//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The LowerSwitch transformation rewrites switch instructions with a sequence // of branches, which allows targets to get away with not implementing the // switch instruction until it is convenient. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LowerSwitch.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "lower-switch" namespace { struct IntRange { APInt Low, High; }; } // end anonymous namespace namespace { // Return true iff R is covered by Ranges. bool IsInRanges(const IntRange &R, const std::vector &Ranges) { // Note: Ranges must be sorted, non-overlapping and non-adjacent. // Find the first range whose High field is >= R.High, // then check if the Low field is <= R.Low. If so, we // have a Range that covers R. auto I = llvm::lower_bound( Ranges, R, [](IntRange A, IntRange B) { return A.High.slt(B.High); }); return I != Ranges.end() && I->Low.sle(R.Low); } struct CaseRange { ConstantInt *Low; ConstantInt *High; BasicBlock *BB; CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) : Low(low), High(high), BB(bb) {} }; using CaseVector = std::vector; using CaseItr = std::vector::iterator; /// The comparison function for sorting the switch case values in the vector. /// WARNING: Case ranges should be disjoint! struct CaseCmp { bool operator()(const CaseRange &C1, const CaseRange &C2) { const ConstantInt *CI1 = cast(C1.Low); const ConstantInt *CI2 = cast(C2.High); return CI1->getValue().slt(CI2->getValue()); } }; /// Used for debugging purposes. LLVM_ATTRIBUTE_USED raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { O << "["; for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; if (++B != E) O << ", "; } return O << "]"; } /// Update the first occurrence of the "switch statement" BB in the PHI /// node with the "new" BB. The other occurrences will: /// /// 1) Be updated by subsequent calls to this function. Switch statements may /// have more than one outcoming edge into the same BB if they all have the same /// value. When the switch statement is converted these incoming edges are now /// coming from multiple BBs. /// 2) Removed if subsequent incoming values now share the same case, i.e., /// multiple outcome edges are condensed into one. This is necessary to keep the /// number of phi values equal to the number of branches to SuccBB. void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, const APInt &NumMergedCases) { for (auto &I : SuccBB->phis()) { PHINode *PN = cast(&I); // Only update the first occurrence if NewBB exists. unsigned Idx = 0, E = PN->getNumIncomingValues(); APInt LocalNumMergedCases = NumMergedCases; for (; Idx != E && NewBB; ++Idx) { if (PN->getIncomingBlock(Idx) == OrigBB) { PN->setIncomingBlock(Idx, NewBB); break; } } // Skip the updated incoming block so that it will not be removed. if (NewBB) ++Idx; // Remove additional occurrences coming from condensed cases and keep the // number of incoming values equal to the number of branches to SuccBB. SmallVector Indices; for (; LocalNumMergedCases.ugt(0) && Idx < E; ++Idx) if (PN->getIncomingBlock(Idx) == OrigBB) { Indices.push_back(Idx); LocalNumMergedCases -= 1; } // Remove incoming values in the reverse order to prevent invalidating // *successive* index. for (unsigned III : llvm::reverse(Indices)) PN->removeIncomingValue(III); } } /// Create a new leaf block for the binary lookup tree. It checks if the /// switch's value == the case's value. If not, then it jumps to the default /// branch. At this point in the tree, the value can't be another valid case /// value, so the jump to the "default" branch is warranted. BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, ConstantInt *UpperBound, BasicBlock *OrigBlock, BasicBlock *Default) { Function *F = OrigBlock->getParent(); BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); F->insert(++OrigBlock->getIterator(), NewLeaf); // Emit comparison ICmpInst *Comp = nullptr; if (Leaf.Low == Leaf.High) { // Make the seteq instruction... Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); } else { // Make range comparison if (Leaf.Low == LowerBound) { // Val >= Min && Val <= Hi --> Val <= Hi Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, "SwitchLeaf"); } else if (Leaf.High == UpperBound) { // Val <= Max && Val >= Lo --> Val >= Lo Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, "SwitchLeaf"); } else if (Leaf.Low->isZero()) { // Val >= 0 && Val <= Hi --> Val <=u Hi Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, "SwitchLeaf"); } else { // Emit V-Lo <=u Hi-Lo Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); Instruction *Add = BinaryOperator::CreateAdd( Val, NegLo, Val->getName() + ".off", NewLeaf); Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, "SwitchLeaf"); } } // Make the conditional branch... BasicBlock *Succ = Leaf.BB; BranchInst::Create(Succ, Default, Comp, NewLeaf); // Update the PHI incoming value/block for the default. for (auto &I : Default->phis()) { PHINode *PN = cast(&I); auto *V = PN->getIncomingValueForBlock(OrigBlock); PN->addIncoming(V, NewLeaf); } // If there were any PHI nodes in this successor, rewrite one entry // from OrigBlock to come from NewLeaf. for (BasicBlock::iterator I = Succ->begin(); isa(I); ++I) { PHINode *PN = cast(I); // Remove all but one incoming entries from the cluster APInt Range = Leaf.High->getValue() - Leaf.Low->getValue(); for (APInt j(Range.getBitWidth(), 0, true); j.slt(Range); ++j) { PN->removeIncomingValue(OrigBlock); } int BlockIdx = PN->getBasicBlockIndex(OrigBlock); assert(BlockIdx != -1 && "Switch didn't go to this successor??"); PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); } return NewLeaf; } /// Convert the switch statement into a binary lookup of the case values. /// The function recursively builds this tree. LowerBound and UpperBound are /// used to keep track of the bounds for Val that have already been checked by /// a block emitted by one of the previous calls to switchConvert in the call /// stack. BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, ConstantInt *UpperBound, Value *Val, BasicBlock *Predecessor, BasicBlock *OrigBlock, BasicBlock *Default, const std::vector &UnreachableRanges) { assert(LowerBound && UpperBound && "Bounds must be initialized"); unsigned Size = End - Begin; if (Size == 1) { // Check if the Case Range is perfectly squeezed in between // already checked Upper and Lower bounds. If it is then we can avoid // emitting the code that checks if the value actually falls in the range // because the bounds already tell us so. if (Begin->Low == LowerBound && Begin->High == UpperBound) { APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue(); FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); return Begin->BB; } return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, Default); } unsigned Mid = Size / 2; std::vector LHS(Begin, Begin + Mid); LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); std::vector RHS(Begin + Mid, End); LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); CaseRange &Pivot = *(Begin + Mid); LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " << Pivot.High->getValue() << "]\n"); // NewLowerBound here should never be the integer minimal value. // This is because it is computed from a case range that is never // the smallest, so there is always a case range that has at least // a smaller value. ConstantInt *NewLowerBound = Pivot.Low; // Because NewLowerBound is never the smallest representable integer // it is safe here to subtract one. ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), NewLowerBound->getValue() - 1); if (!UnreachableRanges.empty()) { // Check if the gap between LHS's highest and NewLowerBound is unreachable. APInt GapLow = LHS.back().High->getValue() + 1; APInt GapHigh = NewLowerBound->getValue() - 1; IntRange Gap = {GapLow, GapHigh}; if (GapHigh.sge(GapLow) && IsInRanges(Gap, UnreachableRanges)) NewUpperBound = LHS.back().High; } LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", " << NewUpperBound->getValue() << "]\n" << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", " << UpperBound->getValue() << "]\n"); // Create a new node that checks if the value is < pivot. Go to the // left branch if it is and right branch if not. Function *F = OrigBlock->getParent(); BasicBlock *NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot"); BasicBlock *LBranch = SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, NewNode, OrigBlock, Default, UnreachableRanges); BasicBlock *RBranch = SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, NewNode, OrigBlock, Default, UnreachableRanges); F->insert(++OrigBlock->getIterator(), NewNode); Comp->insertInto(NewNode, NewNode->end()); BranchInst::Create(LBranch, RBranch, Comp, NewNode); return NewNode; } /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. /// \post \p Cases wouldn't contain references to \p SI's default BB. /// \returns Number of \p SI's cases that do not reference \p SI's default BB. unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { unsigned NumSimpleCases = 0; // Start with "simple" cases for (auto Case : SI->cases()) { if (Case.getCaseSuccessor() == SI->getDefaultDest()) continue; Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), Case.getCaseSuccessor())); ++NumSimpleCases; } llvm::sort(Cases, CaseCmp()); // Merge