//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the ARM instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM specific DAG Nodes. // // Type profiles. def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_ARMStructByVal : SDTypeProfile<0, 4, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>; def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>; def SDT_ARMCMov : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>; def SDT_ARMBrcond : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; def SDT_ARMBrJT : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>; def SDT_ARMBr2JT : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDT_ARMBCC_i64 : SDTypeProfile<0, 6, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>, SDTCisVT<4, i32>, SDTCisVT<5, OtherVT>]>; def SDT_ARMAnd : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisPtrTy<1>, SDTCisVT<2, i32>]>; def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisInt<2>]>; def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>; def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>; def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisInt<1>]>; def SDT_ARMTCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>; def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def SDT_ARMMEMCPY : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>; def SDTBinaryArithWithFlags : SDTypeProfile<2, 2, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>]>; // SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>, SDTCisVT<4, i32>]>; def SDT_LongMac : SDTypeProfile<2, 4, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisSameAs<0, 4>, SDTCisSameAs<0, 5>]>; // ARMlsll, ARMlsrl, ARMasrl def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisInt<4>]>; def ARMSmlald : SDNode<"ARMISD::SMLALD", SDT_LongMac>; def ARMSmlaldx : SDNode<"ARMISD::SMLALDX", SDT_LongMac>; def ARMSmlsld : SDNode<"ARMISD::SMLSLD", SDT_LongMac>; def ARMSmlsldx : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>; def SDT_ARMCSel : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<3>, SDTCisVT<3, i32>]>; def ARMcsinv : SDNode<"ARMISD::CSINV", SDT_ARMCSel, [SDNPOptInGlue]>; def ARMcsneg : SDNode<"ARMISD::CSNEG", SDT_ARMCSel, [SDNPOptInGlue]>; def ARMcsinc : SDNode<"ARMISD::CSINC", SDT_ARMCSel, [SDNPOptInGlue]>; def SDT_MulHSR : SDTypeProfile<1, 3, [SDTCisVT<0,i32>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; def ARMsmmlar : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>; def ARMsmmlsr : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>; // Node definitions. def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>; def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>; def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntUnaryOp>; def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart, [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd, [SDNPHasChain, SDNPSideEffect, SDNPOptInGlue, SDNPOutGlue]>; def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" , SDT_ARMStructByVal, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad]>; def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def ARMseretflag : SDNode<"ARMISD::SERET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def ARMintretflag : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov, [SDNPInGlue]>; def ARMsubs : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>; def ARMssat : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>; def ARMusat : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>; def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond, [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT, [SDNPHasChain]>; def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT, [SDNPHasChain]>; def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64, [SDNPHasChain]>; def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp, [SDNPOutGlue]>; def ARMcmn : SDNode<"ARMISD::CMN", SDT_ARMCmp, [SDNPOutGlue]>; def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp, [SDNPOutGlue, SDNPCommutative]>; def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>; def ARMasrl : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>; def ARMlsrl : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>; def ARMlsll : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>; def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>; def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags, [SDNPCommutative]>; def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>; def ARMlsls : SDNode<"ARMISD::LSLS", SDTBinaryArithWithFlags>; def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>; def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>; def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>; def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP", SDT_ARMEH_SJLJ_Setjmp, [SDNPHasChain, SDNPSideEffect]>; def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP", SDT_ARMEH_SJLJ_Longjmp, [SDNPHasChain, SDNPSideEffect]>; def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH", SDT_ARMEH_SJLJ_SetupDispatch, [SDNPHasChain, SDNPSideEffect]>; def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER, [SDNPHasChain, SDNPSideEffect]>; def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH, [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>; def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>; def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad]>; def ARMsmulwb : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>; def ARMsmulwt : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>; def ARMsmlalbb : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>; def ARMsmlalbt : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>; def ARMsmlaltb : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>; def ARMsmlaltt : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>; def ARMqadd8b : SDNode<"ARMISD::QADD8b", SDT_ARMAnd, []>; def ARMqsub8b : SDNode<"ARMISD::QSUB8b", SDT_ARMAnd, []>; def ARMqadd16b : SDNode<"ARMISD::QADD16b", SDT_ARMAnd, []>; def ARMqsub16b : SDNode<"ARMISD::QSUB16b", SDT_ARMAnd, []>; def ARMuqadd8b : SDNode<"ARMISD::UQADD8b", SDT_ARMAnd, []>; def ARMuqsub8b : SDNode<"ARMISD::UQSUB8b", SDT_ARMAnd, []>; def ARMuqadd16b : SDNode<"ARMISD::UQADD16b", SDT_ARMAnd, []>; def ARMuqsub16b : SDNode<"ARMISD::UQSUB16b", SDT_ARMAnd, []>; def SDT_ARMldrd : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; def ARMldrd : SDNode<"ARMISD::LDRD", SDT_ARMldrd, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def SDT_ARMstrd : SDTypeProfile<0, 3, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; def ARMstrd : SDNode<"ARMISD::STRD", SDT_ARMstrd, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; // Vector operations shared between NEON and MVE def ARMvdup : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>; // VDUPLANE can produce a quad-register result from a double-register source, // so the result is not constrained to match the source. def ARMvduplane : SDNode<"ARMISD::VDUPLANE", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisVT<2, i32>]>>; def SDTARMVIDUP : SDTypeProfile<2, 2, [SDTCisVec<0>, SDTCisVT<1, i32>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def ARMvidup : SDNode<"ARMISD::VIDUP", SDTARMVIDUP>; def SDTARMVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>; def ARMvrev64 : SDNode<"ARMISD::VREV64", SDTARMVSHUF>; def ARMvrev32 : SDNode<"ARMISD::VREV32", SDTARMVSHUF>; def ARMvrev16 : SDNode<"ARMISD::VREV16", SDTARMVSHUF>; def SDTARMVGETLN : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVec<1>, SDTCisVT<2, i32>]>; def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>; def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>; def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>; def ARMvmovImm : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>; def ARMvmvnImm : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>; def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>; def SDTARMVORRIMM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>]>; def ARMvorrImm : SDNode<"ARMISD::VORRIMM", SDTARMVORRIMM>; def ARMvbicImm : SDNode<"ARMISD::VBICIMM", SDTARMVORRIMM>; def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>]>; def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,]>; def ARMvshlImm : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>; def ARMvshrsImm : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>; def ARMvshruImm : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>; def ARMvshls : SDNode<"ARMISD::VSHLs", SDTARMVSH>; def ARMvshlu : SDNode<"ARMISD::VSHLu", SDTARMVSH>; def SDTARMVMULL : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>; def ARMvmulls : SDNode<"ARMISD::VMULLs", SDTARMVMULL>; def ARMvmullu : SDNode<"ARMISD::VMULLu", SDTARMVMULL>; def SDTARMVCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisInt<3>]>; def SDTARMVCMPZ : SDTypeProfile<1, 2, [SDTCisInt<2>]>; def ARMvcmp : SDNode<"ARMISD::VCMP", SDTARMVCMP>; def ARMvcmpz : SDNode<"ARMISD::VCMPZ", SDTARMVCMPZ>; // 'VECTOR_REG_CAST' is an operation that reinterprets the contents of a // vector register as a different vector type, without changing the contents of // the register. It differs from 'bitconvert' in that bitconvert reinterprets // the _memory_ storage format of the vector, whereas VECTOR_REG_CAST // reinterprets the _register_ format - and in big-endian, the memory and // register formats are different, so they are different operations. // // For example, 'VECTOR_REG_CAST' between v8i16 and v16i8 will map the LSB of // the zeroth i16 lane to the zeroth i8 lane, regardless of system endianness, // whereas 'bitconvert' will map it to the high byte in big-endian mode, // because that's what (MVE) VSTRH.16 followed by VLDRB.8 would do. So the // bitconvert would have to emit a VREV16.8 instruction, whereas the // VECTOR_REG_CAST emits no code at all if the vector is already in a register. def ARMVectorRegCastImpl : SDNode<"ARMISD::VECTOR_REG_CAST", SDTUnaryOp>; // In little-endian, VECTOR_REG_CAST is often turned into bitconvert during // lowering (because in that situation they're identical). So an isel pattern // that needs to match something that's _logically_ a VECTOR_REG_CAST must // _physically_ match a different node type depending on endianness. // // This 'PatFrags' instance is a centralized facility to make that easy. It // matches VECTOR_REG_CAST in either endianness, and also bitconvert in the // endianness where it's equivalent. def ARMVectorRegCast: PatFrags< (ops node:$x), [(ARMVectorRegCastImpl node:$x), (bitconvert node:$x)], [{ // Reject a match against bitconvert (aka ISD::BITCAST) if big-endian return !(CurDAG->getDataLayout().isBigEndian() && N->getOpcode() == ISD::BITCAST); }]>; //===----------------------------------------------------------------------===// // ARM Flag Definitions. class RegConstraint { string Constraints = C; } // ARMCC condition codes. See ARMCC::CondCodes def ARMCCeq : PatLeaf<(i32 0)>; def ARMCCne : PatLeaf<(i32 1)>; def ARMCChs : PatLeaf<(i32 2)>; def ARMCClo : PatLeaf<(i32 3)>; def ARMCCmi : PatLeaf<(i32 4)>; def ARMCCpl : PatLeaf<(i32 5)>; def ARMCCvs : PatLeaf<(i32 6)>; def ARMCCvc : PatLeaf<(i32 7)>; def ARMCChi : PatLeaf<(i32 8)>; def ARMCCls : PatLeaf<(i32 9)>; def ARMCCge : PatLeaf<(i32 10)>; def ARMCClt : PatLeaf<(i32 11)>; def ARMCCgt : PatLeaf<(i32 12)>; def ARMCCle : PatLeaf<(i32 13)>; def ARMCCal : PatLeaf<(i32 14)>; // VCC predicates. See ARMVCC::VPTCodes def ARMVCCNone : PatLeaf<(i32 0)>; def ARMVCCThen : PatLeaf<(i32 1)>; def ARMVCCElse : PatLeaf<(i32 2)>; //===----------------------------------------------------------------------===// // ARM specific transformation functions and pattern fragments. // // imm_neg_XFORM - Return the negation of an i32 immediate value. def imm_neg_XFORM : SDNodeXFormgetTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32); }]>; // imm_not_XFORM - Return the complement of a i32 immediate value. def imm_not_XFORM : SDNodeXFormgetTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32); }]>; // asr_imm_XFORM - Returns a shift immediate with bit {5} set to 1 def asr_imm_XFORM : SDNodeXFormgetTargetConstant(0x20 | N->getZExtValue(), SDLoc(N), MVT:: i32); }]>; /// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31]. def imm16_31 : ImmLeaf= 16 && (int32_t)Imm < 32; }]>; // sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits. def sext_16_node : PatLeaf<(i32 GPR:$a), [{ return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17; }]>; def sext_bottom_16 : PatFrag<(ops node:$a), (sext_inreg node:$a, i16)>; def sext_top_16 : PatFrag<(ops node:$a), (i32 (sra node:$a, (i32 16)))>; def bb_mul : PatFrag<(ops node:$a, node:$b), (mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>; def bt_mul : PatFrag<(ops