//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements a set of utility VPlan to VPlan transformations. /// //===----------------------------------------------------------------------===// #include "VPlanTransforms.h" #include "VPlanCFG.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/IVDescriptors.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Intrinsics.h" using namespace llvm; void VPlanTransforms::VPInstructionsToVPRecipes( Loop *OrigLoop, VPlanPtr &Plan, function_ref GetIntOrFpInductionDescriptor, SmallPtrSetImpl &DeadInstructions, ScalarEvolution &SE, const TargetLibraryInfo &TLI) { ReversePostOrderTraversal> RPOT( Plan->getEntry()); for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly(RPOT)) { VPRecipeBase *Term = VPBB->getTerminator(); auto EndIter = Term ? Term->getIterator() : VPBB->end(); // Introduce each ingredient into VPlan. for (VPRecipeBase &Ingredient : make_early_inc_range(make_range(VPBB->begin(), EndIter))) { VPValue *VPV = Ingredient.getVPSingleValue(); Instruction *Inst = cast(VPV->getUnderlyingValue()); if (DeadInstructions.count(Inst)) { VPValue DummyValue; VPV->replaceAllUsesWith(&DummyValue); Ingredient.eraseFromParent(); continue; } VPRecipeBase *NewRecipe = nullptr; if (auto *VPPhi = dyn_cast(&Ingredient)) { auto *Phi = cast(VPPhi->getUnderlyingValue()); if (const auto *II = GetIntOrFpInductionDescriptor(Phi)) { VPValue *Start = Plan->getOrAddVPValue(II->getStartValue()); VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II, true); } else { Plan->addVPValue(Phi, VPPhi); continue; } } else { assert(isa(&Ingredient) && "only VPInstructions expected here"); assert(!isa(Inst) && "phis should be handled above"); // Create VPWidenMemoryInstructionRecipe for loads and stores. if (LoadInst *Load = dyn_cast(Inst)) { NewRecipe = new VPWidenMemoryInstructionRecipe( *Load, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/); } else if (StoreInst *Store = dyn_cast(Inst)) { NewRecipe = new VPWidenMemoryInstructionRecipe( *Store, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), Plan->getOrAddVPValue(Store->getValueOperand()), nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/); } else if (GetElementPtrInst *GEP = dyn_cast(Inst)) { NewRecipe = new VPWidenGEPRecipe( GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop); } else if (CallInst *CI = dyn_cast(Inst)) { NewRecipe = new VPWidenCallRecipe(*CI, Plan->mapToVPValues(CI->args()), getVectorIntrinsicIDForCall(CI, &TLI)); } else if (SelectInst *SI = dyn_cast(Inst)) { bool InvariantCond = SE.isLoopInvariant(SE.getSCEV(SI->getOperand(0)), OrigLoop); NewRecipe = new VPWidenSelectRecipe( *SI, Plan->mapToVPValues(SI->operands()), InvariantCond); } else { NewRecipe = new VPWidenRecipe(*Inst, Plan->mapToVPValues(Inst->operands())); } } NewRecipe->insertBefore(&Ingredient); if (NewRecipe->getNumDefinedValues() == 1) VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); else assert(NewRecipe->getNumDefinedValues() == 0 && "Only recpies with zero or one defined values expected"); Ingredient.eraseFromParent(); Plan->removeVPValueFor(Inst); for (auto *Def : NewRecipe->definedValues()) { Plan->addVPValue(Inst, Def); } } } } bool VPlanTransforms::sinkScalarOperands(VPlan &Plan) { auto Iter = vp_depth_first_deep(Plan.getEntry()); bool Changed = false; // First, collect the operands of all recipes in replicate blocks as seeds for // sinking. SetVector> WorkList; for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly(Iter)) { VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) continue; VPBasicBlock *VPBB = dyn_cast(EntryVPBB->getSuccessors()[0]); if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) continue; for (auto &Recipe : *VPBB) { for (VPValue *Op : Recipe.operands()) if (auto *Def = Op->getDefiningRecipe()) WorkList.insert(std::make_pair(VPBB, Def)); } } bool ScalarVFOnly = Plan.hasScalarVFOnly(); // Try to sink each replicate or scalar IV steps recipe in the worklist. for (unsigned I = 0; I != WorkList.size(); ++I) { VPBasicBlock *SinkTo; VPRecipeBase *SinkCandidate; std::tie(SinkTo, SinkCandidate) = WorkList[I]; if (SinkCandidate->getParent() == SinkTo || SinkCandidate->mayHaveSideEffects() || SinkCandidate->mayReadOrWriteMemory()) continue; if (auto *RepR = dyn_cast(SinkCandidate)) { if (!ScalarVFOnly && RepR->isUniform()) continue; } else if (!isa(SinkCandidate)) continue; bool NeedsDuplicating = false; // All recipe users of the sink candidate must be in the same block SinkTo // or all users outside of SinkTo must be uniform-after-vectorization ( // i.e., only first lane is used) . In the latter case, we need to duplicate // SinkCandidate. auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, SinkCandidate](VPUser *U) { auto *UI = dyn_cast(U); if (!UI) return false; if (UI->getParent() == SinkTo) return true; NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate->getVPSingleValue()); // We only know how to duplicate VPRecipeRecipes for now. return NeedsDuplicating && isa(SinkCandidate); }; if (!all_of(SinkCandidate->getVPSingleValue()->users(), CanSinkWithUser)) continue; if (NeedsDuplicating) { if (ScalarVFOnly) continue; Instruction *I = cast( cast(SinkCandidate)->getUnderlyingValue()); auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true, false); // TODO: add ".cloned" suffix to name of Clone's VPValue. Clone->insertBefore(SinkCandidate); for (auto *U : to_vector(SinkCandidate->getVPSingleValue()->users())) { auto *UI = cast(U); if (UI->getParent() == SinkTo) continue; for (unsigned Idx = 0; Idx != UI->getNumOperands(); Idx++) { if (UI->getOperand(Idx) != SinkCandidate->getVPSingleValue()) continue; UI->setOperand(Idx, Clone); } } } SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); for (VPValue *Op : SinkCandidate->operands()) if (auto *Def = Op->getDefiningRecipe()) WorkList.insert(std::make_pair(SinkTo, Def)); Changed = true; } return Changed; } /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return /// the mask. VPValue *getPredicatedMask(VPRegionBlock *R) { auto *EntryBB = dyn_cast(R->getEntry()); if (!EntryBB || EntryBB->size() != 1 || !isa(EntryBB->begin())) return nullptr; return cast(&*EntryBB->begin())->getOperand(0); } /// If \p R is a triangle region, return the 'then' block of the triangle. static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { auto *EntryBB = cast(R->getEntry()); if (EntryBB->getNumSuccessors() != 2) return nullptr; auto *Succ0 = dyn_cast(EntryBB->getSuccessors()[0]); auto *Succ1 = dyn_cast(EntryBB->getSuccessors()[1]); if (!Succ0 || !Succ1) return nullptr; if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) return nullptr; if (Succ0->getSingleSuccessor() == Succ1) return Succ0; if (Succ1->getSingleSuccessor() == Succ0) return Succ1; return nullptr; } bool VPlanTransforms::mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { SetVector DeletedRegions; // Collect replicate regions followed by an empty block, followed by another // replicate region with matching masks to process front. This is to avoid // iterator invalidation issues while merging regions. SmallVector WorkList; for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly( vp_depth_first_deep(Plan.getEntry()))) { if (!Region1->isReplicator()) continue; auto *MiddleBasicBlock = dyn_cast_or_null(Region1->getSingleSuccessor()); if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) continue; auto *Region2 = dyn_cast_or_null(MiddleBasicBlock->getSingleSuccessor()); if (!Region2 || !Region2->isReplicator()) continue; VPValue *Mask1 = getPredicatedMask(Region1); VPValue *Mask2 = getPredicatedMask(Region2); if (!Mask1 || Mask1 != Mask2) continue; assert(Mask1 && Mask2 && "both region must have conditions"); WorkList.push_back(Region1); } // Move recipes from Region1 to its successor region, if both are triangles. for (VPRegionBlock *Region1 : WorkList) { if (DeletedRegions.contains(Region1)) continue; auto *MiddleBasicBlock = cast(Region1->getSingleSuccessor()); auto *Region2 = cast(MiddleBasicBlock->getSingleSuccessor()); VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); if (!Then1 || !Then2) continue; // Note: No fusion-preventing memory dependencies are expected in either // region. Such dependencies should be rejected during earlier dependence // checks, which guarantee accesses