case into clusters if (Cases.size() >= 2) { CaseItr I = Cases.begin(); for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { const APInt &nextValue = J->Low->getValue(); const APInt ¤tValue = I->High->getValue(); BasicBlock *nextBB = J->BB; BasicBlock *currentBB = I->BB; // If the two neighboring cases go to the same destination, merge them // into a single case. assert(nextValue.sgt(currentValue) && "Cases should be strictly ascending"); if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { I->High = J->High; // FIXME: Combine branch weights. } else if (++I != J) { *I = *J; } } Cases.erase(std::next(I), Cases.end()); } return NumSimpleCases; } /// Replace the specified switch instruction with a sequence of chained if-then /// insts in a balanced binary search. void ProcessSwitchInst(SwitchInst *SI, SmallPtrSetImpl &DeleteList, AssumptionCache *AC, LazyValueInfo *LVI) { BasicBlock *OrigBlock = SI->getParent(); Function *F = OrigBlock->getParent(); Value *Val = SI->getCondition(); // The value we are switching on... BasicBlock *Default = SI->getDefaultDest(); // Don't handle unreachable blocks. If there are successors with phis, this // would leave them behind with missing predecessors. if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || OrigBlock->getSinglePredecessor() == OrigBlock) { DeleteList.insert(OrigBlock); return; } // Prepare cases vector. CaseVector Cases; const unsigned NumSimpleCases = Clusterify(Cases, SI); IntegerType *IT = cast(SI->getCondition()->getType()); const unsigned BitWidth = IT->getBitWidth(); // Explictly use higher precision to prevent unsigned overflow where // `UnsignedMax - 0 + 1 == 0` APInt UnsignedZero(BitWidth + 1, 0); APInt UnsignedMax = APInt::getMaxValue(BitWidth); LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() << ". Total non-default cases: " << NumSimpleCases << "\nCase clusters: " << Cases << "\n"); // If there is only the default destination, just branch. if (Cases.empty()) { BranchInst::Create(Default, OrigBlock); // Remove all the references from Default's PHIs to OrigBlock, but one. FixPhis(Default, OrigBlock, OrigBlock, UnsignedMax); SI->eraseFromParent(); return; } ConstantInt *LowerBound = nullptr; ConstantInt *UpperBound = nullptr; bool DefaultIsUnreachableFromSwitch = false; if (isa(Default->getFirstNonPHIOrDbg())) { // Make the bounds tightly fitted around the case value range, because we // know that the value passed to the switch must be exactly one of the case // values. LowerBound = Cases.front().Low; UpperBound = Cases.back().High; DefaultIsUnreachableFromSwitch = true; } else { // Constraining the range of the value being switched over helps eliminating // unreachable BBs and minimizing the number of `add` instructions // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after // LowerSwitch isn't as good, and also much more expensive in terms of // compile time for the following reasons: // 1. it processes many kinds of instructions, not just switches; // 2. even if limited to icmp instructions only, it will have to process // roughly C icmp's per switch, where C is the number of cases in the // switch, while LowerSwitch only needs to call LVI once per switch. const DataLayout &DL = F->getParent()->getDataLayout(); KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); // TODO Shouldn't this create a signed range? ConstantRange KnownBitsRange = ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); const ConstantRange LVIRange = LVI->getConstantRange(Val, SI); ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); // We delegate removal of unreachable non-default cases to other passes. In // the unlikely event that some of them survived, we just conservatively // maintain the invariant that all the cases lie between the bounds. This // may, however, still render the default case effectively unreachable. const APInt &Low = Cases.front().Low->getValue(); const APInt &High = Cases.back().High->getValue(); APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); LowerBound = ConstantInt::get(SI->getContext(), Min); UpperBound = ConstantInt::get(SI->getContext(), Max); DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); } std::vector UnreachableRanges; if (DefaultIsUnreachableFromSwitch) { DenseMap Popularity; APInt MaxPop(UnsignedZero); BasicBlock *PopSucc = nullptr; APInt SignedMax = APInt::getSignedMaxValue(BitWidth); APInt SignedMin = APInt::getSignedMinValue(BitWidth); IntRange R = {SignedMin, SignedMax}; UnreachableRanges.push_back(R); for (const auto &I : Cases) { const APInt &Low = I.Low->getValue(); const APInt &High = I.High->getValue(); IntRange &LastRange = UnreachableRanges.back(); if (LastRange.Low.eq(Low)) { // There is nothing left of the previous range. UnreachableRanges.pop_back(); } else { // Terminate the previous range. assert(Low.sgt(LastRange.Low)); LastRange.High = Low - 1; } if (High.ne(SignedMax)) { IntRange R = {High + 1, SignedMax}; UnreachableRanges.push_back(R); } // Count popularity. assert(High.sge(Low) && "Popularity shouldn't be negative."); APInt N = High.sext(BitWidth + 1) - Low.sext(BitWidth + 1) + 1; // Explict insert to make sure the bitwidth of APInts match APInt &Pop = Popularity.insert({I.BB, APInt(UnsignedZero)}).first->second; if ((Pop += N).ugt(MaxPop)) { MaxPop = Pop; PopSucc = I.BB; } } #ifndef NDEBUG /* UnreachableRanges should be sorted and the ranges non-adjacent. */ for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); I != E; ++I) { assert(I->Low.sle(I->High)); auto Next = I + 1; if (Next != E) { assert(Next->Low.sgt(I->High)); } } #endif // As the default block in the switch is unreachable, update the PHI nodes // (remove all of the references to the default block) to reflect this. const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; for (unsigned I = 0; I < NumDefaultEdges; ++I) Default->removePredecessor(OrigBlock); // Use the most popular block as the new default, reducing the number of // cases. Default = PopSucc; llvm::erase_if(Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); // If there are no cases left, just branch. if (Cases.empty()) { BranchInst::Create(Default, OrigBlock); SI->eraseFromParent(); // As all the cases have been replaced with a single branch, only keep // one entry in the PHI nodes. if (!MaxPop.isZero()) for (APInt I(UnsignedZero); I.ult(MaxPop - 1); ++I) PopSucc->removePredecessor(OrigBlock); return; } // If the condition was a PHI node with the switch block as a predecessor // removing predecessors may have caused the condition to be erased. // Getting the condition value again here protects against that. Val = SI->getCondition(); } BasicBlock *SwitchBlock = SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, OrigBlock, OrigBlock, Default, UnreachableRanges); // We have added incoming values for newly-created predecessors in // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to // remove the incoming values from OrigBlock. There might be a special case // that SwitchBlock is the same as Default, under which the PHIs in Default // are fixed inside SwitchConvert(). if (SwitchBlock != Default) FixPhis(Default, OrigBlock, nullptr, UnsignedMax); // Branch to our shiny new if-then stuff... BranchInst::Create(SwitchBlock, OrigBlock); // We are now done with the switch instruction, delete it. BasicBlock *OldDefault = SI->getDefaultDest(); SI->eraseFromParent(); // If the Default block has no more predecessors just add it to DeleteList. if (pred_empty(OldDefault)) DeleteList.insert(OldDefault); } bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { bool Changed = false; SmallPtrSet DeleteList; // We use make_early_inc_range here so that we don't traverse new blocks. for (BasicBlock &Cur : llvm::make_early_inc_range(F)) { // If the block is a dead Default block that will be deleted later, don't // waste time processing it. if (DeleteList.count(&Cur)) continue; if (SwitchInst *SI = dyn_cast(Cur.getTerminator())) { Changed = true; ProcessSwitchInst(SI, DeleteList, AC, LVI); } } for (BasicBlock *BB : DeleteList) { LVI->eraseBlock(BB); DeleteDeadBlock(BB); } return Changed; } /// Replace all SwitchInst instructions with chained branch instructions. class LowerSwitchLegacyPass : public FunctionPass { public: // Pass identification, replacement for typeid static char ID; LowerSwitchLegacyPass() : FunctionPass(ID) { initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } }; } // end anonymous namespace char LowerSwitchLegacyPass::ID = 0; // Publicly exposed interface to pass... char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", "Lower SwitchInst's to branches", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", "Lower SwitchInst's to branches", false, false) // createLowerSwitchPass - Interface to this file... FunctionPass *llvm::createLowerSwitchPass() { return new LowerSwitchLegacyPass(); } bool LowerSwitchLegacyPass::runOnFunction(Function &F) { LazyValueInfo *LVI = &getAnalysis().getLVI(); auto *ACT = getAnalysisIfAvailable(); AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; return LowerSwitch(F, LVI, AC); } PreservedAnalyses LowerSwitchPass::run(Function &F, FunctionAnalysisManager &AM) { LazyValueInfo *LVI = &AM.getResult(F); AssumptionCache *AC = AM.getCachedResult(F); return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() : PreservedAnalyses::all(); }