//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Function evaluator for LLVM IR. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Evaluator.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "evaluator" using namespace llvm; static inline bool isSimpleEnoughValueToCommit(Constant *C, SmallPtrSetImpl &SimpleConstants, const DataLayout &DL); /// Return true if the specified constant can be handled by the code generator. /// We don't want to generate something like: /// void *X = &X/42; /// because the code generator doesn't have a relocation that can handle that. /// /// This function should be called if C was not found (but just got inserted) /// in SimpleConstants to avoid having to rescan the same constants all the /// time. static bool isSimpleEnoughValueToCommitHelper(Constant *C, SmallPtrSetImpl &SimpleConstants, const DataLayout &DL) { // Simple global addresses are supported, do not allow dllimport or // thread-local globals. if (auto *GV = dyn_cast(C)) return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); // Simple integer, undef, constant aggregate zero, etc are all supported. if (C->getNumOperands() == 0 || isa(C)) return true; // Aggregate values are safe if all their elements are. if (isa(C)) { for (Value *Op : C->operands()) if (!isSimpleEnoughValueToCommit(cast(Op), SimpleConstants, DL)) return false; return true; } // We don't know exactly what relocations are allowed in constant expressions, // so we allow &global+constantoffset, which is safe and uniformly supported // across targets. ConstantExpr *CE = cast(C); switch (CE->getOpcode()) { case Instruction::BitCast: // Bitcast is fine if the casted value is fine. return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); case Instruction::IntToPtr: case Instruction::PtrToInt: // int <=> ptr is fine if the int type is the same size as the // pointer type. if (DL.getTypeSizeInBits(CE->getType()) != DL.getTypeSizeInBits(CE->getOperand(0)->getType())) return false; return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); // GEP is fine if it is simple + constant offset. case Instruction::GetElementPtr: for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) if (!isa(CE->getOperand(i))) return false; return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); case Instruction::Add: // We allow simple+cst. if (!isa(CE->getOperand(1))) return false; return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); } return false; } static inline bool isSimpleEnoughValueToCommit(Constant *C, SmallPtrSetImpl &SimpleConstants, const DataLayout &DL) { // If we already checked this constant, we win. if (!SimpleConstants.insert(C).second) return true; // Check the constant. return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); } void Evaluator::MutableValue::clear() { if (auto *Agg = Val.dyn_cast()) delete Agg; Val = nullptr; } Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset, const DataLayout &DL) const { TypeSize TySize = DL.getTypeStoreSize(Ty); const MutableValue *V = this; while (const auto *Agg = V->Val.dyn_cast()) { Type *AggTy = Agg->Ty; std::optional Index = DL.getGEPIndexForOffset(AggTy, Offset); if (!Index || Index->uge(Agg->Elements.size()) || !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) return nullptr; V = &Agg->Elements[Index->getZExtValue()]; } return ConstantFoldLoadFromConst(V->Val.get(), Ty, Offset, DL); } bool Evaluator::MutableValue::makeMutable() { Constant *C = Val.get(); Type *Ty = C->getType(); unsigned NumElements; if (auto *VT = dyn_cast(Ty)) { NumElements = VT->getNumElements(); } else if (auto *AT = dyn_cast(Ty)) NumElements = AT->getNumElements(); else if (auto *ST = dyn_cast(Ty)) NumElements = ST->getNumElements(); else return false; MutableAggregate *MA = new MutableAggregate(Ty); MA->Elements.reserve(NumElements); for (unsigned I = 0; I < NumElements; ++I) MA->Elements.push_back(C->getAggregateElement(I)); Val = MA; return true; } bool Evaluator::MutableValue::write(Constant *V, APInt Offset, const DataLayout &DL) { Type *Ty = V->getType(); TypeSize TySize = DL.getTypeStoreSize(Ty); MutableValue *MV = this; while (Offset != 0 || !CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) { if (MV->Val.is() && !MV->makeMutable()) return false; MutableAggregate *Agg = MV->Val.get(); Type *AggTy = Agg->Ty; std::optional Index = DL.getGEPIndexForOffset(AggTy, Offset); if (!Index || Index->uge(Agg->Elements.size()) || !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) return false; MV = &Agg->Elements[Index->getZExtValue()]; } Type *MVType = MV->getType(); MV->clear(); if (Ty->isIntegerTy() && MVType->isPointerTy()) MV->Val = ConstantExpr::getIntToPtr(V, MVType); else if (Ty->isPointerTy() && MVType->isIntegerTy()) MV->Val = ConstantExpr::getPtrToInt(V, MVType); else if (Ty != MVType) MV->Val = ConstantExpr::getBitCast(V, MVType); else MV->Val = V; return true; } Constant *Evaluator::MutableAggregate::toConstant() const { SmallVector Consts; for (const MutableValue &MV : Elements) Consts.push_back(MV.toConstant()); if (auto *ST = dyn_cast(Ty)) return ConstantStruct::get(ST, Consts); if (auto *AT = dyn_cast(Ty)) return ConstantArray::get(AT, Consts); assert(isa(Ty) && "Must be vector"); return ConstantVector::get(Consts); } /// Return the value that would be computed by a load from P after the stores /// reflected by 'memory' have been performed. If we can't decide, return null. Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) { APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0); P = cast(P->stripAndAccumulateConstantOffsets( DL, Offset, /* AllowNonInbounds */ true)); Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType())); if (auto *GV = dyn_cast(P)) return ComputeLoadResult(GV, Ty, Offset); return nullptr; } Constant *Evaluator::ComputeLoadResult(GlobalVariable *GV, Type *Ty, const APInt &Offset) { auto It = MutatedMemory.find(GV); if (It != MutatedMemory.end()) return It->second.read(Ty, Offset, DL); if (!GV->hasDefinitiveInitializer()) return nullptr; return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL); } static Function *getFunction(Constant *C) { if (auto *Fn = dyn_cast(C)) return Fn; if (auto *Alias = dyn_cast(C)) if (auto *Fn = dyn_cast(Alias->getAliasee())) return Fn; return nullptr; } Function * Evaluator::getCalleeWithFormalArgs(CallBase &CB, SmallVectorImpl &Formals) { auto *V = CB.getCalledOperand()->stripPointerCasts(); if (auto *Fn = getFunction(getVal(V))) return getFormalParams(CB, Fn, Formals) ? Fn : nullptr; return nullptr; } bool Evaluator::getFormalParams(CallBase &CB, Function *F, SmallVectorImpl &Formals) { if (!F) return false; auto *FTy = F->getFunctionType(); if (FTy->getNumParams() > CB.arg_size()) { LLVM_DEBUG(dbgs() << "Too few arguments for function.\n"); return false; } auto ArgI = CB.arg_begin(); for (Type *PTy : FTy->params()) { auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL); if (!ArgC) { LLVM_DEBUG(dbgs() << "Can not convert function argument.\n"); return false; } Formals.push_back(ArgC); ++ArgI; } return true; } /// If call expression contains bitcast then we may need to cast /// evaluated return value to a type of the call expression. Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) { if (!RV || RV->getType() == ReturnType) return RV; RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL); if (!RV) LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n"); return RV; } /// Evaluate all instructions in block BB, returning true if successful, false /// if we can't evaluate it. NewBB returns the next BB that control flows into, /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if /// we looked through pointer casts to evaluate something. bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB, bool &StrippedPointerCastsForAliasAnalysis) { // This is the main evaluation loop. while (true) { Constant *InstResult = nullptr; LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); if (StoreInst *SI = dyn_cast(CurInst)) { if (SI->isVolatile()) { LLVM_DEBUG(dbgs() << "Store is volatile! Can not evaluate.\n"); return false; // no volatile accesses. } Constant *Ptr = getVal(SI->getOperand(1)); Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); if (Ptr != FoldedPtr) { LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); Ptr = FoldedPtr; LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); } APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); Ptr = cast(Ptr->stripAndAccumulateConstantOffsets( DL, Offset, /* AllowNonInbounds */ true)); Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType())); auto *GV = dyn_cast(Ptr); if (!GV || !GV->hasUniqueInitializer()) { LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: " << *Ptr << "\n"); return false; } // If this might be too difficult for the backend to handle (e.g. the addr // of one global variable divided by another) then we can't commit it. Constant *Val = getVal(SI->getOperand(0)); if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val << "\n"); return false; } auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer()); if (!Res.first->second.write(Val, Offset, DL)) return false; } else if (LoadInst *LI = dyn_cast(CurInst)) { if (LI->isVolatile()) { LLVM_DEBUG( dbgs() << "Found a Load! Volatile load, can not evaluate.\n"); return false; // no volatile accesses. } Constant *Ptr = getVal(LI->getOperand(0)); Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); if (Ptr != FoldedPtr) { Ptr = FoldedPtr; LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " "folding: " << *Ptr << "\n"); } InstResult = ComputeLoadResult(Ptr, LI->getType()); if (!InstResult) { LLVM_DEBUG( dbgs() << "Failed to compute load result. Can not evaluate load." "\n"); return false; // Could not evaluate load. } LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); } else if (AllocaInst *AI = dyn_cast(CurInst)) { if (AI->isArrayAllocation()) { LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); return false; // Cannot handle array allocs. } Type *Ty = AI->getAllocatedType(); AllocaTmps.push_back(std::make_unique( Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, AI->getType()->getPointerAddressSpace())); InstResult = AllocaTmps.back().get(); LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); } else if (isa(CurInst) || isa(CurInst)) { CallBase &CB = *cast(&*CurInst); // Debug info can safely be ignored here. if (isa(CB)) { LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); ++CurInst; continue; } // Cannot handle inline asm. if (CB.isInlineAsm()) { LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); return false; } if (IntrinsicInst *II = dyn_cast(&CB)) { if (MemSetInst *MSI = dyn_cast(II)) { if (MSI->isVolatile()) { LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " << "intrinsic.\n"); return false; } auto *LenC = dyn_cast(getVal(MSI->getLength())); if (!LenC) { LLVM_DEBUG(dbgs() << "Memset with unknown length.\n"); return false; } Constant *Ptr = getVal(MSI->getDest()); APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); Ptr = cast(Ptr->stripAndAccumulateConstantOffsets( DL, Offset, /* AllowNonInbounds */ true)); auto *GV = dyn_cast(Ptr); if (!GV) { LLVM_DEBUG(dbgs() << "Memset with unknown base.\n"); return false; } Constant *Val = getVal(MSI->getValue()); APInt Len = LenC->getValue(); while (Len != 0) { Constant *DestVal = ComputeLoadResult(GV, Val->getType(), Offset); if (DestVal != Val) { LLVM_DEBUG(dbgs() << "Memset is not a no-op at offset " << Offset << " of " << *GV << ".\n"); return false; } ++Offset; --Len; } LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); ++CurInst; continue; } if (II->isLifetimeStartOrEnd()) { LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); ++CurInst; continue; } if (II->getIntrinsicID() == Intrinsic::invariant_start) { // We don't insert an entry into Values, as it doesn't have a // meaningful return value. if (!II->use_empty()) { LLVM_DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); return false; } ConstantInt *Size = cast(II->getArgOperand(0)); Value *PtrArg = getVal(II->getArgOperand(1)); Value *Ptr = PtrArg->stripPointerCasts(); if (GlobalVariable *GV = dyn_cast(Ptr)) { Type *ElemTy = GV->getValueType(); if (!Size->isMinusOne() && Size->getValue().getLimitedValue() >= DL.getTypeStoreSize(ElemTy)) { Invariants.insert(GV); LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV << "\n"); } else { LLVM_DEBUG(dbgs() << "Found a global var, but can not treat it as an " "invariant.\n"); } } // Continue even if we do nothing. ++CurInst; continue; } else if (II->getIntrinsicID() == Intrinsic::assume) { LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); ++CurInst; continue; } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); ++CurInst; continue; } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) { LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n"); ++CurInst; continue; } else { Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis(); // Only attempt to getVal() if we've actually managed to strip // anything away, or else we'll call getVal() on the current // instruction. if (Stripped != &*CurInst) { InstResult = getVal(Stripped); } if (InstResult) { LLVM_DEBUG(dbgs() << "Stripped pointer casts for alias analysis for " "intrinsic call.\n"); StrippedPointerCastsForAliasAnalysis = true; InstResult = ConstantExpr::getBitCast(InstResult, II->getType()); } else { LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n"); return false; } } } if (!InstResult) { // Resolve function pointers. SmallVector Formals; Function *Callee = getCalleeWithFormalArgs(CB, Formals); if (!Callee || Callee->isInterposable()) { LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); return false; // Cannot resolve. } if (Callee->isDeclaration()) { // If this is a function we can constant fold, do it. if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) { InstResult = castCallResultIfNeeded(CB.getType(), C); if (!InstResult) return false; LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " << *InstResult << "\n"); } else { LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); return false; } } else { if (Callee->getFunctionType()->isVarArg()) { LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); return false; } Constant *RetVal = nullptr; // Execute the call, if successful, use the return value. ValueStack.emplace_back(); if (!EvaluateFunction(Callee, RetVal, Formals)) { LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); return false; } ValueStack.pop_back(); InstResult = castCallResultIfNeeded(CB.getType(), RetVal); if (RetVal && !InstResult) return false; if (InstResult) { LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " << *InstResult << "\n\n"); } else { LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); } } } } else if (CurInst->isTerminator()) { LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); if (BranchInst *BI = dyn_cast(CurInst)) { if (BI->isUnconditional()) { NextBB = BI->getSuccessor(0); } else { ConstantInt *Cond = dyn_cast(getVal(BI->getCondition())); if (!Cond) return false; // Cannot determine. NextBB = BI->getSuccessor(!Cond->getZExtValue()); } } else if (SwitchInst *SI = dyn_cast(CurInst)) { ConstantInt *Val = dyn_cast(getVal(SI->getCondition())); if (!Val) return false; // Cannot determine. NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); } else if (IndirectBrInst *IBI = dyn_cast(CurInst)) { Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); if (BlockAddress *BA = dyn_cast(Val)) NextBB = BA->getBasicBlock(); else return false; // Cannot determine. } else if (isa(CurInst)) { NextBB = nullptr; } else { // invoke, unwind, resume, unreachable. LLVM_DEBUG(dbgs() << "Can not handle terminator."); return false; // Cannot handle this terminator. } // We succeeded at evaluating this block! LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); return true; } else { SmallVector Ops; for (Value *Op : CurInst->operands()) Ops.push_back(getVal(Op)); InstResult = ConstantFoldInstOperands(&*CurInst, Ops, DL, TLI); if (!InstResult) { LLVM_DEBUG(dbgs() << "Cannot fold instruction: " << *CurInst << "\n"); return false; } LLVM_DEBUG(dbgs() << "Folded instruction " << *CurInst << " to " << *InstResult << "\n"); } if (!CurInst->use_empty()) { InstResult = ConstantFoldConstant(InstResult, DL, TLI); setVal(&*CurInst, InstResult); } // If we just processed an invoke, we finished evaluating the block. if (InvokeInst *II = dyn_cast(CurInst)) { NextBB = II->getNormalDest(); LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); return true; } // Advance program counter. ++CurInst; } } /// Evaluate a call to function F, returning true if successful, false if we /// can't evaluate it. ActualArgs contains the formal arguments for the /// function. bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, const SmallVectorImpl &ActualArgs) { assert(ActualArgs.size() == F->arg_size() && "wrong number of arguments"); // Check to see if this function is already executing (recursion). If so, // bail out. TODO: we might want to accept limited recursion. if (is_contained(CallStack, F)) return false; CallStack.push_back(F); // Initialize arguments to the incoming values specified. for (const auto &[ArgNo, Arg] : llvm::enumerate(F->args())) setVal(&Arg, ActualArgs[ArgNo]); // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, // we can only evaluate any one basic block at most once. This set keeps // track of what we have executed so we can detect recursive cases etc. SmallPtrSet ExecutedBlocks; // CurBB - The current basic block we're evaluating. BasicBlock *CurBB = &F->front(); BasicBlock::iterator CurInst = CurBB->begin(); while (true) { BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); bool StrippedPointerCastsForAliasAnalysis = false; if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis)) return false; if (!NextBB) { // Successfully running until there's no next block means that we found // the return. Fill it the return value and pop the call stack. ReturnInst *RI = cast(CurBB->getTerminator()); if (RI->getNumOperands()) { // The Evaluator can look through pointer casts as long as alias // analysis holds because it's just a simple interpreter and doesn't // skip memory accesses due to invariant group metadata, but we can't // let users of Evaluator use a value that's been gleaned looking // through stripping pointer casts. if (StrippedPointerCastsForAliasAnalysis && !RI->getReturnValue()->getType()->isVoidTy()) { return false; } RetVal = getVal(RI->getOperand(0)); } CallStack.pop_back(); return true; } // Okay, we succeeded in evaluating this control flow. See if we have // executed the new block before. If so, we have a looping function, // which we cannot evaluate in reasonable time. if (!ExecutedBlocks.insert(NextBB).second) return false; // looped! // Okay, we have never been in this block before. Check to see if there // are any PHI nodes. If so, evaluate them with information about where // we came from. PHINode *PN = nullptr; for (CurInst = NextBB->begin(); (PN = dyn_cast(CurInst)); ++CurInst) setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); // Advance to the next block. CurBB = NextBB; } }