can be re-ordered for vectorization. // // Move recipes to the successor region. for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); auto *Merge1 = cast(Then1->getSingleSuccessor()); auto *Merge2 = cast(Then2->getSingleSuccessor()); // Move VPPredInstPHIRecipes from the merge block to the successor region's // merge block. Update all users inside the successor region to use the // original values. for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { VPValue *PredInst1 = cast(&Phi1ToMove)->getOperand(0); VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); for (VPUser *U : to_vector(Phi1ToMoveV->users())) { auto *UI = dyn_cast(U); if (!UI || UI->getParent() != Then2) continue; for (unsigned I = 0, E = U->getNumOperands(); I != E; ++I) { if (Phi1ToMoveV != U->getOperand(I)) continue; U->setOperand(I, PredInst1); } } Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); } // Finally, remove the first region. for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { VPBlockUtils::disconnectBlocks(Pred, Region1); VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); } VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); DeletedRegions.insert(Region1); } for (VPRegionBlock *ToDelete : DeletedRegions) delete ToDelete; return !DeletedRegions.empty(); } bool VPlanTransforms::mergeBlocksIntoPredecessors(VPlan &Plan) { SmallVector WorkList; for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly( vp_depth_first_deep(Plan.getEntry()))) { auto *PredVPBB = dyn_cast_or_null(VPBB->getSinglePredecessor()); if (PredVPBB && PredVPBB->getNumSuccessors() == 1) WorkList.push_back(VPBB); } for (VPBasicBlock *VPBB : WorkList) { VPBasicBlock *PredVPBB = cast(VPBB->getSinglePredecessor()); for (VPRecipeBase &R : make_early_inc_range(*VPBB)) R.moveBefore(*PredVPBB, PredVPBB->end()); VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); auto *ParentRegion = cast_or_null(VPBB->getParent()); if (ParentRegion && ParentRegion->getExiting() == VPBB) ParentRegion->setExiting(PredVPBB); for (auto *Succ : to_vector(VPBB->successors())) { VPBlockUtils::disconnectBlocks(VPBB, Succ); VPBlockUtils::connectBlocks(PredVPBB, Succ); } delete VPBB; } return !WorkList.empty(); } void VPlanTransforms::removeRedundantInductionCasts(VPlan &Plan) { for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { auto *IV = dyn_cast(&Phi); if (!IV || IV->getTruncInst()) continue; // A sequence of IR Casts has potentially been recorded for IV, which // *must be bypassed* when the IV is vectorized, because the vectorized IV // will produce the desired casted value. This sequence forms a def-use // chain and is provided in reverse order, ending with the cast that uses // the IV phi. Search for the recipe of the last cast in the chain and // replace it with the original IV. Note that only the final cast is // expected to have users outside the cast-chain and the dead casts left // over will be cleaned up later. auto &Casts = IV->getInductionDescriptor().getCastInsts(); VPValue *FindMyCast = IV; for (Instruction *IRCast : reverse(Casts)) { VPRecipeBase *FoundUserCast = nullptr; for (auto *U : FindMyCast->users()) { auto *UserCast = cast(U); if (UserCast->getNumDefinedValues() == 1 && UserCast->getVPSingleValue()->getUnderlyingValue() == IRCast) { FoundUserCast = UserCast; break; } } FindMyCast = FoundUserCast->getVPSingleValue(); } FindMyCast->replaceAllUsesWith(IV); } } void VPlanTransforms::removeRedundantCanonicalIVs(VPlan &Plan) { VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; for (VPUser *U : CanonicalIV->users()) { WidenNewIV = dyn_cast(U); if (WidenNewIV) break; } if (!WidenNewIV) return; VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); for (VPRecipeBase &Phi : HeaderVPBB->phis()) { auto *WidenOriginalIV = dyn_cast(&Phi); if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() || WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType()) continue; // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides // everything WidenNewIV's users need. That is, WidenOriginalIV will // generate a vector phi or all users of WidenNewIV demand the first lane // only. if (WidenOriginalIV->needsVectorIV() || vputils::onlyFirstLaneUsed(WidenNewIV)) { WidenNewIV->replaceAllUsesWith(WidenOriginalIV); WidenNewIV->eraseFromParent(); return; } } } void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { ReversePostOrderTraversal> RPOT( Plan.getEntry()); for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly(RPOT))) { // The recipes in the block are processed in reverse order, to catch chains // of dead recipes. for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { if (R.mayHaveSideEffects() || any_of(R.definedValues(), [](VPValue *V) { return V->getNumUsers() > 0; })) continue; R.eraseFromParent(); } } } void VPlanTransforms::optimizeInductions(VPlan &Plan, ScalarEvolution &SE) { SmallVector ToRemove; VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); for (VPRecipeBase &Phi : HeaderVPBB->phis()) { auto *WideIV = dyn_cast(&Phi); if (!WideIV) continue; if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { return U->usesScalars(WideIV); })) continue; auto IP = HeaderVPBB->getFirstNonPhi(); VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); Type *ResultTy = WideIV->getPHINode()->getType(); if (Instruction *TruncI = WideIV->getTruncInst()) ResultTy = TruncI->getType(); const InductionDescriptor &ID = WideIV->getInductionDescriptor(); VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, ID.getStep(), SE); VPValue *BaseIV = CanonicalIV; if (!CanonicalIV->isCanonical(ID, ResultTy)) { BaseIV = new VPDerivedIVRecipe(ID, WideIV->getStartValue(), CanonicalIV, Step, ResultTy); HeaderVPBB->insert(BaseIV->getDefiningRecipe(), IP); } VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(ID, BaseIV, Step); HeaderVPBB->insert(Steps, IP); // Update scalar users of IV to use Step instead. Use SetVector to ensure // the list of users doesn't contain duplicates. SetVector Users(WideIV->user_begin(), WideIV->user_end()); for (VPUser *U : Users) { if (HasOnlyVectorVFs && !U->usesScalars(WideIV)) continue; for (unsigned I = 0, E = U->getNumOperands(); I != E; I++) { if (U->getOperand(I) != WideIV) continue; U->setOperand(I, Steps); } } } } void VPlanTransforms::removeRedundantExpandSCEVRecipes(VPlan &Plan) { DenseMap SCEV2VPV; for (VPRecipeBase &R : make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { auto *ExpR = dyn_cast(&R); if (!ExpR) continue; auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); if (I.second) continue; ExpR->replaceAllUsesWith(I.first->second); ExpR->eraseFromParent(); } } static bool canSimplifyBranchOnCond(VPInstruction *Term) { VPInstruction *Not = dyn_cast(Term->getOperand(0)); if (!Not || Not->getOpcode() != VPInstruction::Not) return false; VPInstruction *ALM = dyn_cast(Not->getOperand(0)); return ALM && ALM->getOpcode() == VPInstruction::ActiveLaneMask; } void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE) { assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); VPBasicBlock *ExitingVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); auto *Term = dyn_cast(&ExitingVPBB->back()); // Try to simplify the branch condition if TC <= VF * UF when preparing to // execute the plan for the main vector loop. We only do this if the // terminator is: // 1. BranchOnCount, or // 2. BranchOnCond where the input is Not(ActiveLaneMask). if (!Term || (Term->getOpcode() != VPInstruction::BranchOnCount && (Term->getOpcode() != VPInstruction::BranchOnCond || !canSimplifyBranchOnCond(Term)))) return; Type *IdxTy = Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType(); const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE); ScalarEvolution &SE = *PSE.getSE(); const SCEV *C = SE.getConstant(TripCount->getType(), BestVF.getKnownMinValue() * BestUF); if (TripCount->isZero() || !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) return; LLVMContext &Ctx = SE.getContext(); auto *BOC = new VPInstruction(VPInstruction::BranchOnCond, {Plan.getOrAddExternalDef(ConstantInt::getTrue(Ctx))}); Term->eraseFromParent(); ExitingVPBB->appendRecipe(BOC); Plan.setVF(BestVF); Plan.setUF(BestUF); // TODO: Further simplifications are possible // 1. Replace inductions with constants. // 2. Replace vector loop region with VPBasicBlock. }