoryBufferRef Data(StringRef(Res), ""); Result->readBitcode(Data, Test.getProgram().M->getContext(), Test.getToolName()); break; } // If we broke out of the loop, we still need to wait for everything to // avoid race access to the chunk set. // // TODO: Create a way to kill remaining items we're ignoring; they could // take a long time. waitAndDiscardResultsBarrier(TaskQueue); // Forward I to the last chunk processed in parallel. I += NumChunksProcessed - 1; } else { Result = CheckChunk(*I, Test.getProgram().clone(Test.getTargetMachine()), Test, ExtractChunksFromModule, UninterestingChunks, ChunksStillConsideredInteresting); } if (!Result) continue; const Chunk ChunkToCheckForUninterestingness = *I; FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity = true; UninterestingChunks.insert(ChunkToCheckForUninterestingness); ReducedProgram = std::move(Result); // FIXME: Report meaningful progress info Test.writeOutput(" **** SUCCESS | Saved new best reduction to "); } // Delete uninteresting chunks erase_if(ChunksStillConsideredInteresting, [&UninterestingChunks](const Chunk &C) { return UninterestingChunks.count(C); }); } while (!ChunksStillConsideredInteresting.empty() && (FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity || increaseGranularity(ChunksStillConsideredInteresting))); // If we reduced the testcase replace it if (ReducedProgram) Test.setProgram(std::move(ReducedProgram)); if (Verbose) errs() << "Couldn't increase anymore.\n"; errs() << "----------------------------\n"; }