#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif // llvm/Transforms/IPO/PassManagerBuilder.h - Build Standard Pass -*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the PassManagerBuilder class, which is used to set up a // "standard" optimization sequence suitable for languages like C and C++. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_IPO_PASSMANAGERBUILDER_H #define LLVM_TRANSFORMS_IPO_PASSMANAGERBUILDER_H #include "llvm-c/Transforms/PassManagerBuilder.h" #include #include #include namespace llvm { class ModuleSummaryIndex; class Pass; class TargetLibraryInfoImpl; // The old pass manager infrastructure is hidden in a legacy namespace now. namespace legacy { class FunctionPassManager; class PassManagerBase; } /// PassManagerBuilder - This class is used to set up a standard optimization /// sequence for languages like C and C++, allowing some APIs to customize the /// pass sequence in various ways. A simple example of using it would be: /// /// PassManagerBuilder Builder; /// Builder.OptLevel = 2; /// Builder.populateFunctionPassManager(FPM); /// Builder.populateModulePassManager(MPM); /// /// In addition to setting up the basic passes, PassManagerBuilder allows /// frontends to vend a plugin API, where plugins are allowed to add extensions /// to the default pass manager. They do this by specifying where in the pass /// pipeline they want to be added, along with a callback function that adds /// the pass(es). For example, a plugin that wanted to add a loop optimization /// could do something like this: /// /// static void addMyLoopPass(const PMBuilder &Builder, PassManagerBase &PM) { /// if (Builder.getOptLevel() > 2 && Builder.getOptSizeLevel() == 0) /// PM.add(createMyAwesomePass()); /// } /// ... /// Builder.addExtension(PassManagerBuilder::EP_LoopOptimizerEnd, /// addMyLoopPass); /// ... class PassManagerBuilder { public: /// Extensions are passed to the builder itself (so they can see how it is /// configured) as well as the pass manager to add stuff to. typedef std::function ExtensionFn; typedef int GlobalExtensionID; /// The Optimization Level - Specify the basic optimization level. /// 0 = -O0, 1 = -O1, 2 = -O2, 3 = -O3 unsigned OptLevel; /// SizeLevel - How much we're optimizing for size. /// 0 = none, 1 = -Os, 2 = -Oz unsigned SizeLevel; /// LibraryInfo - Specifies information about the runtime library for the /// optimizer. If this is non-null, it is added to both the function and /// per-module pass pipeline. TargetLibraryInfoImpl *LibraryInfo; /// Inliner - Specifies the inliner to use. If this is non-null, it is /// added to the per-module passes. Pass *Inliner; /// The module summary index to use for exporting information from the /// regular LTO phase, for example for the CFI and devirtualization type /// tests. ModuleSummaryIndex *ExportSummary = nullptr; /// The module summary index to use for importing information to the /// thin LTO backends, for example for the CFI and devirtualization type /// tests. const ModuleSummaryIndex *ImportSummary = nullptr; bool DisableUnrollLoops; bool CallGraphProfile; bool SLPVectorize; bool LoopVectorize; bool LoopsInterleaved; bool DisableGVNLoadPRE; bool ForgetAllSCEVInLoopUnroll; bool VerifyInput; bool VerifyOutput; bool MergeFunctions; bool DivergentTarget; unsigned LicmMssaOptCap; unsigned LicmMssaNoAccForPromotionCap; public: PassManagerBuilder(); ~PassManagerBuilder(); private: void addInitialAliasAnalysisPasses(legacy::PassManagerBase &PM) const; void addFunctionSimplificationPasses(legacy::PassManagerBase &MPM); void addVectorPasses(legacy::PassManagerBase &PM, bool IsFullLTO); public: /// populateFunctionPassManager - This fills in the function pass manager, /// which is expected to be run on each function immediately as it is /// generated. The idea is to reduce the size of the IR in memory. void populateFunctionPassManager(legacy::FunctionPassManager &FPM); /// populateModulePassManager - This sets up the primary pass manager. void populateModulePassManager(legacy::PassManagerBase &MPM); }; inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { return reinterpret_cast(P); } inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { return reinterpret_cast(P); } } // end namespace llvm #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif