// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // mutex.h // ----------------------------------------------------------------------------- // // This header file defines a `Mutex` -- a mutually exclusive lock -- and the // most common type of synchronization primitive for facilitating locks on // shared resources. A mutex is used to prevent multiple threads from accessing // and/or writing to a shared resource concurrently. // // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional // features: // * Conditional predicates intrinsic to the `Mutex` object // * Shared/reader locks, in addition to standard exclusive/writer locks // * Deadlock detection and debug support. // // The following helper classes are also defined within this file: // // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/ // write access within the current scope. // // ReaderMutexLock // - An RAII wrapper to acquire and release a `Mutex` for shared/read // access within the current scope. // // WriterMutexLock // - Effectively an alias for `MutexLock` above, designed for use in // distinguishing reader and writer locks within code. // // In addition to simple mutex locks, this file also defines ways to perform // locking under certain conditions. // // Condition - (Preferred) Used to wait for a particular predicate that // depends on state protected by the `Mutex` to become true. // CondVar - A lower-level variant of `Condition` that relies on // application code to explicitly signal the `CondVar` when // a condition has been met. // // See below for more information on using `Condition` or `CondVar`. // // Mutexes and mutex behavior can be quite complicated. The information within // this header file is limited, as a result. Please consult the Mutex guide for // more complete information and examples. #ifndef Y_ABSL_SYNCHRONIZATION_MUTEX_H_ #define Y_ABSL_SYNCHRONIZATION_MUTEX_H_ #include #include #include #include #include #include "y_absl/base/attributes.h" #include "y_absl/base/const_init.h" #include "y_absl/base/internal/identity.h" #include "y_absl/base/internal/low_level_alloc.h" #include "y_absl/base/internal/thread_identity.h" #include "y_absl/base/internal/tsan_mutex_interface.h" #include "y_absl/base/port.h" #include "y_absl/base/thread_annotations.h" #include "y_absl/synchronization/internal/kernel_timeout.h" #include "y_absl/synchronization/internal/per_thread_sem.h" #include "y_absl/time/time.h" namespace y_absl { Y_ABSL_NAMESPACE_BEGIN class Condition; struct SynchWaitParams; // ----------------------------------------------------------------------------- // Mutex // ----------------------------------------------------------------------------- // // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock // on some resource, typically a variable or data structure with associated // invariants. Proper usage of mutexes prevents concurrent access by different // threads to the same resource. // // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`. // The `Lock()` operation *acquires* a `Mutex` (in a state known as an // *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a // Mutex. During the span of time between the Lock() and Unlock() operations, // a mutex is said to be *held*. By design, all mutexes support exclusive/write // locks, as this is the most common way to use a mutex. // // Mutex operations are only allowed under certain conditions; otherwise an // operation is "invalid", and disallowed by the API. The conditions concern // both the current state of the mutex and the identity of the threads that // are performing the operations. // // The `Mutex` state machine for basic lock/unlock operations is quite simple: // // | | Lock() | Unlock() | // |----------------+------------------------+----------| // | Free | Exclusive | invalid | // | Exclusive | blocks, then exclusive | Free | // // The full conditions are as follows. // // * Calls to `Unlock()` require that the mutex be held, and must be made in the // same thread that performed the corresponding `Lock()` operation which // acquired the mutex; otherwise the call is invalid. // // * The mutex being non-reentrant (or non-recursive) means that a call to // `Lock()` or `TryLock()` must not be made in a thread that already holds the // mutex; such a call is invalid. // // * In other words, the state of being "held" has both a temporal component // (from `Lock()` until `Unlock()`) as well as a thread identity component: // the mutex is held *by a particular thread*. // // An "invalid" operation has undefined behavior. The `Mutex` implementation // is allowed to do anything on an invalid call, including, but not limited to, // crashing with a useful error message, silently succeeding, or corrupting // data structures. In debug mode, the implementation may crash with a useful // error message. // // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it // is, however, approximately fair over long periods, and starvation-free for // threads at the same priority. // // The lock/unlock primitives are now annotated with lock annotations // defined in (base/thread_annotations.h). When writing multi-threaded code, // you should use lock annotations whenever possible to document your lock // synchronization policy. Besides acting as documentation, these annotations // also help compilers or static analysis tools to identify and warn about // issues that could potentially result in race conditions and deadlocks. // // For more information about the lock annotations, please see // [Thread Safety // Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang // documentation. // // See also `MutexLock`, below, for scoped `Mutex` acquisition. class Y_ABSL_LOCKABLE Mutex { public: // Creates a `Mutex` that is not held by anyone. This constructor is // typically used for Mutexes allocated on the heap or the stack. // // To create `Mutex` instances with static storage duration // (e.g. a namespace-scoped or global variable), see // `Mutex::Mutex(y_absl::kConstInit)` below instead. Mutex(); // Creates a mutex with static storage duration. A global variable // constructed this way avoids the lifetime issues that can occur on program // startup and shutdown. (See y_absl/base/const_init.h.) // // For Mutexes allocated on the heap and stack, instead use the default // constructor, which can interact more fully with the thread sanitizer. // // Example usage: // namespace foo { // Y_ABSL_CONST_INIT y_absl::Mutex mu(y_absl::kConstInit); // } explicit constexpr Mutex(y_absl::ConstInitType); ~Mutex(); // Mutex::Lock() // // Blocks the calling thread, if necessary, until this `Mutex` is free, and // then acquires it exclusively. (This lock is also known as a "write lock.") void Lock() Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(); // Mutex::Unlock() // // Releases this `Mutex` and returns it from the exclusive/write state to the // free state. Calling thread must hold the `Mutex` exclusively. void Unlock() Y_ABSL_UNLOCK_FUNCTION(); // Mutex::TryLock() // // If the mutex can be acquired without blocking, does so exclusively and // returns `true`. Otherwise, returns `false`. Returns `true` with high // probability if the `Mutex` was free. bool TryLock() Y_ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true); // Mutex::AssertHeld() // // Require that the mutex be held exclusively (write mode) by this thread. // // If the mutex is not currently held by this thread, this function may report // an error (typically by crashing with a diagnostic) or it may do nothing. // This function is intended only as a tool to assist debugging; it doesn't // guarantee correctness. void AssertHeld() const Y_ABSL_ASSERT_EXCLUSIVE_LOCK(); // --------------------------------------------------------------------------- // Reader-Writer Locking // --------------------------------------------------------------------------- // A Mutex can also be used as a starvation-free reader-writer lock. // Neither read-locks nor write-locks are reentrant/recursive to avoid // potential client programming errors. // // The Mutex API provides `Writer*()` aliases for the existing `Lock()`, // `Unlock()` and `TryLock()` methods for use within applications mixing // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this // manner can make locking behavior clearer when mixing read and write modes. // // Introducing reader locks necessarily complicates the `Mutex` state // machine somewhat. The table below illustrates the allowed state transitions // of a mutex in such cases. Note that ReaderLock() may block even if the lock // is held in shared mode; this occurs when another thread is blocked on a // call to WriterLock(). // // --------------------------------------------------------------------------- // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock() // --------------------------------------------------------------------------- // State // --------------------------------------------------------------------------- // Free Exclusive invalid Shared(1) invalid // Shared(1) blocks invalid Shared(2) or blocks Free // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1) // Exclusive blocks Free blocks invalid // --------------------------------------------------------------------------- // // In comments below, "shared" refers to a state of Shared(n) for any n > 0. // Mutex::ReaderLock() // // Blocks the calling thread, if necessary, until this `Mutex` is either free, // or in shared mode, and then acquires a share of it. Note that // `ReaderLock()` will block if some other thread has an exclusive/writer lock // on the mutex. void ReaderLock() Y_ABSL_SHARED_LOCK_FUNCTION(); // Mutex::ReaderUnlock() // // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to // the free state if this thread holds the last reader lock on the mutex. Note // that you cannot call `ReaderUnlock()` on a mutex held in write mode. void ReaderUnlock() Y_ABSL_UNLOCK_FUNCTION(); // Mutex::ReaderTryLock() // // If the mutex can be acquired without blocking, acquires this mutex for // shared access and returns `true`. Otherwise, returns `false`. Returns // `true` with high probability if the `Mutex` was free or shared. bool ReaderTryLock() Y_ABSL_SHARED_TRYLOCK_FUNCTION(true); // Mutex::AssertReaderHeld() // // Require that the mutex be held at least in shared mode (read mode) by this // thread. // // If the mutex is not currently held by this thread, this function may report // an error (typically by crashing with a diagnostic) or it may do nothing. // This function is intended only as a tool to assist debugging; it doesn't // guarantee correctness. void AssertReaderHeld() const Y_ABSL_ASSERT_SHARED_LOCK(); // Mutex::WriterLock() // Mutex::WriterUnlock() // Mutex::WriterTryLock() // // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`. // // These methods may be used (along with the complementary `Reader*()` // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`, // etc.) from reader/writer lock usage. void WriterLock() Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); } void WriterUnlock() Y_ABSL_UNLOCK_FUNCTION() { this->Unlock(); } bool WriterTryLock() Y_ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) { return this->TryLock(); } // --------------------------------------------------------------------------- // Conditional Critical Regions // --------------------------------------------------------------------------- // Conditional usage of a `Mutex` can occur using two distinct paradigms: // // * Use of `Mutex` member functions with `Condition` objects. // * Use of the separate `CondVar` abstraction. // // In general, prefer use of `Condition` and the `Mutex` member functions // listed below over `CondVar`. When there are multiple threads waiting on // distinctly different conditions, however, a battery of `CondVar`s may be // more efficient. This section discusses use of `Condition` objects. // // `Mutex` contains member functions for performing lock operations only under // certain conditions, of class `Condition`. For correctness, the `Condition` // must return a boolean that is a pure function, only of state protected by // the `Mutex`. The condition must be invariant w.r.t. environmental state // such as thread, cpu id, or time, and must be `noexcept`. The condition will // always be invoked with the mutex held in at least read mode, so you should // not block it for long periods or sleep it on a timer. // // Since a condition must not depend directly on the current time, use // `*WithTimeout()` member function variants to make your condition // effectively true after a given duration, or `*WithDeadline()` variants to // make your condition effectively true after a given time. // // The condition function should have no side-effects aside from debug // logging; as a special exception, the function may acquire other mutexes // provided it releases all those that it acquires. (This exception was // required to allow logging.) // Mutex::Await() // // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true` // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the // same mode in which it was previously held. If the condition is initially // `true`, `Await()` *may* skip the release/re-acquire step. // // `Await()` requires that this thread holds this `Mutex` in some mode. void Await(const Condition& cond) { AwaitCommon(cond, synchronization_internal::KernelTimeout::Never()); } // Mutex::LockWhen() // Mutex::ReaderLockWhen() // Mutex::WriterLockWhen() // // Blocks until simultaneously both `cond` is `true` and this `Mutex` can // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is // logically equivalent to `*Lock(); Await();` though they may have different // performance characteristics. void LockWhen(const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(), true); } void ReaderLockWhen(const Condition& cond) Y_ABSL_SHARED_LOCK_FUNCTION() { LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(), false); } void WriterLockWhen(const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->LockWhen(cond); } // --------------------------------------------------------------------------- // Mutex Variants with Timeouts/Deadlines // --------------------------------------------------------------------------- // Mutex::AwaitWithTimeout() // Mutex::AwaitWithDeadline() // // Unlocks this `Mutex` and blocks until simultaneously: // - either `cond` is true or the {timeout has expired, deadline has passed} // and // - this `Mutex` can be reacquired, // then reacquire this `Mutex` in the same mode in which it was previously // held, returning `true` iff `cond` is `true` on return. // // If the condition is initially `true`, the implementation *may* skip the // release/re-acquire step and return immediately. // // Deadlines in the past are equivalent to an immediate deadline. // Negative timeouts are equivalent to a zero timeout. // // This method requires that this thread holds this `Mutex` in some mode. bool AwaitWithTimeout(const Condition& cond, y_absl::Duration timeout) { return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout}); } bool AwaitWithDeadline(const Condition& cond, y_absl::Time deadline) { return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline}); } // Mutex::LockWhenWithTimeout() // Mutex::ReaderLockWhenWithTimeout() // Mutex::WriterLockWhenWithTimeout() // // Blocks until simultaneously both: // - either `cond` is `true` or the timeout has expired, and // - this `Mutex` can be acquired, // then atomically acquires this `Mutex`, returning `true` iff `cond` is // `true` on return. // // Negative timeouts are equivalent to a zero timeout. bool LockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { return LockWhenCommon( cond, synchronization_internal::KernelTimeout{timeout}, true); } bool ReaderLockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout) Y_ABSL_SHARED_LOCK_FUNCTION() { return LockWhenCommon( cond, synchronization_internal::KernelTimeout{timeout}, false); } bool WriterLockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { return this->LockWhenWithTimeout(cond, timeout); } // Mutex::LockWhenWithDeadline() // Mutex::ReaderLockWhenWithDeadline() // Mutex::WriterLockWhenWithDeadline() // // Blocks until simultaneously both: // - either `cond` is `true` or the deadline has been passed, and // - this `Mutex` can be acquired, // then atomically acquires this Mutex, returning `true` iff `cond` is `true` // on return. // // Deadlines in the past are equivalent to an immediate deadline. bool LockWhenWithDeadline(const Condition& cond, y_absl::Time deadline) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { return LockWhenCommon( cond, synchronization_internal::KernelTimeout{deadline}, true); } bool ReaderLockWhenWithDeadline(const Condition& cond, y_absl::Time deadline) Y_ABSL_SHARED_LOCK_FUNCTION() { return LockWhenCommon( cond, synchronization_internal::KernelTimeout{deadline}, false); } bool WriterLockWhenWithDeadline(const Condition& cond, y_absl::Time deadline) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { return this->LockWhenWithDeadline(cond, deadline); } // --------------------------------------------------------------------------- // Debug Support: Invariant Checking, Deadlock Detection, Logging. // --------------------------------------------------------------------------- // Mutex::EnableInvariantDebugging() // // If `invariant`!=null and if invariant debugging has been enabled globally, // cause `(*invariant)(arg)` to be called at moments when the invariant for // this `Mutex` should hold (for example: just after acquire, just before // release). // // The routine `invariant` should have no side-effects since it is not // guaranteed how many times it will be called; it should check the invariant // and crash if it does not hold. Enabling global invariant debugging may // substantially reduce `Mutex` performance; it should be set only for // non-production runs. Optimization options may also disable invariant // checks. void EnableInvariantDebugging(void (*invariant)(void*), void* arg); // Mutex::EnableDebugLog() // // Cause all subsequent uses of this `Mutex` to be logged via // `Y_ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made. // // Note: This method substantially reduces `Mutex` performance. void EnableDebugLog(const char* name); // Deadlock detection // Mutex::ForgetDeadlockInfo() // // Forget any deadlock-detection information previously gathered // about this `Mutex`. Call this method in debug mode when the lock ordering // of a `Mutex` changes. void ForgetDeadlockInfo(); // Mutex::AssertNotHeld() // // Return immediately if this thread does not hold this `Mutex` in any // mode; otherwise, may report an error (typically by crashing with a // diagnostic), or may return immediately. // // Currently this check is performed only if all of: // - in debug mode // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort // - number of locks concurrently held by this thread is not large. // are true. void AssertNotHeld() const; // Special cases. // A `MuHow` is a constant that indicates how a lock should be acquired. // Internal implementation detail. Clients should ignore. typedef const struct MuHowS* MuHow; // Mutex::InternalAttemptToUseMutexInFatalSignalHandler() // // Causes the `Mutex` implementation to prepare itself for re-entry caused by // future use of `Mutex` within a fatal signal handler. This method is // intended for use only for last-ditch attempts to log crash information. // It does not guarantee that attempts to use Mutexes within the handler will // not deadlock; it merely makes other faults less likely. // // WARNING: This routine must be invoked from a signal handler, and the // signal handler must either loop forever or terminate the process. // Attempts to return from (or `longjmp` out of) the signal handler once this // call has been made may cause arbitrary program behaviour including // crashes and deadlocks. static void InternalAttemptToUseMutexInFatalSignalHandler(); private: std::atomic mu_; // The Mutex state. // Post()/Wait() versus associated PerThreadSem; in class for required // friendship with PerThreadSem. static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w); static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w, synchronization_internal::KernelTimeout t); // slow path acquire void LockSlowLoop(SynchWaitParams* waitp, int flags); // wrappers around LockSlowLoop() bool LockSlowWithDeadline(MuHow how, const Condition* cond, synchronization_internal::KernelTimeout t, int flags); void LockSlow(MuHow how, const Condition* cond, int flags) Y_ABSL_ATTRIBUTE_COLD; // slow path release void UnlockSlow(SynchWaitParams* waitp) Y_ABSL_ATTRIBUTE_COLD; // TryLock slow path. bool TryLockSlow(); // ReaderTryLock slow path. bool ReaderTryLockSlow(); // Common code between Await() and AwaitWithTimeout/Deadline() bool AwaitCommon(const Condition& cond, synchronization_internal::KernelTimeout t); bool LockWhenCommon(const Condition& cond, synchronization_internal::KernelTimeout t, bool write); // Attempt to remove thread s from queue. void TryRemove(base_internal::PerThreadSynch* s); // Block a thread on mutex. void Block(base_internal::PerThreadSynch* s); // Wake a thread; return successor. base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w); void Dtor(); friend class CondVar; // for access to Trans()/Fer(). void Trans(MuHow how); // used for CondVar->Mutex transfer void Fer( base_internal::PerThreadSynch* w); // used for CondVar->Mutex transfer // Catch the error of writing Mutex when intending MutexLock. explicit Mutex(const volatile Mutex* /*ignored*/) {} Mutex(const Mutex&) = delete; Mutex& operator=(const Mutex&) = delete; }; // ----------------------------------------------------------------------------- // Mutex RAII Wrappers // ----------------------------------------------------------------------------- // MutexLock // // `MutexLock` is a helper class, which acquires and releases a `Mutex` via // RAII. // // Example: // // Class Foo { // public: // Foo::Bar* Baz() { // MutexLock lock(&mu_); // ... // return bar; // } // // private: // Mutex mu_; // }; class Y_ABSL_SCOPED_LOCKABLE MutexLock { public: // Constructors // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is // guaranteed to be locked when this object is constructed. Requires that // `mu` be dereferenceable. explicit MutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { this->mu_->Lock(); } // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to // the above, the condition given by `cond` is also guaranteed to hold when // this object is constructed. explicit MutexLock(Mutex* mu, const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { this->mu_->LockWhen(cond); } MutexLock(const MutexLock&) = delete; // NOLINT(runtime/mutex) MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex) MutexLock& operator=(const MutexLock&) = delete; MutexLock& operator=(MutexLock&&) = delete; ~MutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); } private: Mutex* const mu_; }; // ReaderMutexLock // // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and // releases a shared lock on a `Mutex` via RAII. class Y_ABSL_SCOPED_LOCKABLE ReaderMutexLock { public: explicit ReaderMutexLock(Mutex* mu) Y_ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) { mu->ReaderLock(); } explicit ReaderMutexLock(Mutex* mu, const Condition& cond) Y_ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) { mu->ReaderLockWhen(cond); } ReaderMutexLock(const ReaderMutexLock&) = delete; ReaderMutexLock(ReaderMutexLock&&) = delete; ReaderMutexLock& operator=(const ReaderMutexLock&) = delete; ReaderMutexLock& operator=(ReaderMutexLock&&) = delete; ~ReaderMutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); } private: Mutex* const mu_; }; // WriterMutexLock // // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and // releases a write (exclusive) lock on a `Mutex` via RAII. class Y_ABSL_SCOPED_LOCKABLE WriterMutexLock { public: explicit WriterMutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { mu->WriterLock(); } explicit WriterMutexLock(Mutex* mu, const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { mu->WriterLockWhen(cond); } WriterMutexLock(const WriterMutexLock&) = delete; WriterMutexLock(WriterMutexLock&&) = delete; WriterMutexLock& operator=(const WriterMutexLock&) = delete; WriterMutexLock& operator=(WriterMutexLock&&) = delete; ~WriterMutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); } private: Mutex* const mu_; }; // ----------------------------------------------------------------------------- // Condition // ----------------------------------------------------------------------------- // // `Mutex` contains a number of member functions which take a `Condition` as an // argument; clients can wait for conditions to become `true` before attempting // to acquire the mutex. These sections are known as "condition critical" // sections. To use a `Condition`, you simply need to construct it, and use // within an appropriate `Mutex` member function; everything else in the // `Condition` class is an implementation detail. // // A `Condition` is specified as a function pointer which returns a boolean. // `Condition` functions should be pure functions -- their results should depend // only on passed arguments, should not consult any external state (such as // clocks), and should have no side-effects, aside from debug logging. Any // objects that the function may access should be limited to those which are // constant while the mutex is blocked on the condition (e.g. a stack variable), // or objects of state protected explicitly by the mutex. // // No matter which construction is used for `Condition`, the underlying // function pointer / functor / callable must not throw any // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in // the face of a throwing `Condition`. (When Abseil is allowed to depend // on C++17, these function pointers will be explicitly marked // `noexcept`; until then this requirement cannot be enforced in the // type system.) // // Note: to use a `Condition`, you need only construct it and pass it to a // suitable `Mutex' member function, such as `Mutex::Await()`, or to the // constructor of one of the scope guard classes. // // Example using LockWhen/Unlock: // // // assume count_ is not internal reference count // int count_ Y_ABSL_GUARDED_BY(mu_); // Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_); // // mu_.LockWhen(count_is_zero); // // ... // mu_.Unlock(); // // Example using a scope guard: // // { // MutexLock lock(&mu_, count_is_zero); // // ... // } // // When multiple threads are waiting on exactly the same condition, make sure // that they are constructed with the same parameters (same pointer to function // + arg, or same pointer to object + method), so that the mutex implementation // can avoid redundantly evaluating the same condition for each thread. class Condition { public: // A Condition that returns the result of "(*func)(arg)" Condition(bool (*func)(void*), void* arg); // Templated version for people who are averse to casts. // // To use a lambda, prepend it with unary plus, which converts the lambda // into a function pointer: // Condition(+[](T* t) { return ...; }, arg). // // Note: lambdas in this case must contain no bound variables. // // See class comment for performance advice. template Condition(bool (*func)(T*), T* arg); // Same as above, but allows for cases where `arg` comes from a pointer that // is convertible to the function parameter type `T*` but not an exact match. // // For example, the argument might be `X*` but the function takes `const X*`, // or the argument might be `Derived*` while the function takes `Base*`, and // so on for cases where the argument pointer can be implicitly