node:$a, node:$b), (mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>; def tb_mul : PatFrag<(ops node:$a, node:$b), (mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>; def tt_mul : PatFrag<(ops node:$a, node:$b), (mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>; /// Split a 32-bit immediate into two 16 bit parts. def hi16 : SDNodeXFormgetTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N), MVT::i32); }]>; def lo16AllZero : PatLeaf<(i32 imm), [{ // Returns true if all low 16-bits are 0. return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0; }], hi16>; // top16Zero - answer true if the upper 16 bits of $src are 0, false otherwise def top16Zero: PatLeaf<(i32 GPR:$src), [{ return !SDValue(N,0)->getValueType(0).isVector() && CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 16)); }]>; // topbitsallzero - Return true if all bits except the lowest bit are known zero def topbitsallzero32 : PatLeaf<(i32 GPRwithZR:$src), [{ return SDValue(N,0)->getValueType(0) == MVT::i32 && CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 31)); }]>; class BinOpFrag : PatFrag<(ops node:$LHS, node:$RHS), res>; class UnOpFrag : PatFrag<(ops node:$Src), res>; // An 'and' node with a single use. def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'xor' node with a single use. def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'fmul' node with a single use. def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{ return N->hasOneUse(); }]>; // An 'fadd' node which checks for single non-hazardous use. def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{ return hasNoVMLxHazardUse(N); }]>; // An 'fsub' node which checks for single non-hazardous use. def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{ return hasNoVMLxHazardUse(N); }]>; def imm_even : ImmLeaf; def imm_odd : ImmLeaf; def asr_imm : ImmLeaf 0 && Imm <= 32; }], asr_imm_XFORM>; //===----------------------------------------------------------------------===// // NEON/MVE pattern fragments // // Extract D sub-registers of Q registers. def DSubReg_i8_reg : SDNodeXFormgetTargetConstant(ARM::dsub_0 + N->getZExtValue()/8, SDLoc(N), MVT::i32); }]>; def DSubReg_i16_reg : SDNodeXFormgetTargetConstant(ARM::dsub_0 + N->getZExtValue()/4, SDLoc(N), MVT::i32); }]>; def DSubReg_i32_reg : SDNodeXFormgetTargetConstant(ARM::dsub_0 + N->getZExtValue()/2, SDLoc(N), MVT::i32); }]>; def DSubReg_f64_reg : SDNodeXFormgetTargetConstant(ARM::dsub_0 + N->getZExtValue(), SDLoc(N), MVT::i32); }]>; // Extract S sub-registers of Q/D registers. def SSubReg_f32_reg : SDNodeXFormgetTargetConstant(ARM::ssub_0 + N->getZExtValue(), SDLoc(N), MVT::i32); }]>; // Extract S sub-registers of Q/D registers containing a given f16/bf16 lane. def SSubReg_f16_reg : SDNodeXFormgetTargetConstant(ARM::ssub_0 + N->getZExtValue()/2, SDLoc(N), MVT::i32); }]>; // Translate lane numbers from Q registers to D subregs. def SubReg_i8_lane : SDNodeXFormgetTargetConstant(N->getZExtValue() & 7, SDLoc(N), MVT::i32); }]>; def SubReg_i16_lane : SDNodeXFormgetTargetConstant(N->getZExtValue() & 3, SDLoc(N), MVT::i32); }]>; def SubReg_i32_lane : SDNodeXFormgetTargetConstant(N->getZExtValue() & 1, SDLoc(N), MVT::i32); }]>; def ARMimmAllZerosV: PatLeaf<(bitconvert (v4i32 (ARMvmovImm (i32 0))))>; def ARMimmAllZerosD: PatLeaf<(bitconvert (v2i32 (ARMvmovImm (i32 0))))>; def ARMimmAllOnesV: PatLeaf<(bitconvert (v16i8 (ARMvmovImm (i32 0xEFF))))>; def ARMimmAllOnesD: PatLeaf<(bitconvert (v8i8 (ARMvmovImm (i32 0xEFF))))>; def ARMimmOneV: PatLeaf<(ARMvmovImm (i32 timm)), [{ ConstantSDNode *ConstVal = cast(N->getOperand(0)); unsigned EltBits = 0; uint64_t EltVal = ARM_AM::decodeVMOVModImm(ConstVal->getZExtValue(), EltBits); return (EltBits == N->getValueType(0).getScalarSizeInBits() && EltVal == 0x01); }]>; //===----------------------------------------------------------------------===// // Operand Definitions. // // Immediate operands with a shared generic asm render method. class ImmAsmOperand : AsmOperandClass { let RenderMethod = "addImmOperands"; let PredicateMethod = "isImmediate<" # Low # "," # High # ">"; let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]"; } class ImmAsmOperandMinusOne : AsmOperandClass { let PredicateMethod = "isImmediate<" # Low # "," # High # ">"; let DiagnosticType = "ImmRange" # Low # "_" # High; let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]"; } // Operands that are part of a memory addressing mode. class MemOperand : Operand { let OperandType = "OPERAND_MEMORY"; } // Branch target. // FIXME: rename brtarget to t2_brtarget def brtarget : Operand { let EncoderMethod = "getBranchTargetOpValue"; let OperandType = "OPERAND_PCREL"; let DecoderMethod = "DecodeT2BROperand"; } // Branches targeting ARM-mode must be divisible by 4 if they're a raw // immediate. def ARMBranchTarget : AsmOperandClass { let Name = "ARMBranchTarget"; } // Branches targeting Thumb-mode must be divisible by 2 if they're a raw // immediate. def ThumbBranchTarget : AsmOperandClass { let Name = "ThumbBranchTarget"; } def arm_br_target : Operand { let ParserMatchClass = ARMBranchTarget; let EncoderMethod = "getARMBranchTargetOpValue"; let OperandType = "OPERAND_PCREL"; } // Call target for ARM. Handles conditional/unconditional // FIXME: rename bl_target to t2_bltarget? def arm_bl_target : Operand { let ParserMatchClass = ARMBranchTarget; let EncoderMethod = "getARMBLTargetOpValue"; let OperandType = "OPERAND_PCREL"; } // Target for BLX *from* ARM mode. def arm_blx_target : Operand { let ParserMatchClass = ThumbBranchTarget; let EncoderMethod = "getARMBLXTargetOpValue"; let OperandType = "OPERAND_PCREL"; } // A list of registers separated by comma. Used by load/store multiple. def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; } def reglist : Operand { let EncoderMethod = "getRegisterListOpValue"; let ParserMatchClass = RegListAsmOperand; let PrintMethod = "printRegisterList"; let DecoderMethod = "DecodeRegListOperand"; } // A list of general purpose registers and APSR separated by comma. // Used by CLRM def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; } def reglist_with_apsr : Operand { let EncoderMethod = "getRegisterListOpValue"; let ParserMatchClass = RegListWithAPSRAsmOperand; let PrintMethod = "printRegisterList"; let DecoderMethod = "DecodeRegListOperand"; } def GPRPairOp : RegisterOperand; def DPRRegListAsmOperand : AsmOperandClass { let Name = "DPRRegList"; let DiagnosticType = "DPR_RegList"; } def dpr_reglist : Operand { let EncoderMethod = "getRegisterListOpValue"; let ParserMatchClass = DPRRegListAsmOperand; let PrintMethod = "printRegisterList"; let DecoderMethod = "DecodeDPRRegListOperand"; } def SPRRegListAsmOperand : AsmOperandClass { let Name = "SPRRegList"; let DiagnosticString = "operand must be a list of registers in range [s0, s31]"; } def spr_reglist : Operand { let EncoderMethod = "getRegisterListOpValue"; let ParserMatchClass = SPRRegListAsmOperand; let PrintMethod = "printRegisterList"; let DecoderMethod = "DecodeSPRRegListOperand"; } def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name = "FPSRegListWithVPR"; } def fp_sreglist_with_vpr : Operand { let EncoderMethod = "getRegisterListOpValue"; let ParserMatchClass = FPSRegListWithVPRAsmOperand; let PrintMethod = "printRegisterList"; } def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name = "FPDRegListWithVPR"; } def fp_dreglist_with_vpr : Operand { let EncoderMethod = "getRegisterListOpValue"; let ParserMatchClass = FPDRegListWithVPRAsmOperand; let PrintMethod = "printRegisterList"; } // An operand for the CONSTPOOL_ENTRY pseudo-instruction. def cpinst_operand : Operand { let PrintMethod = "printCPInstOperand"; } // Local PC labels. def pclabel : Operand { let PrintMethod = "printPCLabel"; } // ADR instruction labels. def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; } def adrlabel : Operand { let EncoderMethod = "getAdrLabelOpValue"; let ParserMatchClass = AdrLabelAsmOperand; let PrintMethod = "printAdrLabelOperand<0>"; } def neon_vcvt_imm32 : Operand { let EncoderMethod = "getNEONVcvtImm32OpValue"; let DecoderMethod = "DecodeVCVTImmOperand"; } // rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24. def rot_imm_XFORM: SDNodeXFormgetZExtValue()){ default: llvm_unreachable(nullptr); case 0: return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); case 8: return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32); case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32); case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32); } }]>; def RotImmAsmOperand : AsmOperandClass { let Name = "RotImm"; let ParserMethod = "parseRotImm"; } def rot_imm : Operand, PatLeaf<(i32 imm), [{ int32_t v = N->getZExtValue(); return v == 8 || v == 16 || v == 24; }], rot_imm_XFORM> { let PrintMethod = "printRotImmOperand"; let ParserMatchClass = RotImmAsmOperand; } // Power-of-two operand for MVE VIDUP and friends, which encode // {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively def MVE_VIDUP_imm_asmoperand : AsmOperandClass { let Name = "VIDUP_imm"; let PredicateMethod = "isPowerTwoInRange<1,8>"; let RenderMethod = "addPowerTwoOperands"; let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8"; } def MVE_VIDUP_imm : Operand { let EncoderMethod = "getPowerTwoOpValue"; let DecoderMethod = "DecodePowerTwoOperand<0,3>"; let ParserMatchClass = MVE_VIDUP_imm_asmoperand; } // Pair vector indexing class MVEPairVectorIndexOperand : AsmOperandClass { let Name = "MVEPairVectorIndex"#start; let RenderMethod = "addMVEPairVectorIndexOperands"; let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">"; } class MVEPairVectorIndex : Operand { let PrintMethod = "printVectorIndex"; let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">"; let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">"; let MIOperandInfo = (ops i32imm); } def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> { let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">; } def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> { let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">; } // Vector indexing class MVEVectorIndexOperand : AsmOperandClass { let Name = "MVEVectorIndex"#NumLanes; let RenderMethod = "addMVEVectorIndexOperands"; let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">"; } class MVEVectorIndex : Operand { let PrintMethod = "printVectorIndex"; let ParserMatchClass = MVEVectorIndexOperand; let MIOperandInfo = (ops i32imm); } // shift_imm: An integer that encodes a shift amount and the type of shift // (asr or lsl). The 6-bit immediate encodes as: // {5} 0 ==> lsl // 1 asr // {4-0} imm5 shift amount. // asr #32 encoded as imm5 == 0. def ShifterImmAsmOperand : AsmOperandClass { let Name = "ShifterImm"; let ParserMethod = "parseShifterImm"; } def shift_imm : Operand { let PrintMethod = "printShiftImmOperand"; let ParserMatchClass = ShifterImmAsmOperand; } // shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm. def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; } def so_reg_reg : Operand, // reg reg imm ComplexPattern { let EncoderMethod = "getSORegRegOpValue"; let PrintMethod = "printSORegRegOperand"; let DecoderMethod = "DecodeSORegRegOperand"; let ParserMatchClass = ShiftedRegAsmOperand; let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm); } def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; } def so_reg_imm : Operand, // reg imm ComplexPattern { let EncoderMethod = "getSORegImmOpValue"; let PrintMethod = "printSORegImmOperand"; let DecoderMethod = "DecodeSORegImmOperand"; let ParserMatchClass = ShiftedImmAsmOperand; let MIOperandInfo = (ops GPR, i32imm); } // FIXME: Does this need to be distinct from so_reg? def shift_so_reg_reg : Operand, // reg reg imm ComplexPattern { let EncoderMethod = "getSORegRegOpValue"; let PrintMethod = "printSORegRegOperand"; let DecoderMethod = "DecodeSORegRegOperand"; let ParserMatchClass = ShiftedRegAsmOperand; let MIOperandInfo = (ops GPR, GPR, i32imm); } // FIXME: Does this need to be distinct from so_reg? def shift_so_reg_imm : Operand, // reg reg imm ComplexPattern { let EncoderMethod = "getSORegImmOpValue"; let PrintMethod = "printSORegImmOperand"; let DecoderMethod = "DecodeSORegImmOperand"; let ParserMatchClass = ShiftedImmAsmOperand; let MIOperandInfo = (ops GPR, i32imm); } // mod_imm: match a 32-bit immediate operand, which can be encoded into // a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM // - "Modified Immediate Constants"). Within the MC layer we keep this // immediate in its encoded form. def ModImmAsmOperand: AsmOperandClass { let Name = "ModImm"; let ParserMethod = "parseModImm"; } def mod_imm : Operand, ImmLeaf { let EncoderMethod = "getModImmOpValue"; let PrintMethod = "printModImmOperand"; let ParserMatchClass = ModImmAsmOperand; } // