//===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// // Target-independent type requirements, but with target-specific formats. def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; // Target-dependent type requirements. def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>; def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT>, SDTCisSameAs<0, 4>, SDTCisSameAs<4, 5>]>; def SDT_RISCVBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>, SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>]>; def SDT_RISCVReadCSR : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>; def SDT_RISCVWriteCSR : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisInt<1>]>; def SDT_RISCVSwapCSR : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; def SDT_RISCVReadCycleWide : SDTypeProfile<2, 0, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_RISCVIntUnaryOpW : SDTypeProfile<1, 1, [ SDTCisSameAs<0, 1>, SDTCisVT<0, i64> ]>; def SDT_RISCVIntBinOpW : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64> ]>; def SDT_RISCVIntShiftDOpW : SDTypeProfile<1, 3, [ SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>, SDTCisVT<3, i64> ]>; // Target-independent nodes, but with target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; // Target-dependent nodes. def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def riscv_ret_flag : SDNode<"RISCVISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue]>; def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue]>; def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue]>; def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC>; def riscv_brcc : SDNode<"RISCVISD::BR_CC", SDT_RISCVBrCC, [SDNPHasChain]>; def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def riscv_sllw : SDNode<"RISCVISD::SLLW", SDT_RISCVIntBinOpW>; def riscv_sraw : SDNode<"RISCVISD::SRAW", SDT_RISCVIntBinOpW>; def riscv_srlw : SDNode<"RISCVISD::SRLW", SDT_RISCVIntBinOpW>; def riscv_read_csr : SDNode<"RISCVISD::READ_CSR", SDT_RISCVReadCSR, [SDNPHasChain]>; def riscv_write_csr : SDNode<"RISCVISD::WRITE_CSR", SDT_RISCVWriteCSR, [SDNPHasChain]>; def riscv_swap_csr : SDNode<"RISCVISD::SWAP_CSR", SDT_RISCVSwapCSR, [SDNPHasChain]>; def riscv_read_cycle_wide : SDNode<"RISCVISD::READ_CYCLE_WIDE", SDT_RISCVReadCycleWide, [SDNPHasChain, SDNPSideEffect]>; def riscv_add_lo : SDNode<"RISCVISD::ADD_LO", SDTIntBinOp>; def riscv_hi : SDNode<"RISCVISD::HI", SDTIntUnaryOp>; def riscv_lla : SDNode<"RISCVISD::LLA", SDTIntUnaryOp>; def riscv_add_tprel : SDNode<"RISCVISD::ADD_TPREL", SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>]>>; def riscv_la : SDNode<"RISCVISD::LA", SDTLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def riscv_la_tls_ie : SDNode<"RISCVISD::LA_TLS_IE", SDTLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def riscv_la_tls_gd : SDNode<"RISCVISD::LA_TLS_GD", SDTIntUnaryOp>; //===----------------------------------------------------------------------===// // Operand and SDNode transformation definitions. //===----------------------------------------------------------------------===// class ImmXLenAsmOperand : AsmOperandClass { let Name = prefix # "ImmXLen" # suffix; let RenderMethod = "addImmOperands"; let DiagnosticType = !strconcat("Invalid", Name); } class ImmAsmOperand : AsmOperandClass { let Name = prefix # "Imm" # width # suffix; let RenderMethod = "addImmOperands"; let DiagnosticType = !strconcat("Invalid", Name); } def ImmZeroAsmOperand : AsmOperandClass { let Name = "ImmZero"; let RenderMethod = "addImmOperands"; let DiagnosticType = !strconcat("Invalid", Name); } // A parse method for (${gpr}) or 0(${gpr}), where the 0 is be silently ignored. def ZeroOffsetMemOpOperand : AsmOperandClass { let Name = "ZeroOffsetMemOpOperand"; let RenderMethod = "addRegOperands"; let PredicateMethod = "isGPR"; let ParserMethod = "parseZeroOffsetMemOp"; } class MemOperand : RegisterOperand{ let OperandType = "OPERAND_MEMORY"; } def GPRMemZeroOffset : MemOperand { let ParserMatchClass = ZeroOffsetMemOpOperand; let PrintMethod = "printZeroOffsetMemOp"; } def GPRMem : MemOperand; def SPMem : MemOperand; def GPRCMem : MemOperand; class SImmAsmOperand : ImmAsmOperand<"S", width, suffix> { } class UImmAsmOperand : ImmAsmOperand<"U", width, suffix> { } def FenceArg : AsmOperandClass { let Name = "FenceArg"; let RenderMethod = "addFenceArgOperands"; let DiagnosticType = "InvalidFenceArg"; } def fencearg : Operand { let ParserMatchClass = FenceArg; let PrintMethod = "printFenceArg"; let DecoderMethod = "decodeUImmOperand<4>"; let OperandType = "OPERAND_UIMM4"; let OperandNamespace = "RISCVOp"; } def UImmLog2XLenAsmOperand : AsmOperandClass { let Name = "UImmLog2XLen"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidUImmLog2XLen"; } def uimmlog2xlen : Operand, ImmLeafis64Bit()) return isUInt<6>(Imm); return isUInt<5>(Imm); }]> { let ParserMatchClass = UImmLog2XLenAsmOperand; // TODO: should ensure invalid shamt is rejected when decoding. let DecoderMethod = "decodeUImmOperand<6>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; if (STI.getTargetTriple().isArch64Bit()) return isUInt<6>(Imm); return isUInt<5>(Imm); }]; let OperandType = "OPERAND_UIMMLOG2XLEN"; let OperandNamespace = "RISCVOp"; } def uimm2 : Operand { let ParserMatchClass = UImmAsmOperand<2>; let DecoderMethod = "decodeUImmOperand<2>"; let OperandType = "OPERAND_UIMM2"; let OperandNamespace = "RISCVOp"; } def uimm3 : Operand { let ParserMatchClass = UImmAsmOperand<3>; let DecoderMethod = "decodeUImmOperand<3>"; let OperandType = "OPERAND_UIMM3"; let OperandNamespace = "RISCVOp"; } def uimm5 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = UImmAsmOperand<5>; let DecoderMethod = "decodeUImmOperand<5>"; let OperandType = "OPERAND_UIMM5"; let OperandNamespace = "RISCVOp"; } def InsnDirectiveOpcode : AsmOperandClass { let Name = "InsnDirectiveOpcode"; let ParserMethod = "parseInsnDirectiveOpcode"; let RenderMethod = "addImmOperands"; let PredicateMethod = "isImm"; } def uimm7_opcode : Operand { let ParserMatchClass = InsnDirectiveOpcode; let DecoderMethod = "decodeUImmOperand<7>"; let OperandType = "OPERAND_UIMM7"; let OperandNamespace = "RISCVOp"; } def uimm7 : Operand { let ParserMatchClass = UImmAsmOperand<7>; let DecoderMethod = "decodeUImmOperand<7>"; let OperandType = "OPERAND_UIMM7"; let OperandNamespace = "RISCVOp"; } def simm12 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = SImmAsmOperand<12>; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeSImmOperand<12>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return isInt<12>(Imm); return MCOp.isBareSymbolRef(); }]; let OperandType = "OPERAND_SIMM12"; let OperandNamespace = "RISCVOp"; } // A 12-bit signed immediate which cannot fit in 6-bit signed immediate, // but even negative value fit in 12-bit. def simm12_no6 : ImmLeaf(Imm) && !isInt<6>(Imm) && isInt<12>(-Imm);}]>; // A 13-bit signed immediate where the least significant bit is zero. def simm13_lsb0 : Operand { let ParserMatchClass = SImmAsmOperand<13, "Lsb0">; let PrintMethod = "printBranchOperand"; let EncoderMethod = "getImmOpValueAsr1"; let DecoderMethod = "decodeSImmOperandAndLsl1<13>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return isShiftedInt<12, 1>(Imm); return MCOp.isBareSymbolRef(); }]; let OperandType = "OPERAND_PCREL"; } class UImm20Operand : Operand { let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeUImmOperand<20>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return