//===-- primary64.h ---------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef SCUDO_PRIMARY64_H_ #define SCUDO_PRIMARY64_H_ #include "bytemap.h" #include "common.h" #include "list.h" #include "local_cache.h" #include "memtag.h" #include "options.h" #include "release.h" #include "stats.h" #include "string_utils.h" namespace scudo { // SizeClassAllocator64 is an allocator tuned for 64-bit address space. // // It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in // Regions, specific to each size class. Note that the base of that mapping is // random (based to the platform specific map() capabilities). If // PrimaryEnableRandomOffset is set, each Region actually starts at a random // offset from its base. // // Regions are mapped incrementally on demand to fulfill allocation requests, // those mappings being split into equally sized Blocks based on the size class // they belong to. The Blocks created are shuffled to prevent predictable // address patterns (the predictability increases with the size of the Blocks). // // The 1st Region (for size class 0) holds the TransferBatches. This is a // structure used to transfer arrays of available pointers from the class size // freelist to the thread specific freelist, and back. // // The memory used by this allocator is never unmapped, but can be partially // released if the platform allows for it. template class SizeClassAllocator64 { public: typedef typename Config::PrimaryCompactPtrT CompactPtrT; static const uptr CompactPtrScale = Config::PrimaryCompactPtrScale; static const uptr GroupSizeLog = Config::PrimaryGroupSizeLog; typedef typename Config::SizeClassMap SizeClassMap; typedef SizeClassAllocator64 ThisT; typedef SizeClassAllocatorLocalCache CacheT; typedef typename CacheT::TransferBatch TransferBatch; typedef typename CacheT::BatchGroup BatchGroup; static uptr getSizeByClassId(uptr ClassId) { return (ClassId == SizeClassMap::BatchClassId) ? roundUpTo(sizeof(TransferBatch), 1U << CompactPtrScale) : SizeClassMap::getSizeByClassId(ClassId); } static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } void init(s32 ReleaseToOsInterval) { DCHECK(isAligned(reinterpret_cast(this), alignof(ThisT))); DCHECK_EQ(PrimaryBase, 0U); // Reserve the space required for the Primary. PrimaryBase = reinterpret_cast( map(nullptr, PrimarySize, nullptr, MAP_NOACCESS, &Data)); u32 Seed; const u64 Time = getMonotonicTime(); if (!getRandom(reinterpret_cast(&Seed), sizeof(Seed))) Seed = static_cast(Time ^ (PrimaryBase >> 12)); const uptr PageSize = getPageSizeCached(); for (uptr I = 0; I < NumClasses; I++) { RegionInfo *Region = getRegionInfo(I); // The actual start of a region is offset by a random number of pages // when PrimaryEnableRandomOffset is set. Region->RegionBeg = getRegionBaseByClassId(I) + (Config::PrimaryEnableRandomOffset ? ((getRandomModN(&Seed, 16) + 1) * PageSize) : 0); Region->RandState = getRandomU32(&Seed); Region->ReleaseInfo.LastReleaseAtNs = Time; } setOption(Option::ReleaseInterval, static_cast(ReleaseToOsInterval)); } void unmapTestOnly() { for (uptr I = 0; I < NumClasses; I++) { RegionInfo *Region = getRegionInfo(I); *Region = {}; } if (PrimaryBase) unmap(reinterpret_cast(PrimaryBase), PrimarySize, UNMAP_ALL, &Data); PrimaryBase = 0U; } TransferBatch *popBatch(CacheT *C, uptr ClassId) { DCHECK_LT(ClassId, NumClasses); RegionInfo *Region = getRegionInfo(ClassId); ScopedLock L(Region->Mutex); TransferBatch *B = popBatchImpl(C, ClassId); if (UNLIKELY(!B)) { if (UNLIKELY(!populateFreeList(C, ClassId, Region))) return nullptr; B = popBatchImpl(C, ClassId); // if `populateFreeList` succeeded, we are supposed to get free blocks. DCHECK_NE(B, nullptr); } Region->Stats.PoppedBlocks += B->getCount(); return B; } // Push the array of free blocks to the designated batch group. void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) { DCHECK_LT(ClassId, NumClasses); DCHECK_GT(Size, 0); RegionInfo *Region = getRegionInfo(ClassId); if (ClassId == SizeClassMap::BatchClassId) { ScopedLock L(Region->Mutex); // Constructing a batch group in the free list will use two blocks in // BatchClassId. If we are pushing BatchClassId blocks, we will use the // blocks in the array directly (can't delegate local cache which will // cause a recursive allocation). However, The number of free blocks may // be less than two. Therefore, populate the free list before inserting // the blocks. if (Size == 1 && UNLIKELY(!populateFreeList(C, ClassId, Region))) return; pushBlocksImpl(C, ClassId, Array, Size); Region->Stats.PushedBlocks += Size; return; } // TODO(chiahungduan): Consider not doing grouping if the group size is not // greater than the block size with a certain scale. // Sort the blocks so that blocks belonging to the same group can be pushed // together. bool SameGroup = true; for (u32 I = 1; I < Size; ++I) { if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) SameGroup = false; CompactPtrT Cur = Array[I]; u32 J = I; while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) { Array[J] = Array[J - 1]; --J; } Array[J] = Cur; } ScopedLock L(Region->Mutex); pushBlocksImpl(C, ClassId, Array, Size, SameGroup); Region->Stats.PushedBlocks += Size; if (ClassId != SizeClassMap::BatchClassId) releaseToOSMaybe(Region, ClassId); } void disable() { // The BatchClassId must be locked last since other classes can use it. for (sptr I = static_cast(NumClasses) - 1; I >= 0; I--) { if (static_cast(I) == SizeClassMap::BatchClassId) continue; getRegionInfo(static_cast(I))->Mutex.lock(); } getRegionInfo(SizeClassMap::BatchClassId)->Mutex.lock(); } void enable() { getRegionInfo(SizeClassMap::BatchClassId)->Mutex.unlock(); for (uptr I = 0; I < NumClasses; I++) { if (I == SizeClassMap::BatchClassId) continue; getRegionInfo(I)->Mutex.unlock(); } } template void iterateOverBlocks(F Callback) { for (uptr I = 0; I < NumClasses; I++) { if (I == SizeClassMap::BatchClassId) continue; const RegionInfo *Region = getRegionInfo(I); const uptr BlockSize = getSizeByClassId(I); const uptr From = Region->RegionBeg; const uptr To = From + Region->AllocatedUser; for (uptr Block = From; Block < To; Block += BlockSize) Callback(Block); } } void getStats(ScopedString *Str) { // TODO(kostyak): get the RSS per region. uptr TotalMapped = 0; uptr PoppedBlocks = 0; uptr PushedBlocks = 0; for (uptr I = 0; I < NumClasses; I++) { RegionInfo *Region = getRegionInfo(I); if (Region->MappedUser) TotalMapped += Region->MappedUser; PoppedBlocks += Region->Stats.PoppedBlocks; PushedBlocks += Region->Stats.PushedBlocks; } Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu " "allocations; remains %zu\n", TotalMapped >> 20, 0U, PoppedBlocks, PoppedBlocks - PushedBlocks); for (uptr I = 0; I < NumClasses; I++) getStats(Str, I, 0); } bool setOption(Option O, sptr Value) { if (O == Option::ReleaseInterval) { const s32 Interval = Max( Min(static_cast(Value), Config::PrimaryMaxReleaseToOsIntervalMs), Config::PrimaryMinReleaseToOsIntervalMs); atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval); return true; } // Not supported by the Primary, but not an error either. return true; } uptr releaseToOS() { uptr TotalReleasedBytes = 0; for (uptr I = 0; I < NumClasses; I++) { if (I == SizeClassMap::BatchClassId) continue; RegionInfo *Region = getRegionInfo(I); ScopedLock L(Region->Mutex); TotalReleasedBytes += releaseToOSMaybe(Region, I, /*Force=*/true); } return TotalReleasedBytes; } const char *getRegionInfoArrayAddress() const { return reinterpret_cast(RegionInfoArray); } static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); } uptr getCompactPtrBaseByClassId(uptr ClassId) { // If we are not compacting pointers, base everything off of 0. if (sizeof(CompactPtrT) == sizeof(uptr) && CompactPtrScale == 0) return 0; return getRegionInfo(ClassId)->RegionBeg; } CompactPtrT compactPtr(uptr ClassId, uptr Ptr) { DCHECK_LE(ClassId, SizeClassMap::LargestClassId); return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr); } void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) { DCHECK_LE(ClassId, SizeClassMap::LargestClassId); return reinterpret_cast( decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr)); } static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) { const RegionInfo *RegionInfoArray = reinterpret_cast(RegionInfoData); uptr ClassId; uptr MinDistance = -1UL; for (uptr I = 0; I != NumClasses; ++I) { if (I == SizeClassMap::BatchClassId) continue; uptr Begin = RegionInfoArray[I].RegionBeg; uptr End = Begin + RegionInfoArray[I].AllocatedUser; if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I)) continue; uptr RegionDistance; if (Begin <= Ptr) { if (Ptr < End) RegionDistance = 0; else RegionDistance = Ptr - End; } else { RegionDistance = Begin - Ptr; } if (RegionDistance < MinDistance) { MinDistance = RegionDistance; ClassId = I; } } BlockInfo B = {}; if (MinDistance <= 8192) { B.RegionBegin = RegionInfoArray[ClassId].RegionBeg; B.RegionEnd = B.RegionBegin + RegionInfoArray[ClassId].AllocatedUser; B.BlockSize = SizeClassMap::getSizeByClassId(ClassId); B.BlockBegin = B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) * sptr(B.BlockSize)); while (B.BlockBegin < B.RegionBegin) B.BlockBegin += B.BlockSize; while (B.RegionEnd < B.BlockBegin + B.BlockSize) B.BlockBegin -= B.BlockSize; } return B; } AtomicOptions Options; private: static const uptr RegionSize = 1UL << Config::PrimaryRegionSizeLog; static const uptr NumClasses = SizeClassMap::NumClasses; static const uptr PrimarySize = RegionSize * NumClasses; static const uptr MapSizeIncrement = Config::PrimaryMapSizeIncrement; // Fill at most this number of batches from the newly map'd memory. static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; struct RegionStats { uptr PoppedBlocks; uptr PushedBlocks; }; struct ReleaseToOsInfo { uptr PushedBlocksAtLastRelease; uptr RangesReleased; uptr LastReleasedBytes; u64 LastReleaseAtNs; }; struct UnpaddedRegionInfo { HybridMutex Mutex; SinglyLinkedList FreeList; uptr RegionBeg = 0; RegionStats Stats = {}; u32 RandState = 0; uptr MappedUser = 0; // Bytes mapped for user memory. uptr AllocatedUser = 0; // Bytes allocated for user memory. MapPlatformData Data = {}; ReleaseToOsInfo ReleaseInfo = {}; bool Exhausted = false; }; struct RegionInfo : UnpaddedRegionInfo { char Padding[SCUDO_CACHE_LINE_SIZE - (sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {}; }; static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, ""); uptr PrimaryBase = 0; MapPlatformData Data = {}; atomic_s32 ReleaseToOsIntervalMs = {}; alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses]; RegionInfo *getRegionInfo(uptr ClassId) { DCHECK_LT(ClassId, NumClasses); return &RegionInfoArray[ClassId]; } uptr getRegionBaseByClassId(uptr ClassId) const { return PrimaryBase + (ClassId << Config::PrimaryRegionSizeLog); } static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) { return static_cast((Ptr - Base) >> CompactPtrScale); } static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) { return Base + (static_cast(CompactPtr) << CompactPtrScale); } static uptr compactPtrGroup(CompactPtrT CompactPtr) { return static_cast(CompactPtr) >> (GroupSizeLog - CompactPtrScale); } static uptr batchGroupBase(uptr Base, uptr GroupId) { return (GroupId << GroupSizeLog) + Base; } // Push the blocks to their batch group. The layout will be like, // // FreeList - > BG -> BG -> BG // | | | // v v v // TB TB TB // | // v // TB // // Each BlockGroup(BG) will associate with unique group id and the free blocks // are managed by a list of TransferBatch(TB). To reduce the time of inserting // blocks, BGs are sorted and the input `Array` are supposed to be sorted so // that we can get better performance of maintaining sorted property. // Use `SameGroup=true` to indicate that all blocks in the array are from the // same group then we will skip checking the group id of each block. // // Note that this aims to have a better management of dirty pages, i.e., the // RSS usage won't grow indefinitely. There's an exception that we may not put // a block to its associated group. While populating new blocks, we may have // blocks cross different groups. However, most cases will fall into same // group and they are supposed to be popped soon. In that case, it's not worth // sorting the array with the almost-sorted property. Therefore, we use // `SameGroup=true` instead. // // The region mutex needs to be held while calling this method. void pushBlocksImpl(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size, bool SameGroup = false) { DCHECK_GT(Size, 0U); RegionInfo *Region = getRegionInfo(ClassId); auto CreateGroup = [&](uptr GroupId) { BatchGroup *BG = nullptr; TransferBatch *TB = nullptr; if (ClassId == SizeClassMap::BatchClassId) { DCHECK_GE(Size, 2U); BG = reinterpret_cast( decompactPtr(ClassId, Array[Size - 1])); BG->Batches.clear(); TB = reinterpret_cast( decompactPtr(ClassId, Array[Size - 2])); TB->clear(); } else { BG = C->createGroup(); BG->Batches.clear(); TB = C->createBatch(ClassId, nullptr); TB->clear(); } BG->GroupId = GroupId; BG->Batches.push_front(TB); BG->PushedBlocks = 0; BG->PushedBlocksAtLastCheckpoint = 0; BG->MaxCachedPerBatch = TransferBatch::getMaxCached(getSizeByClassId(ClassId)); return BG; }; auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) { SinglyLinkedList &Batches = BG->Batches; TransferBatch *CurBatch = Batches.front(); DCHECK_NE(CurBatch, nullptr); for (u32 I = 0; I < Size;) { DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); u16 UnusedSlots = static_cast(BG->MaxCachedPerBatch - CurBatch->getCount()); if (UnusedSlots == 0) { CurBatch = C->createBatch( ClassId, reinterpret_cast(decompactPtr(ClassId, Array[I]))); CurBatch->clear(); Batches.push_front(CurBatch); UnusedSlots = BG->MaxCachedPerBatch; } // `UnusedSlots` is u16 so the result will be also fit in u16. u16 AppendSize = static_cast(Min(UnusedSlots, Size - I)); CurBatch->appendFromArray(&Array[I], AppendSize); I += AppendSize; } BG->PushedBlocks += Size; }; BatchGroup *Cur = Region->FreeList.front(); if (ClassId == SizeClassMap::BatchClassId) { if (Cur == nullptr) { // Don't need to classify BatchClassId. Cur = CreateGroup(/*GroupId=*/0); Region->FreeList.push_front(Cur); } InsertBlocks(Cur, Array, Size); return; } // In the following, `Cur` always points to the BatchGroup for blocks that // will be pushed next. `Prev` is the element right before `Cur`. BatchGroup *Prev = nullptr; while (Cur != nullptr && compactPtrGroup(Array[0]) > Cur->GroupId) { Prev = Cur; Cur = Cur->Next; } if (Cur == nullptr || compactPtrGroup(Array[0]) != Cur->GroupId) { Cur = CreateGroup(compactPtrGroup(Array[0])); if (Prev == nullptr) Region->FreeList.push_front(Cur); else Region->FreeList.insert(Prev, Cur); } // All the blocks are from the same group, just push without checking group // id. if (SameGroup) { InsertBlocks(Cur, Array, Size); return; } // The blocks are sorted by group id. Determine the segment of group and // push them to their group together. u32 Count = 1; for (u32 I = 1; I < Size; ++I) { if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) { DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->GroupId); InsertBlocks(Cur, Array + I - Count, Count); while (Cur != nullptr && compactPtrGroup(Array[I]) > Cur->GroupId) { Prev = Cur; Cur = Cur->Next; } if (Cur == nullptr || compactPtrGroup(Array[I]) != Cur->GroupId) { Cur = CreateGroup(compactPtrGroup(Array[I])); DCHECK_NE(Prev, nullptr); Region->FreeList.insert(Prev, Cur); } Count = 1; } else { ++Count; } } InsertBlocks(Cur, Array + Size - Count, Count); } // Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest // group id will be considered first. // // The region mutex needs to be held while calling this method. TransferBatch *popBatchImpl(CacheT *C, uptr ClassId) { RegionInfo *Region = getRegionInfo(ClassId); if (Region->FreeList.empty()) return nullptr; SinglyLinkedList &Batches = Region->FreeList.front()->Batches; DCHECK(!Batches.empty()); TransferBatch *B = Batches.front(); Batches.pop_front(); DCHECK_NE(B, nullptr); DCHECK_GT(B->getCount(), 0U); if (Batches.empty()) { BatchGroup *BG = Region->FreeList.front(); Region->FreeList.pop_front(); // We don't keep BatchGroup with zero blocks to avoid empty-checking while // allocating. Note that block used by constructing BatchGroup is recorded // as free blocks in the last element of BatchGroup::Batches. Which means, // once we pop the last TransferBatch, the block is implicitly // deallocated. if (ClassId != SizeClassMap::BatchClassId) C->deallocate(SizeClassMap::BatchClassId, BG); } return B; } NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, RegionInfo *Region) { const uptr Size = getSizeByClassId(ClassId); const u16 MaxCount = TransferBatch::getMaxCached(Size); const uptr RegionBeg = Region->RegionBeg; const uptr MappedUser = Region->MappedUser; const uptr TotalUserBytes = Region->AllocatedUser + MaxCount * Size; // Map more space for blocks, if necessary. if (TotalUserBytes > MappedUser) { // Do the mmap for the user memory. const uptr MapSize = roundUpTo(TotalUserBytes - MappedUser, MapSizeIncrement); const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId); if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) { if (!Region->Exhausted) { Region->Exhausted = true; ScopedString Str; getStats(&Str); Str.append( "Scudo OOM: The process has exhausted %zuM for size class %zu.\n", RegionSize >> 20, Size); Str.output(); } return false; } if (MappedUser == 0) Region->Data = Data; if (UNLIKELY(!map( reinterpret_cast(RegionBeg + MappedUser), MapSize, "scudo:primary", MAP_ALLOWNOMEM | MAP_RESIZABLE | (useMemoryTagging(Options.load()) ? MAP_MEMTAG : 0), &Region->Data))) { return false; } Region->MappedUser += MapSize; C->getStats().add(StatMapped, MapSize); } const u32 NumberOfBlocks = Min( MaxNumBatches * MaxCount, static_cast((Region->MappedUser - Region->AllocatedUser) / Size)); DCHECK_GT(NumberOfBlocks, 0); constexpr u32 ShuffleArraySize = MaxNumBatches * TransferBatch::MaxNumCached; CompactPtrT ShuffleArray[ShuffleArraySize]; DCHECK_LE(NumberOfBlocks, ShuffleArraySize); const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId); uptr P = RegionBeg + Region->AllocatedUser; for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P); // No need to shuffle the batches size class. if (ClassId != SizeClassMap::BatchClassId) shuffle(ShuffleArray, NumberOfBlocks, &Region->RandState); for (u32 I = 0; I < NumberOfBlocks;) { // `MaxCount` is u16 so the result will also fit in u16. const u16 N = static_cast(Min(MaxCount, NumberOfBlocks - I)); // Note that the N blocks here may have different group ids. Given that // it only happens when it crosses the group size boundary. Instead of // sorting them, treat them as same group here to avoid sorting the // almost-sorted blocks. pushBlocksImpl(C, ClassId, &ShuffleArray[I], N, /*SameGroup=*/true); I += N; } const uptr AllocatedUser = Size * NumberOfBlocks; C->getStats().add(StatFree, AllocatedUser); Region->AllocatedUser += AllocatedUser; return true; } void getStats(ScopedString *Str, uptr ClassId, uptr Rss) { RegionInfo *Region = getRegionInfo(ClassId); if (Region->MappedUser == 0) return; const uptr InUse = Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks; const uptr TotalChunks = Region->AllocatedUser / getSizeByClassId(ClassId); Str->append("%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " "inuse: %6zu total: %6zu rss: %6zuK releases: %6zu last " "released: %6zuK region: 0x%zx (0x%zx)\n", Region->Exhausted ? "F" : " ", ClassId, getSizeByClassId(ClassId), Region->MappedUser >> 10, Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks, InUse, TotalChunks, Rss >> 10, Region->ReleaseInfo.RangesReleased, Region->ReleaseInfo.LastReleasedBytes >> 10, Region->RegionBeg, getRegionBaseByClassId(ClassId)); } NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId, bool Force = false) { const uptr BlockSize = getSizeByClassId(ClassId); const uptr PageSize = getPageSizeCached(); DCHECK_GE(Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks); const uptr BytesInFreeList = Region->AllocatedUser - (Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks) * BlockSize; if (BytesInFreeList < PageSize) return 0; // No chance to release anything. const uptr BytesPushed = (Region->Stats.PushedBlocks - Region->ReleaseInfo.PushedBlocksAtLastRelease) * BlockSize; if (BytesPushed < PageSize) return 0; // Nothing new to release. bool CheckDensity = BlockSize < PageSize / 16U; // Releasing smaller blocks is expensive, so we want to make sure that a // significant amount of bytes are free, and that there has been a good // amount of batches pushed to the freelist before attempting to release. if (CheckDensity) { if (!Force && BytesPushed < Region->AllocatedUser / 16U) return 0; } if (!Force) { const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs); if (IntervalMs < 0) return 0; if (Region->ReleaseInfo.LastReleaseAtNs + static_cast(IntervalMs) * 1000000 > getMonotonicTime()) { return 0; // Memory was returned recently. } } const uptr GroupSize = (1U << GroupSizeLog); const uptr AllocatedUserEnd = Region->AllocatedUser + Region->RegionBeg; ReleaseRecorder Recorder(Region->RegionBeg, &Region->Data); PageReleaseContext Context(BlockSize, Region->AllocatedUser, /*NumberOfRegions=*/1U); const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId); auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) { return decompactPtrInternal(CompactPtrBase, CompactPtr); }; for (BatchGroup &BG : Region->FreeList) { const uptr PushedBytesDelta = BG.PushedBlocks - BG.PushedBlocksAtLastCheckpoint; if (PushedBytesDelta * BlockSize < PageSize) continue; // Group boundary does not necessarily have the same alignment as Region. // It may sit across a Region boundary. Which means that we may have the // following two cases, // // 1. Group boundary sits before RegionBeg. // // (BatchGroupBeg) // batchGroupBase RegionBeg BatchGroupEnd // | | | // v v v // +------------+----------------+ // \ / // ------ GroupSize ------ // // 2. Group boundary sits after RegionBeg. // // (BatchGroupBeg) // RegionBeg batchGroupBase BatchGroupEnd // | | | // v v v // +-----------+-----------------------------+ // \ / // ------ GroupSize ------ // // Note that in the first case, the group range before RegionBeg is never // used. Therefore, while calculating the used group size, we should // exclude that part to get the correct size. const uptr BatchGroupBeg = Max(batchGroupBase(CompactPtrBase, BG.GroupId), Region->RegionBeg); DCHECK_GE(AllocatedUserEnd, BatchGroupBeg); const uptr BatchGroupEnd = batchGroupBase(CompactPtrBase, BG.GroupId) + GroupSize; const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd ? BatchGroupEnd - BatchGroupBeg : AllocatedUserEnd - BatchGroupBeg; if (AllocatedGroupSize == 0) continue; // TransferBatches are pushed in front of BG.Batches. The first one may // not have all caches used. const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + BG.Batches.front()->getCount(); const uptr BytesInBG = NumBlocks * BlockSize; // Given the randomness property, we try to release the pages only if the // bytes used by free blocks exceed certain proportion of group size. Note // that this heuristic only applies when all the spaces in a BatchGroup // are allocated. if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize < (100U - 1U - BlockSize / 16U)) { continue; } BG.PushedBlocksAtLastCheckpoint = BG.PushedBlocks; // Note that we don't always visit blocks in each BatchGroup so that we // may miss the chance of releasing certain pages that cross BatchGroups. Context.markFreeBlocks(BG.Batches, DecompactPtr, Region->RegionBeg); } if (!Context.hasBlockMarked()) return 0; auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; }; releaseFreeMemoryToOS(Context, Recorder, SkipRegion); if (Recorder.getReleasedRangesCount() > 0) { Region->ReleaseInfo.PushedBlocksAtLastRelease = Region->Stats.PushedBlocks; Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount(); Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); } Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTime(); return Recorder.getReleasedBytes(); } }; } // namespace scudo #endif // SCUDO_PRIMARY64_H_