converted. // // Implementation notes: This constructor overload is required in addition to // the one above to allow deduction of `T` from `arg` for cases such as where // a function template is passed as `func`. Also, the dummy `typename = void` // template parameter exists just to work around a MSVC mangling bug. template Condition(bool (*func)(T*), typename y_absl::internal::type_identity::type* arg); // Templated version for invoking a method that returns a `bool`. // // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates // `object->Method()`. // // Implementation Note: `y_absl::internal::type_identity` is used to allow // methods to come from base classes. A simpler signature like // `Condition(T*, bool (T::*)())` does not suffice. template Condition(T* object, bool (y_absl::internal::type_identity::type::*method)()); // Same as above, for const members template Condition(const T* object, bool (y_absl::internal::type_identity::type::*method)() const); // A Condition that returns the value of `*cond` explicit Condition(const bool* cond); // Templated version for invoking a functor that returns a `bool`. // This approach accepts pointers to non-mutable lambdas, `std::function`, // the result of` std::bind` and user-defined functors that define // `bool F::operator()() const`. // // Example: // // auto reached = [this, current]() { // mu_.AssertReaderHeld(); // For annotalysis. // return processed_ >= current; // }; // mu_.Await(Condition(&reached)); // // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in // the lambda as it may be called when the mutex is being unlocked from a // scope holding only a reader lock, which will make the assertion not // fulfilled and crash the binary. // See class comment for performance advice. In particular, if there // might be more than one waiter for the same condition, make sure // that all waiters construct the condition with the same pointers. // Implementation note: The second template parameter ensures that this // constructor doesn't participate in overload resolution if T doesn't have // `bool operator() const`. template ( &T::operator()))> explicit Condition(const T* obj) : Condition(obj, static_cast(&T::operator())) {} // A Condition that always returns `true`. // kTrue is only useful in a narrow set of circumstances, mostly when // it's passed conditionally. For example: // // mu.LockWhen(some_flag ? kTrue : SomeOtherCondition); // // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition // don't return immediately when the timeout happens, they still block until // the Mutex becomes available. The return value of these methods does // not indicate if the timeout was reached; rather it indicates whether or // not the condition is true. Y_ABSL_CONST_INIT static const Condition kTrue; // Evaluates the condition. bool Eval() const; // Returns `true` if the two conditions are guaranteed to return the same // value if evaluated at the same time, `false` if the evaluation *may* return // different results. // // Two `Condition` values are guaranteed equal if both their `func` and `arg` // components are the same. A null pointer is equivalent to a `true` // condition. static bool GuaranteedEqual(const Condition* a, const Condition* b); private: // Sizing an allocation for a method pointer can be subtle. In the Itanium // specifications, a method pointer has a predictable, uniform size. On the // other hand, MSVC ABI, method pointer sizes vary based on the // inheritance of the class. Specifically, method pointers from classes with // multiple inheritance are bigger than those of classes with single // inheritance. Other variations also exist. #ifndef _MSC_VER // Allocation for a function pointer or method pointer. // The {0} initializer ensures that all unused bytes of this buffer are // always zeroed out. This is necessary, because GuaranteedEqual() compares // all of the bytes, unaware of which bytes are relevant to a given `eval_`. using MethodPtr = bool (Condition::*)(); char callback_[sizeof(MethodPtr)] = {0}; #else // It is well known that the larget MSVC pointer-to-member is 24 bytes. This // may be the largest known pointer-to-member of any platform. For this // reason we will allocate 24 bytes for MSVC platform toolchains. char callback_[24] = {0}; #endif // Function with which to evaluate callbacks and/or arguments. bool (*eval_)(const Condition*) = nullptr; // Either an argument for a function call or an object for a method call. void* arg_ = nullptr; // Various functions eval_ can point to: static bool CallVoidPtrFunction(const Condition*); template static bool CastAndCallFunction(const Condition* c); template static bool CastAndCallMethod(const Condition* c); // Helper methods for storing, validating, and reading callback arguments. template inline void StoreCallback(T callback) { static_assert( sizeof(callback) <= sizeof(callback_), "An overlarge pointer was passed as a callback to Condition."); std::memcpy(callback_, &callback, sizeof(callback)); } template inline void ReadCallback(T* callback) const { std::memcpy(callback, callback_, sizeof(*callback)); } static bool AlwaysTrue(const Condition*) { return true; } // Used only to create kTrue. constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {} }; // ----------------------------------------------------------------------------- // CondVar // ----------------------------------------------------------------------------- // // A condition variable, reflecting state evaluated separately outside of the // `Mutex` object, which can be signaled to wake callers. // This class is not normally needed; use `Mutex` member functions such as // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases // with many threads and many conditions, `CondVar` may be faster. // // The implementation may deliver signals to any condition variable at // any time, even when no call to `Signal()` or `SignalAll()` is made; as a // result, upon being awoken, you must check the logical condition you have // been waiting upon. // // Examples: // // Usage for a thread waiting for some condition C protected by mutex mu: // mu.Lock(); // while (!C) { cv->Wait(&mu); } // releases and reacquires mu // // C holds; process data // mu.Unlock(); // // Usage to wake T is: // mu.Lock(); // // process data, possibly establishing C // if (C) { cv->Signal(); } // mu.Unlock(); // // If C may be useful to more than one waiter, use `SignalAll()` instead of // `Signal()`. // // With this implementation it is efficient to use `Signal()/SignalAll()` inside // the locked region; this usage can make reasoning about your program easier. // class CondVar { public: // A `CondVar` allocated on the heap or on the stack can use the this // constructor. CondVar(); // CondVar::Wait() // // Atomically releases a `Mutex` and blocks on this condition variable. // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a // spurious wakeup), then reacquires the `Mutex` and returns. // // Requires and ensures that the current thread holds the `Mutex`. void Wait(Mutex* mu) { WaitCommon(mu, synchronization_internal::KernelTimeout::Never()); } // CondVar::WaitWithTimeout() // // Atomically releases a `Mutex` and blocks on this condition variable. // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a // spurious wakeup), or until the timeout has expired, then reacquires // the `Mutex` and returns. // // Returns true if the timeout has expired without this `CondVar` // being signalled in any manner. If both the timeout has expired // and this `CondVar` has been signalled, the implementation is free // to return `true` or `false`. // // Requires and ensures that the current thread holds the `Mutex`. bool WaitWithTimeout(Mutex* mu, y_absl::Duration timeout) { return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout)); } // CondVar::WaitWithDeadline() // // Atomically releases a `Mutex` and blocks on this condition variable. // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a // spurious wakeup), or until the deadline has passed, then reacquires // the `Mutex` and returns. // // Deadlines in the past are equivalent to an immediate deadline. // // Returns true if the deadline has passed without this `CondVar` // being signalled in any manner. If both the deadline has passed // and this `CondVar` has been signalled, the implementation is free // to return `true` or `false`. // // Requires and ensures that the current thread holds the `Mutex`. bool WaitWithDeadline(Mutex* mu, y_absl::Time deadline) { return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline)); } // CondVar::Signal() // // Signal this `CondVar`; wake at least one waiter if one exists. void Signal(); // CondVar::SignalAll() // // Signal this `CondVar`; wake all waiters. void SignalAll(); // CondVar::EnableDebugLog() // // Causes all subsequent uses of this `CondVar` to be logged via // `Y_ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`. // Note: this method substantially reduces `CondVar` performance. void EnableDebugLog(const char* name); private: bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t); void Remove(base_internal::PerThreadSynch* s); std::atomic cv_; // Condition variable state. CondVar(const CondVar&) = delete; CondVar& operator=(const CondVar&) = delete; }; // Variants of MutexLock. // // If you find yourself using one of these, consider instead using // Mutex::Unlock() and/or if-statements for clarity. // MutexLockMaybe // // MutexLockMaybe is like MutexLock, but is a no-op when mu is null. class Y_ABSL_SCOPED_LOCKABLE MutexLockMaybe { public: explicit MutexLockMaybe(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } } explicit MutexLockMaybe(Mutex* mu, const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { if (this->mu_ != nullptr) { this->mu_->LockWhen(cond); } } ~MutexLockMaybe() Y_ABSL_UNLOCK_FUNCTION() { if (this->mu_ != nullptr) { this->mu_->Unlock(); } } private: Mutex* const mu_; MutexLockMaybe(const MutexLockMaybe&) = delete; MutexLockMaybe(MutexLockMaybe&&) = delete; MutexLockMaybe& operator=(const MutexLockMaybe&) = delete; MutexLockMaybe& operator=(MutexLockMaybe&&) = delete; }; // ReleasableMutexLock // // ReleasableMutexLock is like MutexLock, but permits `Release()` of its // mutex before destruction. `Release()` may be called at most once. class Y_ABSL_SCOPED_LOCKABLE ReleasableMutexLock { public: explicit ReleasableMutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { this->mu_->Lock(); } explicit ReleasableMutexLock(Mutex* mu, const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { this->mu_->LockWhen(cond); } ~ReleasableMutexLock() Y_ABSL_UNLOCK_FUNCTION() { if (this->mu_ != nullptr) { this->mu_->Unlock(); } } void Release() Y_ABSL_UNLOCK_FUNCTION(); private: Mutex* mu_; ReleasableMutexLock(const ReleasableMutexLock&) = delete; ReleasableMutexLock(ReleasableMutexLock&&) = delete; ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete; ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete; }; inline Mutex::Mutex() : mu_(0) { Y_ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static); } inline constexpr Mutex::Mutex(y_absl::ConstInitType) : mu_(0) {} #if !defined(__APPLE__) && !defined(Y_ABSL_BUILD_DLL) Y_ABSL_ATTRIBUTE_ALWAYS_INLINE inline Mutex::~Mutex() { Dtor(); } #endif #if defined(NDEBUG) && !defined(Y_ABSL_HAVE_THREAD_SANITIZER) // Use default (empty) destructor in release build for performance reasons. // We need to mark both Dtor and ~Mutex as always inline for inconsistent // builds that use both NDEBUG and !NDEBUG with dynamic libraries. In these // cases we want the empty functions to dissolve entirely rather than being // exported from dynamic libraries and potentially override the non-empty ones. Y_ABSL_ATTRIBUTE_ALWAYS_INLINE inline void Mutex::Dtor() {} #endif inline CondVar::CondVar() : cv_(0) {} // static template bool Condition::CastAndCallMethod(const Condition* c) { T* object = static_cast(c->arg_); ConditionMethodPtr condition_method_pointer; c->ReadCallback(&condition_method_pointer); return (object->*condition_method_pointer)(); } // static template bool Condition::CastAndCallFunction(const Condition* c) { bool (*function)(T*); c->ReadCallback(&function); T* argument = static_cast(c->arg_); return (*function)(argument); } template inline Condition::Condition(bool (*func)(T*), T* arg) : eval_(&CastAndCallFunction), arg_(const_cast(static_cast(arg))) { static_assert(sizeof(&func) <= sizeof(callback_), "An overlarge function pointer was passed to Condition."); StoreCallback(func); } template inline Condition::Condition( bool (*func)(T*), typename y_absl::internal::type_identity::type* arg) // Just delegate to the overload above. : Condition(func, arg) {} template inline Condition::Condition( T* object, bool (y_absl::internal::type_identity::type::*method)()) : eval_(&CastAndCallMethod), arg_(object) { static_assert(sizeof(&method) <= sizeof(callback_), "An overlarge method pointer was passed to Condition."); StoreCallback(method); } template inline Condition::Condition( const T* object, bool (y_absl::internal::type_identity::type::*method)() const) : eval_(&CastAndCallMethod), arg_(reinterpret_cast(const_cast(object))) { StoreCallback(method); } // Register hooks for profiling support. // // The function pointer registered here will be called whenever a mutex is // contended. The callback is given the cycles for which waiting happened (as // measured by //y_absl/base/internal/cycleclock.h, and which may not // be real "cycle" counts.) // // There is no ordering guarantee between when the hook is registered and when // callbacks will begin. Only a single profiler can be installed in a running // binary; if this function is called a second time with a different function // pointer, the value is ignored (and will cause an assertion failure in debug // mode.) void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)); // Register a hook for Mutex tracing. // // The function pointer registered here will be called whenever a mutex is // contended. The callback is given an opaque handle to the contended mutex, // an event name, and the number of wait cycles (as measured by // //y_absl/base/internal/cycleclock.h, and which may not be real // "cycle" counts.) // // The only event name currently sent is "slow release". // // This has the same ordering and single-use limitations as // RegisterMutexProfiler() above. void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj, int64_t wait_cycles)); // Register a hook for CondVar tracing. // // The function pointer registered here will be called here on various CondVar // events. The callback is given an opaque handle to the CondVar object and // a string identifying the event. This is thread-safe, but only a single // tracer can be registered. // // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and // "SignalAll wakeup". // // This has the same ordering and single-use limitations as // RegisterMutexProfiler() above. void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv)); void ResetDeadlockGraphMu(); // EnableMutexInvariantDebugging() // // Enable or disable global support for Mutex invariant debugging. If enabled, // then invariant predicates can be registered per-Mutex for debug checking. // See Mutex::EnableInvariantDebugging(). void EnableMutexInvariantDebugging(bool enabled); // When in debug mode, and when the feature has been enabled globally, the // implementation will keep track of lock ordering and complain (or optionally // crash) if a cycle is detected in the acquired-before graph. // Possible modes of operation for the deadlock detector in debug mode. enum class OnDeadlockCycle { kIgnore, // Neither report on nor attempt to track cycles in lock ordering kReport, // Report lock cycles to stderr when detected kAbort, // Report lock cycles to stderr when detected, then abort }; // SetMutexDeadlockDetectionMode() // // Enable or disable global support for detection of potential deadlocks // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph // will be maintained internally, and detected cycles will be reported in // the manner chosen here. void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode); Y_ABSL_NAMESPACE_END } // namespace y_absl // In some build configurations we pass --detect-odr-violations to the // gold linker. This causes it to flag weak symbol overrides as ODR // violations. Because ODR only applies to C++ and not C, // --detect-odr-violations ignores symbols not mangled with C++ names. // By changing our extension points to be extern "C", we dodge this // check. extern "C" { void Y_ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)(); } // extern "C" #endif // Y_ABSL_SYNCHRONIZATION_MUTEX_H_