isUInt<20>(Imm); return MCOp.isBareSymbolRef(); }]; let OperandType = "OPERAND_UIMM20"; let OperandNamespace = "RISCVOp"; } def uimm20_lui : UImm20Operand { let ParserMatchClass = UImmAsmOperand<20, "LUI">; } def uimm20_auipc : UImm20Operand { let ParserMatchClass = UImmAsmOperand<20, "AUIPC">; } def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> { let ParserMethod = "parseJALOffset"; } // A 21-bit signed immediate where the least significant bit is zero. def simm21_lsb0_jal : Operand { let ParserMatchClass = Simm21Lsb0JALAsmOperand; let PrintMethod = "printBranchOperand"; let EncoderMethod = "getImmOpValueAsr1"; let DecoderMethod = "decodeSImmOperandAndLsl1<21>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return isShiftedInt<20, 1>(Imm); return MCOp.isBareSymbolRef(); }]; let OperandType = "OPERAND_PCREL"; } def BareSymbol : AsmOperandClass { let Name = "BareSymbol"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidBareSymbol"; let ParserMethod = "parseBareSymbol"; } // A bare symbol. def bare_symbol : Operand { let ParserMatchClass = BareSymbol; } def CallSymbol : AsmOperandClass { let Name = "CallSymbol"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidCallSymbol"; let ParserMethod = "parseCallSymbol"; } // A bare symbol used in call/tail only. def call_symbol : Operand { let ParserMatchClass = CallSymbol; } def PseudoJumpSymbol : AsmOperandClass { let Name = "PseudoJumpSymbol"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidPseudoJumpSymbol"; let ParserMethod = "parsePseudoJumpSymbol"; } // A bare symbol used for pseudo jumps only. def pseudo_jump_symbol : Operand { let ParserMatchClass = PseudoJumpSymbol; } def TPRelAddSymbol : AsmOperandClass { let Name = "TPRelAddSymbol"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidTPRelAddSymbol"; let ParserMethod = "parseOperandWithModifier"; } // A bare symbol with the %tprel_add variant. def tprel_add_symbol : Operand { let ParserMatchClass = TPRelAddSymbol; } def CSRSystemRegister : AsmOperandClass { let Name = "CSRSystemRegister"; let ParserMethod = "parseCSRSystemRegister"; let DiagnosticType = "InvalidCSRSystemRegister"; } def csr_sysreg : Operand { let ParserMatchClass = CSRSystemRegister; let PrintMethod = "printCSRSystemRegister"; let DecoderMethod = "decodeUImmOperand<12>"; let OperandType = "OPERAND_UIMM12"; let OperandNamespace = "RISCVOp"; } // A parameterized register class alternative to i32imm/i64imm from Target.td. def ixlenimm : Operand; def ixlenimm_li : Operand { let ParserMatchClass = ImmXLenAsmOperand<"", "LI">; } // Standalone (codegen-only) immleaf patterns. // A 12-bit signed immediate plus one where the imm range will be [-2047, 2048]. def simm12_plus1 : ImmLeaf(Imm) && Imm != -2048) || Imm == 2048;}]>; // A 6-bit constant greater than 32. def uimm6gt32 : ImmLeaf(Imm) && Imm > 32; }]>; // Addressing modes. // Necessary because a frameindex can't be matched directly in a pattern. def FrameAddrRegImm : ComplexPattern; def AddrRegImm : ComplexPattern; // Return the negation of an immediate value. def NegImm : SDNodeXFormgetTargetConstant(-N->getSExtValue(), SDLoc(N), N->getValueType(0)); }]>; // Return an immediate value minus 32. def ImmSub32 : SDNodeXFormgetTargetConstant(N->getSExtValue() - 32, SDLoc(N), N->getValueType(0)); }]>; // Return an immediate subtracted from XLen. def ImmSubFromXLen : SDNodeXFormgetXLen(); return CurDAG->getTargetConstant(XLen - N->getZExtValue(), SDLoc(N), N->getValueType(0)); }]>; // Return an immediate subtracted from 32. def ImmSubFrom32 : SDNodeXFormgetTargetConstant(32 - N->getZExtValue(), SDLoc(N), N->getValueType(0)); }]>; // Check if (add r, imm) can be optimized to (ADDI (ADDI r, imm0), imm1), // in which imm = imm0 + imm1 and both imm0 and imm1 are simm12. We make imm0 // as large as possible and imm1 as small as possible so that we might be able // to use c.addi for the small immediate. def AddiPair : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; // The immediate operand must be in range [-4096,-2049] or [2048,4094]. int64_t Imm = N->getSExtValue(); return (-4096 <= Imm && Imm <= -2049) || (2048 <= Imm && Imm <= 4094); }]>; // Return imm - (imm < 0 ? -2048 : 2047). def AddiPairImmSmall : SDNodeXFormgetSExtValue(); int64_t Adj = N->getSExtValue() < 0 ? -2048 : 2047; return CurDAG->getTargetConstant(Imm - Adj, SDLoc(N), N->getValueType(0)); }]>; // Return -2048 if immediate is negative or 2047 if positive. These are the // largest simm12 values. def AddiPairImmLarge : SDNodeXFormgetSExtValue() < 0 ? -2048 : 2047; return CurDAG->getTargetConstant(Imm, SDLoc(N), N->getValueType(0)); }]>; def TrailingZeros : SDNodeXFormgetTargetConstant(countTrailingZeros(N->getZExtValue()), SDLoc(N), N->getValueType(0)); }]>; def XLenSubTrailingOnes : SDNodeXFormgetXLen(); uint64_t TrailingOnes = countTrailingOnes(N->getZExtValue()); return CurDAG->getTargetConstant(XLen - TrailingOnes, SDLoc(N), N->getValueType(0)); }]>; // Checks if this mask is a non-empty sequence of ones starting at the // most/least significant bit with the remainder zero and exceeds simm32/simm12. def LeadingOnesMask : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; return !isInt<32>(N->getSExtValue()) && isMask_64(~N->getSExtValue()); }], TrailingZeros>; def TrailingOnesMask : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; return !isInt<12>(N->getSExtValue()) && isMask_64(N->getZExtValue()); }], XLenSubTrailingOnes>; // Similar to LeadingOnesMask, but only consider leading ones in the lower 32 // bits. def LeadingOnesWMask : PatLeaf<(imm), [{ if (!N->hasOneUse()) return false; // If the value is a uint32 but not an int32, it must have bit 31 set and // bits 63:32 cleared. After that we're looking for a shifted mask but not // an all ones mask. int64_t Imm = N->getSExtValue(); return !isInt<32>(Imm) && isUInt<32>(Imm) && isShiftedMask_64(Imm) && Imm != UINT64_C(0xffffffff); }], TrailingZeros>; //===----------------------------------------------------------------------===// // Instruction Formats //===----------------------------------------------------------------------===// include "RISCVInstrFormats.td" //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class BranchCC_rri funct3, string opcodestr> : RVInstB, Sched<[WriteJmp, ReadJmp, ReadJmp]> { let isBranch = 1; let isTerminator = 1; } let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in { class Load_ri funct3, string opcodestr> : RVInstI; class HLoad_r funct7, bits<5> funct5, string opcodestr> : RVInstR { let rs2 = funct5; } } // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in { class Store_rri funct3, string opcodestr> : RVInstS; class HStore_rr funct7, string opcodestr> : RVInstR { let rd = 0; } } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class ALU_ri funct3, string opcodestr> : RVInstI, Sched<[WriteIALU, ReadIALU]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class Shift_ri imm11_7, bits<3> funct3, string opcodestr> : RVInstIShift, Sched<[WriteShiftImm, ReadShiftImm]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class ALU_rr funct7, bits<3> funct3, string opcodestr, bit Commutable = 0> : RVInstR { let isCommutable = Commutable; } let hasNoSchedulingInfo = 1, hasSideEffects = 1, mayLoad = 0, mayStore = 0 in class CSR_ir funct3, string opcodestr> : RVInstI, Sched<[WriteCSR, ReadCSR]>; let hasNoSchedulingInfo = 1, hasSideEffects = 1, mayLoad = 0, mayStore = 0 in class CSR_ii funct3, string opcodestr> : RVInstI, Sched<[WriteCSR]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class ShiftW_ri imm11_5, bits<3> funct3, string opcodestr> : RVInstIShiftW, Sched<[WriteShiftImm32, ReadShiftImm32]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class ALUW_rr funct7, bits<3> funct3, string opcodestr, bit Commutable = 0> : RVInstR { let isCommutable = Commutable; } let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in class Priv funct7> : RVInstR; let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in class Priv_rr funct7> : RVInstR { let rd = 0; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { let isReMaterializable = 1, isAsCheapAsAMove = 1, IsSignExtendingOpW = 1 in def LUI : RVInstU, Sched<[WriteIALU]>; def AUIPC : RVInstU, Sched<[WriteIALU]>; let isCall = 1 in def JAL : RVInstJ, Sched<[WriteJal]>; let isCall = 1 in def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12), "jalr", "$rd, ${imm12}(${rs1})">, Sched<[WriteJalr, ReadJalr]>; } // hasSideEffects = 0, mayLoad = 0, mayStore = 0 def BEQ : BranchCC_rri<0b000, "beq">; def BNE : BranchCC_rri<0b001, "bne">; def BLT : BranchCC_rri<0b100, "blt">; def BGE : BranchCC_rri<0b101, "bge">; def BLTU : BranchCC_rri<0b110, "bltu">; def BGEU : BranchCC_rri<0b111, "bgeu">; let IsSignExtendingOpW = 1 in { def LB : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>; def LH : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>; def LW : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>; def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>; def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>; } def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>; def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>; def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>; // ADDI isn't always rematerializable, but isReMaterializable will be used as // a hint which is verified in isReallyTriviallyReMaterializable. let isReMaterializable = 1, isAsCheapAsAMove = 1 in def ADDI : ALU_ri<0b000, "addi">; let IsSignExtendingOpW = 1 in { def SLTI : ALU_ri<0b010, "slti">; def SLTIU : ALU_ri<0b011, "sltiu">; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def XORI : ALU_ri<0b100, "xori">; def ORI : ALU_ri<0b110, "ori">; } def ANDI : ALU_ri<0b111, "andi">; def SLLI : Shift_ri<0b00000, 0b001, "slli">; def SRLI : Shift_ri<0b00000, 0b101, "srli">; def SRAI : Shift_ri<0b01000, 0b101, "srai">; def ADD : ALU_rr<0b0000000, 0b000, "add", /*Commutable*/1>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def SUB : ALU_rr<0b0100000, 0b000, "sub">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def SLL : ALU_rr<0b0000000, 0b001, "sll">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>; let IsSignExtendingOpW = 1 in { def SLT : ALU_rr<0b0000000, 0b010, "slt">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def SLTU : ALU_rr<0b0000000, 0b011, "sltu">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; } def XOR : ALU_rr<0b0000000, 0b100, "xor", /*Commutable*/1>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def SRL : ALU_rr<0b0000000, 0b101, "srl">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>; def SRA : ALU_rr<0b0100000, 0b101, "sra">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>; def OR : ALU_rr<0b0000000, 0b110, "or", /*Commutable*/1>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def AND : ALU_rr<0b0000000, 0b111, "and", /*Commutable*/1>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in { def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins fencearg:$pred, fencearg:$succ), "fence", "$pred, $succ">, Sched<[]> { bits<4> pred; bits<4> succ; let rs1 = 0; let rd = 0; let imm12 = {0b0000,pred,succ}; } def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> { let rs1 = 0; let rd = 0; let imm12 = {0b1000,0b0011,0b0011}; } def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> { let rs1 = 0; let rd = 0; let imm12 = 0; } def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> { let rs1 = 0; let rd = 0; let imm12 = 0; } def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">, Sched<[]> { let rs1 = 0; let rd = 0; let imm12 = 1; } // This is a de facto standard (as set by GNU binutils) 32-bit unimplemented // instruction (i.e., it should always trap, if your implementation has invalid // instruction traps). def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">, Sched<[]> { let rs1 = 0; let rd = 0; let imm12 = 0b110000000000; } let Predicates = [HasStdExtZawrs] in { def WRS_NTO : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "wrs.nto", "">, Sched<[]> { let rs1 = 0; let rd = 0; let imm12 = 0b000000001101; } def WRS_STO : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "wrs.sto", "">, Sched<[]> { let rs1 = 0; let rd = 0; let imm12 = 0b000000011101; } } // Predicates = [HasStdExtZawrs] } // hasSideEffects = 1, mayLoad = 0, mayStore = 0 def CSRRW : CSR_ir<0b001, "csrrw">; def CSRRS : CSR_ir<0b010, "csrrs">; def CSRRC : CSR_ir<0b011, "csrrc">; def CSRRWI : CSR_ii<0b101, "csrrwi">; def CSRRSI : CSR_ii<0b110, "csrrsi">; def CSRRCI : CSR_ii<0b111, "csrrci">; /// RV64I instructions let Predicates = [IsRV64] in { def LWU : Load_ri<0b110, "lwu">, Sched<[WriteLDW, ReadMemBase]>; def LD : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>; def SD : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>; let IsSignExtendingOpW = 1 in { let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12), "addiw", "$rd, $rs1, $imm12">, Sched<[WriteIALU32, ReadIALU32]>; def SLLIW : ShiftW_ri<0b0000000, 0b001, "slliw">; def SRLIW : ShiftW_ri<0b0000000, 0b101, "srliw">; def SRAIW : ShiftW_ri<0b0100000, 0b101, "sraiw">; def ADDW : ALUW_rr<0b0000000, 0b000, "addw", /*Commutable*/1>, Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; def SUBW : ALUW_rr<0b0100000, 0b000, "subw">, Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">, Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>; def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">, Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>; def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">, Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>; } // IsSignExtendingOpW = 1 } // Predicates = [IsRV64] //===----------------------------------------------------------------------===// // Privileged instructions //===----------------------------------------------------------------------===// let isBarrier = 1, isReturn = 1, isTerminator = 1 in { def URET : Priv<"uret", 0b0000000>, Sched<[]> { let rd = 0; let rs1 = 0; let rs2 = 0b00010; } def SRET : Priv<"sret", 0b0001000>, Sched<[]> { let rd = 0; let rs1 = 0; let rs2 = 0b00010; } def MRET : Priv<"mret", 0b0011000>, Sched<[]> { let rd = 0; let rs1 = 0; let rs2 = 0b00010; } } // isBarrier = 1, isReturn = 1, isTerminator = 1 def WFI : Priv<"wfi", 0b0001000>, Sched<[]> { let rd = 0; let rs1 = 0; let rs2 = 0b00101; } let Predicates = [HasStdExtSvinval] in { def SFENCE_W_INVAL : Priv<"sfence.w.inval", 0b0001100>, Sched<[]> { let rd = 0; let rs1 = 0; let rs2 = 0; } def SFENCE_INVAL_IR : Priv<"sfence.inval.ir", 0b0001100>, Sched<[]> { let rd = 0; let rs1 = 0; let rs2 = 0b00001; } def SINVAL_VMA : Priv_rr<"sinval.vma", 0b0001011>, Sched<[]>; def HINVAL_VVMA : Priv_rr<"hinval.vvma", 0b0010011>, Sched<[]>; def HINVAL_GVMA : Priv_rr<"hinval.gvma", 0b0110011>, Sched<[]>; } // Predicates = [HasStdExtSvinval] def SFENCE_VMA : Priv_rr<"sfence.vma", 0b0001001>, Sched<[]>; let Predicates = [HasStdExtH] in { def HFENCE_VVMA : Priv_rr<"hfence.vvma", 0b0010001>, Sched<[]>; def HFENCE_GVMA : Priv_rr<"hfence.gvma", 0b0110001>, Sched<[]>; def HLV_B : HLoad_r<0b0110000, 0b00000, "hlv.b">, Sched<[]>; def HLV_BU : HLoad_r<0b0110000, 0b00001, "hlv.bu">, Sched<[]>; def HLV_H : HLoad_r<0b0110010, 0b00000, "hlv.h">, Sched<[]>; def HLV_HU : HLoad_r<0b0110010, 0b00001, "hlv.hu">, Sched<[]>; def HLVX_HU : HLoad_r<0b0110010, 0b00011, "hlvx.hu">, Sched<[]>; def HLV_W : HLoad_r<0b0110100, 0b00000, "hlv.w">, Sched<[]>; def HLVX_WU : HLoad_r<0b0110100, 0b00011, "hlvx.wu">, Sched<[]>; def HSV_B : HStore_rr<0b0110001, "hsv.b">, Sched<[]>; def HSV_H : HStore_rr<0b0110011, "hsv.h">, Sched<[]>; def HSV_W : HStore_rr<0b0110101, "hsv.w">, Sched<[]>; } let Predicates = [IsRV64, HasStdExtH] in { def HLV_WU : HLoad_r<0b0110100, 0b00001, "hlv.wu">, Sched<[]>; def HLV_D : HLoad_r<0b0110110, 0b00000, "hlv.d">, Sched<[]>; def HSV_D : HStore_rr<0b0110111, "hsv.d">, Sched<[]>; } //===----------------------------------------------------------------------===// // Debug instructions //===----------------------------------------------------------------------===// let isBarrier = 1, isReturn = 1, isTerminator = 1 in { def DRET : Priv<"dret", 0b0111101>, Sched<[]> { let rd = 0; let rs1 = 0; let rs2 = 0b10010; } } // isBarrier = 1, isReturn = 1, isTerminator = 1 //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// def : InstAlias<"nop", (ADDI X0, X0, 0)>; // Note that the size is 32 because up to 8 32-bit instructions are needed to // generate an arbitrary 64-bit immediate. However, the size does not really // matter since PseudoLI is currently only used in the AsmParser where it gets // expanded to real instructions immediately. let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32, isCodeGenOnly = 0, isAsmParserOnly = 1 in def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [], "li", "$rd, $imm">; def PseudoLB : PseudoLoad<"lb">; def PseudoLBU : PseudoLoad<"lbu">; def PseudoLH : PseudoLoad<"lh">; def PseudoLHU : PseudoLoad<"lhu">; def PseudoLW : PseudoLoad<"lw">; def PseudoSB : PseudoStore<"sb">; def PseudoSH : PseudoStore<"sh">; def PseudoSW : PseudoStore<"sw">; let Predicates = [IsRV64] in { def PseudoLWU : PseudoLoad<"lwu">; def PseudoLD : PseudoLoad<"ld">; def PseudoSD : PseudoStore<"sd">; } // Predicates = [IsRV64] def : InstAlias<"li $rd, $imm", (ADDI GPR:$rd, X0, simm12:$imm)>; def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>; def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>; def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>; let Predicates = [IsRV64] in { def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>; def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>; } // Predicates = [IsRV64] def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>; def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>; def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>; def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>; // sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu // form will always be printed. Therefore, set a zero weight. def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>; def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>; def : InstAlias<"beqz $rs, $offset", (BEQ GPR:$rs, X0, simm13_lsb0:$offset)>; def : InstAlias<"bnez $rs, $offset", (BNE GPR:$rs, X0, simm13_lsb0:$offset)>; def : InstAlias<"blez $rs, $offset", (BGE X0, GPR:$rs, simm13_lsb0:$offset)>; def : InstAlias<"bgez $rs, $offset", (BGE GPR:$rs, X0, simm13_lsb0:$offset)>; def : InstAlias<"bltz $rs, $offset", (BLT GPR:$rs, X0, simm13_lsb0:$offset)>; def : InstAlias<"bgtz $rs, $offset", (BLT X0, GPR:$rs, simm13_lsb0:$offset)>; // Always output the canonical mnemonic for the pseudo branch instructions. // The GNU tools emit the canonical mnemonic for the branch pseudo instructions // as well (e.g. "bgt" will be recognised by the assembler but never printed by // objdump). Match this behaviour by setting a zero weight. def : InstAlias<"bgt $rs, $rt, $offset", (BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; def : InstAlias<"ble $rs, $rt, $offset", (BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; def : InstAlias<"bgtu $rs, $rt, $offset", (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; def : InstAlias<"bleu $rs, $rt, $offset", (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>; def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>; // Non-zero offset aliases of "jalr" are the lowest weight, followed by the // two-register form, then the one-register forms and finally "ret". def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0), 3>; def : InstAlias<"jr ${offset}(${rs})", (JALR X0, GPR:$rs, simm12:$offset)>; def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0), 3>; def : InstAlias<"jalr ${offset}(${rs})", (JALR X1, GPR:$rs, simm12:$offset)>; def : InstAlias<"jalr $rd, $rs", (JALR GPR:$rd, GPR:$rs, 0), 2>; def : InstAlias<"ret", (JALR X0, X1, 0), 4>; // Non-canonical forms for jump targets also accepted by the assembler. def : InstAlias<"jr $rs, $offset", (JALR X0, GPR:$rs, simm12:$offset), 0>; def : InstAlias<"jalr $rs, $offset", (JALR X1, GPR:$rs, simm12:$offset), 0>; def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>; def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw let Predicates = [HasStdExtZihintpause] in def : InstAlias<"pause", (FENCE 0x1, 0x0)>; // 0x1 == w def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>; def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>; def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>; let Predicates = [IsRV32] in { def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>; def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>; def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>; } // Predicates = [IsRV32] def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>; def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>; def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>; def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>; def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>; def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>; def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>; let EmitPriority = 0 in { def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>; def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>; def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>; def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; } def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>; def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>; def : InstAlias<"hfence.gvma", (HFENCE_GVMA X0, X0)>; def : InstAlias<"hfence.gvma $rs", (HFENCE_GVMA GPR:$rs, X0)>; def : InstAlias<"hfence.vvma", (HFENCE_VVMA X0, X0)>; def : InstAlias<"hfence.vvma $rs", (HFENCE_VVMA GPR:$rs, X0)>; let Predicates = [HasStdExtZihintntl] in { def : InstAlias<"ntl.p1", (ADD X0, X0, X2)>; def : InstAlias<"ntl.pall", (ADD X0, X0, X3)>; def : InstAlias<"ntl.s1", (ADD X0, X0, X4)>; def : InstAlias<"ntl.all", (ADD X0, X0, X5)>; } // Predicates = [HasStdExtZihintntl] let EmitPriority = 0 in { def : InstAlias<"lb $rd, (${rs1})", (LB GPR:$rd, GPR:$rs1, 0)>; def : InstAlias<"lh $rd, (${rs1})", (LH GPR:$rd, GPR:$rs1, 0)>; def : InstAlias<"lw $rd, (${rs1})", (LW GPR:$rd, GPR:$rs1, 0)>; def : InstAlias<"lbu $rd, (${rs1})", (LBU GPR:$rd, GPR:$rs1, 0)>; def : InstAlias<"lhu $rd, (${rs1})", (LHU GPR:$rd, GPR:$rs1, 0)>; def : InstAlias<"sb $rs2, (${rs1})", (SB GPR:$rs2, GPR:$rs1, 0)>; def : InstAlias<"sh $rs2, (${rs1})", (SH GPR:$rs2, GPR:$rs1, 0)>; def : InstAlias<"sw $rs2, (${rs1})", (SW GPR:$rs2, GPR:$rs1, 0)>; def : InstAlias<"add $rd, $rs1, $imm12", (ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>; def : InstAlias<"and $rd, $rs1, $imm12", (ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>; def : InstAlias<"xor $rd, $rs1, $imm12", (XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>; def : InstAlias<"or $rd, $rs1, $imm12", (ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>; def : InstAlias<"sll $rd, $rs1, $shamt", (SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; def : InstAlias<"srl $rd, $rs1, $shamt", (SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; def : InstAlias<"sra $rd, $rs1, $shamt", (SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; let Predicates = [IsRV64] in { def : InstAlias<"lwu $rd, (${rs1})", (LWU GPR:$rd, GPR:$rs1, 0)>; def : InstAlias<"ld $rd, (${rs1})", (LD GPR:$rd, GPR:$rs1, 0)>; def : InstAlias<"sd $rs2, (${rs1})", (SD GPR:$rs2, GPR:$rs1, 0)>; def : InstAlias<"addw $rd, $rs1, $imm12", (ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>; def : InstAlias<"sllw $rd, $rs1, $shamt", (SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; def : InstAlias<"srlw $rd, $rs1, $shamt", (SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; def : InstAlias<"sraw $rd, $rs1, $shamt", (SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; } // Predicates = [IsRV64] def : InstAlias<"slt $rd, $rs1, $imm12", (SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>; def : InstAlias<"sltu $rd, $rs1, $imm12", (SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>; } def : MnemonicAlias<"move", "mv">; // The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in // version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept // the old name for backwards compatibility. def : MnemonicAlias<"scall", "ecall">; def : MnemonicAlias<"sbreak", "ebreak">; // This alias was added to the spec in December 2020. Don't print it by default // to allow assembly we print to be compatible with versions of GNU assembler // that don't support this alias. def : InstAlias<"zext.b $rd, $rs", (ANDI GPR:$rd, GPR:$rs, 0xFF), 0>; //===----------------------------------------------------------------------===// // .insn directive instructions //===----------------------------------------------------------------------===// // isCodeGenOnly = 1 to hide them from the tablegened assembly parser. let isCodeGenOnly = 1, hasSideEffects = 1, mayLoad = 1, mayStore = 1, hasNoSchedulingInfo = 1 in { def InsnR : DirectiveInsnR<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3, uimm7:$funct7, AnyReg:$rs1, AnyReg:$rs2), "$opcode, $funct3, $funct7, $rd, $rs1, $rs2">; def InsnR4 : DirectiveInsnR4<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2, AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3), "$opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3">; def InsnI : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1, simm12:$imm12), "$opcode, $funct3, $rd, $rs1, $imm12">; def InsnI_Mem : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1, simm12:$imm12), "$opcode, $funct3, $rd, ${imm12}(${rs1})">; def InsnB : DirectiveInsnB<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1, AnyReg:$rs2, simm13_lsb0:$imm12), "$opcode, $funct3, $rs1, $rs2, $imm12">; def InsnU : DirectiveInsnU<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm20_lui:$imm20), "$opcode, $rd, $imm20">; def InsnJ : DirectiveInsnJ<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20), "$opcode, $rd, $imm20">; def InsnS : DirectiveInsnS<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs2, AnyReg:$rs1, simm12:$imm12), "$opcode, $funct3, $rs2, ${imm12}(${rs1})">; } // Use InstAliases to match these so that we can combine the insn and format // into a mnemonic to use as the key for the tablegened asm matcher table. The // parser will take care of creating these fake mnemonics and will only do it // for known formats. let EmitPriority = 0 in { def : InstAlias<".insn_r $opcode, $funct3, $funct7, $rd, $rs1, $rs2", (InsnR AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm7:$funct7, AnyReg:$rs1, AnyReg:$rs2)>; // Accept 4 register form of ".insn r" as alias for ".insn r4". def : InstAlias<".insn_r $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3", (InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2, AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>; def : InstAlias<".insn_r4 $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3", (InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2, AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>; def : InstAlias<".insn_i $opcode, $funct3, $rd, $rs1, $imm12", (InsnI AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1, simm12:$imm12)>; def : InstAlias<".insn_i $opcode, $funct3, $rd, ${imm12}(${rs1})", (InsnI_Mem AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1, simm12:$imm12)>; def : InstAlias<".insn_b $opcode, $funct3, $rs1, $rs2, $imm12", (InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1, AnyReg:$rs2, simm13_lsb0:$imm12)>; // Accept sb as an alias for b. def : InstAlias<".insn_sb $opcode, $funct3, $rs1, $rs2, $imm12", (InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1, AnyReg:$rs2, simm13_lsb0:$imm12)>; def : InstAlias<".insn_u $opcode, $rd, $imm20", (InsnU AnyReg:$rd, uimm7_opcode:$opcode, uimm20_lui:$imm20)>; def : InstAlias<".insn_j $opcode, $rd, $imm20", (InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>; // Accept uj as an alias for j. def : InstAlias<".insn_uj $opcode, $rd, $imm20", (InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>; def : InstAlias<".insn_s $opcode, $funct3, $rs2, ${imm12}(${rs1})", (InsnS uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs2, AnyReg:$rs1, simm12:$imm12)>; } //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns // // Naming convention: For 'generic' pattern classes, we use the naming // convention PatTy1Ty2. For pattern classes which offer a more complex // expansion, prefix the class name, e.g. BccPat. //===----------------------------------------------------------------------===// /// Generic pattern classes class PatGpr : Pat<(OpNode GPR:$rs1), (Inst GPR:$rs1)>; class PatGprGpr : Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>; class PatGprImm : Pat<(XLenVT (OpNode (XLenVT GPR:$rs1), ImmType:$imm)), (Inst GPR:$rs1, ImmType:$imm)>; class PatGprSimm12 : PatGprImm; class PatGprUimmLog2XLen : PatGprImm; /// Predicates def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{ return cast(N->getOperand(1))->getVT().bitsLE(MVT::i32); }]>; def sexti32 : ComplexPattern; def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{ return cast(N->getOperand(1))->getVT().bitsLE(MVT::i32); }]>; def zexti32 : ComplexPattern">; def zexti16 : ComplexPattern">; def zexti8 : ComplexPattern">; class binop_oneuse : PatFrag<(ops node:$A, node:$B), (operator node:$A, node:$B), [{ return N->hasOneUse(); }]>; def and_oneuse : binop_oneuse; def add_oneuse : binop_oneuse; def mul_oneuse : binop_oneuse; def mul_const_oneuse : PatFrag<(ops node:$A, node:$B), (mul node:$A, node:$B), [{ if (auto *N1C = dyn_cast(N->getOperand(1))) if (N1C->hasOneUse()) return true; return false; }]>; class unop_oneuse : PatFrag<(ops node:$A), (operator node:$A), [{ return N->hasOneUse(); }]>; def sext_oneuse : unop_oneuse; def zext_oneuse : unop_oneuse; def anyext_oneuse : unop_oneuse; def fpext_oneuse : unop_oneuse; /// Simple arithmetic operations def : PatGprGpr; def : PatGprSimm12; def : PatGprGpr; def : PatGprGpr; def : PatGprSimm12; def : PatGprGpr; def : PatGprSimm12; def : PatGprGpr; def : PatGprSimm12; def : PatGprUimmLog2XLen; def : PatGprUimmLog2XLen; def : PatGprUimmLog2XLen; // Select 'or' as ADDI if the immediate bits are known to be 0 in $rs1. This // can improve compressibility. def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0); KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0); return KnownBits::haveNoCommonBitsSet(Known0, Known1); }]>; def : PatGprSimm12; // negate of low bit can be done via two (compressible) shifts. The negate // is never compressible since rs1 and rd can't be the same register. def : Pat<(XLenVT (sub 0, (and_oneuse GPR:$rs, 1))), (SRAI (SLLI $rs, (ImmSubFromXLen (XLenVT 1))), (ImmSubFromXLen (XLenVT 1)))>; // AND with leading/trailing ones mask exceeding simm32/simm12. def : Pat<(i64 (and GPR:$rs, LeadingOnesMask:$mask)), (SLLI (SRLI $rs, LeadingOnesMask:$mask), LeadingOnesMask:$mask)>; def : Pat<(XLenVT (and GPR:$rs, TrailingOnesMask:$mask)), (SRLI (SLLI $rs, TrailingOnesMask:$mask), TrailingOnesMask:$mask)>; // Match both a plain shift and one where the shift amount is masked (this is // typically introduced when the legalizer promotes the shift amount and // zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base // ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I). def shiftMaskXLen : ComplexPattern; def shiftMask32 : ComplexPattern; class shiftop : PatFrag<(ops node:$val, node:$count), (operator node:$val, (XLenVT (shiftMaskXLen node:$count)))>; class shiftopw : PatFrag<(ops node:$val, node:$count), (operator node:$val, (i64 (shiftMask32 node:$count)))>; def : PatGprGpr, SLL>; def : PatGprGpr, SRL>; def : PatGprGpr, SRA>; // This is a special case of the ADD instruction used to facilitate the use of a // fourth operand to emit a relocation on a symbol relating to this instruction. // The relocation does not affect any bits of the instruction itself but is used // as a hint to the linker. let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in def PseudoAddTPRel : Pseudo<(outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [], "add", "$rd, $rs1, $rs2, $src">; /// FrameIndex calculations def : Pat<(FrameAddrRegImm GPR:$rs1, simm12:$imm12), (ADDI GPR:$rs1, simm12:$imm12)>; /// HI and ADD_LO address nodes. def : Pat<(riscv_hi tglobaladdr:$in), (LUI tglobaladdr:$in)>; def : Pat<(riscv_hi tblockaddress:$in), (LUI tblockaddress:$in)>; def : Pat<(riscv_hi tjumptable:$in), (LUI tjumptable:$in)>; def : Pat<(riscv_hi tconstpool:$in), (LUI tconstpool:$in)>; def : Pat<(riscv_add_lo GPR:$hi, tglobaladdr:$lo), (ADDI GPR:$hi, tglobaladdr:$lo)>; def : Pat<(riscv_add_lo GPR:$hi, tblockaddress:$lo), (ADDI GPR:$hi, tblockaddress:$lo)>; def : Pat<(riscv_add_lo GPR:$hi, tjumptable:$lo), (ADDI GPR:$hi, tjumptable:$lo)>; def : Pat<(riscv_add_lo GPR:$hi, tconstpool:$lo), (ADDI GPR:$hi, tconstpool:$lo)>; /// TLS address nodes. def : Pat<(riscv_hi tglobaltlsaddr:$in), (LUI tglobaltlsaddr:$in)>; def : Pat<(riscv_add_tprel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src), (PseudoAddTPRel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src)>; def : Pat<(riscv_add_lo GPR:$src, tglobaltlsaddr:$lo), (ADDI GPR:$src, tglobaltlsaddr:$lo)>; /// Setcc def : PatGprGpr; def : PatGprSimm12; def : PatGprGpr; def : PatGprSimm12; // Define pattern expansions for setcc operations that aren't directly // handled by a RISC-V instruction. def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>; def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>; def : Pat<(seteq GPR:$rs1, simm12_plus1:$imm12), (SLTIU (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)), 1)>; def : Pat<(seteq GPR:$rs1, -2048), (SLTIU (XORI GPR:$rs1, -2048), 1)>; def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>; def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>; def : Pat<(setne GPR:$rs1, simm12_plus1:$imm12), (SLTU X0, (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)))>; def : Pat<(setne GPR:$rs1, -2048), (SLTU X0, (XORI GPR:$rs1, -2048))>; def : Pat<(setne GPR:$rs1, -1), (SLTIU GPR:$rs1, -1)>; def IntCCtoRISCVCC : SDNodeXForm(N->getOperand(2))->get(); RISCVCC::CondCode BrCC = getRISCVCCForIntCC(CC); return CurDAG->getTargetConstant(BrCC, SDLoc(N), Subtarget->getXLenVT()); }]>; def riscv_selectcc_frag : PatFrag<(ops node:$lhs, node:$rhs, node:$cc, node:$truev, node:$falsev), (riscv_selectcc node:$lhs, node:$rhs, node:$cc, node:$truev, node:$falsev), [{}], IntCCtoRISCVCC>; let Predicates = [HasShortForwardBranchOpt], isSelect = 1, Constraints = "$dst = $falsev", isCommutable = 1, Size = 8 in { // This instruction moves $truev to $dst when the condition is true. It will // be expanded to control flow in RISCVExpandPseudoInsts. def PseudoCCMOVGPR : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$truev), [(set GPR:$dst, (riscv_selectcc_frag:$cc GPR:$lhs, GPR:$rhs, cond, GPR:$truev, GPR:$falsev))]>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; } // Conditional binops, that updates update $dst to (op rs1, rs2) when condition // is true. Returns $falsev otherwise. Selected by optimizeSelect. // TODO: Can we use DefaultOperands on the regular binop to accomplish this more // like how ARM does predication? let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, Constraints = "$dst = $falsev" in { def PseudoCCADD : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$rs1, GPR:$rs2), []>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; def PseudoCCSUB : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$rs1, GPR:$rs2), []>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; def PseudoCCAND : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$rs1, GPR:$rs2), []>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; def PseudoCCOR : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$rs1, GPR:$rs2), []>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; def PseudoCCXOR : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$rs1, GPR:$rs2), []>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; // RV64I instructions def PseudoCCADDW : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$rs1, GPR:$rs2), []>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; def PseudoCCSUBW : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, GPR:$falsev, GPR:$rs1, GPR:$rs2), []>, Sched<[WriteSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB, ReadSFB]>; } multiclass SelectCC_GPR_rrirr { let usesCustomInserter = 1 in def _Using_CC_GPR : Pseudo<(outs valty:$dst), (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc, valty:$truev, valty:$falsev), [(set valty:$dst, (riscv_selectcc_frag:$cc GPR:$lhs, GPR:$rhs, cond, valty:$truev, valty:$falsev))]>; // Explicitly select 0 in the condition to X0. The register coalescer doesn't // always do it. def : Pat<(riscv_selectcc_frag:$cc GPR:$lhs, 0, cond, valty:$truev, valty:$falsev), (!cast(NAME#"_Using_CC_GPR") GPR:$lhs, X0, (IntCCtoRISCVCC $cc), valty:$truev, valty:$falsev)>; } let Predicates = [NoShortForwardBranchOpt] in defm Select_GPR : SelectCC_GPR_rrirr; class SelectCompressOpt: Pat<(riscv_selectcc_frag:$select GPR:$lhs, simm12_no6:$Constant, Cond, GPR:$truev, GPR:$falsev), (Select_GPR_Using_CC_GPR (ADDI GPR:$lhs, (NegImm simm12:$Constant)), X0, (IntCCtoRISCVCC $select), GPR:$truev, GPR:$falsev)>; def OptForMinSize : Predicate<"MF ? MF->getFunction().hasMinSize() : false">; let Predicates = [HasStdExtC, OptForMinSize] in { def : SelectCompressOpt; def : SelectCompressOpt; } /// Branches and jumps // Match `riscv_brcc` and lower to the appropriate RISC-V branch instruction. multiclass BccPat { def : Pat<(riscv_brcc GPR:$rs1, GPR:$rs2, Cond, bb:$imm12), (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>; // Explicitly select 0 to X0. The register coalescer doesn't always do it. def : Pat<(riscv_brcc GPR:$rs1, 0, Cond, bb:$imm12), (Inst GPR:$rs1, X0, simm13_lsb0:$imm12)>; } class BrccCompessOpt : Pat<(riscv_brcc GPR:$lhs, simm12_no6:$Constant, Cond, bb:$place), (Inst (ADDI GPR:$lhs, (NegImm simm12:$Constant)), X0, bb:$place)>; defm : BccPat; defm : BccPat; defm : BccPat; defm : BccPat; defm : BccPat; defm : BccPat; let Predicates = [HasStdExtC, OptForMinSize] in { def : BrccCompessOpt; def : BrccCompessOpt; } let isBarrier = 1, isBranch = 1, isTerminator = 1 in def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>, PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>; let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in def PseudoBRIND : Pseudo<(outs), (ins GPRJALR:$rs1, simm12:$imm12), []>, PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>; def : Pat<(brind GPRJALR:$rs1), (PseudoBRIND GPRJALR:$rs1, 0)>; def : Pat<(brind (add GPRJALR:$rs1, simm12:$imm12)), (PseudoBRIND GPRJALR:$rs1, simm12:$imm12)>; // PseudoCALLReg is a generic pseudo instruction for calls which will eventually // expand to auipc and jalr while encoding, with any given register used as the // destination. // Define AsmString to print "call" when compile with -S flag. // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction. let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, Size = 8, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []>, Sched<[WriteIALU, WriteJalr, ReadJalr]> { let AsmString = "call\t$rd, $func"; } // PseudoCALL is a pseudo instruction which will eventually expand to auipc // and jalr while encoding. This is desirable, as an auipc+jalr pair with // R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker // if the offset fits in a signed 21-bit immediate. // Define AsmString to print "call" when compile with -S flag. // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction. let isCall = 1, Defs = [X1], isCodeGenOnly = 0, Size = 8 in def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []>, Sched<[WriteIALU, WriteJalr, ReadJalr]> { let AsmString = "call\t$func"; } def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>; def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>; def : Pat<(riscv_uret_flag), (URET X0, X0)>; def : Pat<(riscv_sret_flag), (SRET X0, X0)>; def : Pat<(riscv_mret_flag), (MRET X0, X0)>; let isCall = 1, Defs = [X1] in def PseudoCALLIndirect : Pseudo<(outs), (ins GPRJALR:$rs1), [(riscv_call GPRJALR:$rs1)]>, PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>; let isBarrier = 1, isReturn = 1, isTerminator = 1 in def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>, PseudoInstExpansion<(JALR X0, X1, 0)>; // PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually // expand to auipc and jalr while encoding. // Define AsmString to print "tail" when compile with -S flag. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2], Size = 8, isCodeGenOnly = 0 in def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []>, Sched<[WriteIALU, WriteJalr, ReadJalr]> { let AsmString = "tail\t$dst"; } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1), [(riscv_tail GPRTC:$rs1)]>, PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>; def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)), (PseudoTAIL tglobaladdr:$dst)>; def : Pat<(riscv_tail (iPTR texternalsym:$dst)), (PseudoTAIL texternalsym:$dst)>; let isCall = 0, isBarrier = 1, isBranch = 1, isTerminator = 1, Size = 8, isCodeGenOnly = 0, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in def PseudoJump : Pseudo<(outs GPR:$rd), (ins pseudo_jump_symbol:$target), []>, Sched<[WriteIALU, WriteJalr, ReadJalr]> { let AsmString = "jump\t$target, $rd"; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0, isAsmParserOnly = 1 in def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], "lla", "$dst, $src">; def : Pat<(riscv_lla tglobaladdr:$in), (PseudoLLA tglobaladdr:$in)>; def : Pat<(riscv_lla tblockaddress:$in), (PseudoLLA tblockaddress:$in)>; def : Pat<(riscv_lla tjumptable:$in), (PseudoLLA tjumptable:$in)>; def : Pat<(riscv_lla tconstpool:$in), (PseudoLLA tconstpool:$in)>; let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0, isAsmParserOnly = 1 in def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], "la", "$dst, $src">; def : Pat<(riscv_la tglobaladdr:$in), (PseudoLA tglobaladdr:$in)>; let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0, isAsmParserOnly = 1 in def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], "la.tls.ie", "$dst, $src">; def : Pat<(riscv_la_tls_ie tglobaltlsaddr:$in), (PseudoLA_TLS_IE tglobaltlsaddr:$in)>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0, isAsmParserOnly = 1 in def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], "la.tls.gd", "$dst, $src">; def : Pat<(riscv_la_tls_gd tglobaltlsaddr:$in), (PseudoLA_TLS_GD tglobaltlsaddr:$in)>; /// Sign/Zero Extends // There are single-instruction versions of these in Zbb, so disable these // Pseudos if that extension is present. let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in { def PseudoSEXT_B : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.b", "$rd, $rs">; def PseudoSEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.h", "$rd, $rs">; // rv64's sext.w is defined above, using InstAlias<"sext.w ... // zext.b is defined above, using InstAlias<"zext.b ... def PseudoZEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.h", "$rd, $rs">; } // hasSideEffects = 0, ... let Predicates = [IsRV64], hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in { def PseudoZEXT_W : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.w", "$rd, $rs">; } // Predicates = [IsRV64], ... /// Loads multiclass LdPat { def : Pat<(vt (LoadOp (AddrRegImm GPR:$rs1, simm12:$imm12))), (Inst GPR:$rs1, simm12:$imm12)>; } defm : LdPat; defm : LdPat; defm : LdPat; defm : LdPat; defm : LdPat, Requires<[IsRV32]>; defm : LdPat; defm : LdPat; /// Stores multiclass StPat { def : Pat<(StoreOp (vt StTy:$rs2), (AddrRegImm GPR:$rs1, simm12:$imm12)), (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>; } defm : StPat; defm : StPat; defm : StPat, Requires<[IsRV32]>; /// Fences // Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set // Manual: Volume I. // fence acquire -> fence r, rw def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>; // fence release -> fence rw, w def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>; // fence acq_rel -> fence.tso def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>; // fence seq_cst -> fence rw, rw def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>; // Lowering for atomic load and store is defined in RISCVInstrInfoA.td. // Although these are lowered to fence+load/store instructions defined in the // base RV32I/RV64I ISA, this lowering is only used when the A extension is // present. This is necessary as it isn't valid to mix __atomic_* libcalls // with inline atomic operations for the same object. /// Access to system registers // Helpers for defining specific operations. They are defined for each system // register separately. Side effect is not used because dependencies are // expressed via use-def properties. class ReadSysReg Regs> : Pseudo<(outs GPR:$rd), (ins), [(set GPR:$rd, (riscv_read_csr (XLenVT SR.Encoding)))]>, PseudoInstExpansion<(CSRRS GPR:$rd, SR.Encoding, X0)> { let hasSideEffects = 0; let Uses = Regs; } class WriteSysReg Regs> : Pseudo<(outs), (ins GPR:$val), [(riscv_write_csr (XLenVT SR.Encoding), GPR:$val)]>, PseudoInstExpansion<(CSRRW X0, SR.Encoding, GPR:$val)> { let hasSideEffects = 0; let Defs = Regs; } class WriteSysRegImm Regs> : Pseudo<(outs), (ins uimm5:$val), [(riscv_write_csr (XLenVT SR.Encoding), uimm5:$val)]>, PseudoInstExpansion<(CSRRWI X0, SR.Encoding, uimm5:$val)> { let hasSideEffects = 0; let Defs = Regs; } class SwapSysReg Regs> : Pseudo<(outs GPR:$rd), (ins GPR:$val), [(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), GPR:$val))]>, PseudoInstExpansion<(CSRRW GPR:$rd, SR.Encoding, GPR:$val)> { let hasSideEffects = 0; let Uses = Regs; let Defs = Regs; } class SwapSysRegImm Regs> : Pseudo<(outs GPR:$rd), (ins uimm5:$val), [(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), uimm5:$val))]>, PseudoInstExpansion<(CSRRWI GPR:$rd, SR.Encoding, uimm5:$val)> { let hasSideEffects = 0; let Uses = Regs; let Defs = Regs; } def ReadFRM : ReadSysReg; def WriteFRM : WriteSysReg; def WriteFRMImm : WriteSysRegImm; def SwapFRMImm : SwapSysRegImm; let hasSideEffects = true in { def ReadFFLAGS : ReadSysReg; def WriteFFLAGS : WriteSysReg; } /// Other pseudo-instructions // Pessimistically assume the stack pointer will be clobbered let Defs = [X2], Uses = [X2] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), [(callseq_start timm:$amt1, timm:$amt2)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), [(callseq_end timm:$amt1, timm:$amt2)]>; } // Defs = [X2], Uses = [X2] /// RV64 patterns let Predicates = [IsRV64, NotHasStdExtZba] in { def : Pat<(i64 (and GPR:$rs1, 0xffffffff)), (SRLI (SLLI GPR:$rs1, 32), 32)>; // If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2 // shifts instead of 3. This can occur when unsigned is used to index an array. def : Pat<(i64 (shl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)), (SRLI (SLLI GPR:$rs1, 32), (ImmSubFrom32 uimm5:$shamt))>; } // PatFrag to allow ADDW/SUBW/MULW/SLLW to be selected from i64 add/sub/mul/shl // if only the lower 32 bits of their result is used. class binop_allwusers : PatFrag<(ops node:$lhs, node:$rhs), (i64 (operator node:$lhs, node:$rhs)), [{ return hasAllWUsers(Node); }]>; def sexti32_allwusers : PatFrag<(ops node:$src), (sext_inreg node:$src, i32), [{ return hasAllWUsers(Node); }]>; def ImmSExt32 : SDNodeXFormgetTargetConstant(SignExtend64<32>(N->getSExtValue()), SDLoc(N), N->getValueType(0)); }]>; // Look for constants where the upper 32 bits are 0, but sign extending bit 31 // would be an simm12. def u32simm12 : ImmLeaf(Imm) && isInt<12>(SignExtend64<32>(Imm)); }], ImmSExt32>; let Predicates = [IsRV64] in { def : Pat<(i64 (and GPR:$rs, LeadingOnesWMask:$mask)), (SLLI (SRLIW $rs, LeadingOnesWMask:$mask), LeadingOnesWMask:$mask)>; /// sext and zext // Sign extend is not needed if all users are W instructions. def : Pat<(sexti32_allwusers GPR:$rs1), (XLenVT GPR:$rs1)>; def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>; /// ALU operations def : Pat<(i64 (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)), (SRLIW GPR:$rs1, uimm5:$shamt)>; def : Pat<(i64 (srl (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)), (SRLIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>; def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt), (SRAIW GPR:$rs1, uimm5:$shamt)>; def : Pat<(i64 (sra (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)), (SRAIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>; def : PatGprGpr, SLLW>; def : PatGprGpr, SRLW>; def : PatGprGpr, SRAW>; // Select W instructions if only the lower 32 bits of the result are used. def : PatGprGpr, ADDW>; def : PatGprSimm12, ADDIW>; def : PatGprGpr, SUBW>; def : PatGprImm, SLLIW, uimm5>; // If this is a shr of a value sign extended from i32, and all the users only // use the lower 32 bits, we can use an sraiw to remove the sext_inreg. This // occurs because SimplifyDemandedBits prefers srl over sra. def : Pat<(binop_allwusers (sext_inreg GPR:$rs1, i32), uimm5:$shamt), (SRAIW GPR:$rs1, uimm5:$shamt)>; // Use binop_allwusers to recover immediates that may have been broken by // SimplifyDemandedBits. def : Pat<(binop_allwusers GPR:$rs1, u32simm12:$imm), (ANDI GPR:$rs1, u32simm12:$imm)>; def : Pat<(binop_allwusers GPR:$rs1, u32simm12:$imm), (ORI GPR:$rs1, u32simm12:$imm)>; def : Pat<(binop_allwusers GPR:$rs1, u32simm12:$imm), (XORI GPR:$rs1, u32simm12:$imm)>; /// Loads defm : LdPat; defm : LdPat; defm : LdPat; defm : LdPat; /// Stores defm : StPat; defm : StPat; } // Predicates = [IsRV64] /// readcyclecounter // On RV64, we can directly read the 64-bit "cycle" CSR. let Predicates = [IsRV64] in def : Pat<(i64 (readcyclecounter)), (CSRRS CYCLE.Encoding, X0)>; // On RV32, ReadCycleWide will be expanded to the suggested loop reading both // halves of the 64-bit "cycle" CSR. let Predicates = [IsRV32], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins), [(set GPR:$lo, GPR:$hi, (riscv_read_cycle_wide))], "", "">; /// traps // We lower `trap` to `unimp`, as this causes a hard exception on nearly all // systems. def : Pat<(trap), (UNIMP)>; // We lower `debugtrap` to `ebreak`, as this will get the attention of the // debugger if possible. def : Pat<(debugtrap), (EBREAK)>; let Predicates = [IsRV64], Uses = [X5], Defs = [X1, X6, X7, X28, X29, X30, X31] in def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo<(outs), (ins GPRJALR:$ptr, i32imm:$accessinfo), [(int_hwasan_check_memaccess_shortgranules X5, GPRJALR:$ptr, (i32 timm:$accessinfo))]>; /// Simple optimization def : Pat<(add GPR:$rs1, (AddiPair:$rs2)), (ADDI (ADDI GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2)), (AddiPairImmSmall GPR:$rs2))>; let Predicates = [IsRV64] in { // Select W instructions if only the lower 32-bits of the result are used. def : Pat<(binop_allwusers GPR:$rs1, (AddiPair:$rs2)), (ADDIW (ADDIW GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2)), (AddiPairImmSmall AddiPair:$rs2))>; } //===----------------------------------------------------------------------===// // Standard extensions //===----------------------------------------------------------------------===// include "RISCVInstrInfoM.td" include "RISCVInstrInfoA.td" include "RISCVInstrInfoF.td" include "RISCVInstrInfoD.td" include "RISCVInstrInfoC.td" include "RISCVInstrInfoZb.td" include "RISCVInstrInfoZk.td" include "RISCVInstrInfoV.td" include "RISCVInstrInfoZfh.td" include "RISCVInstrInfoZicbo.td" //===----------------------------------------------------------------------===// // Vendor extensions //===----------------------------------------------------------------------===// include "RISCVInstrInfoXVentana.td" include "RISCVInstrInfoXTHead.td"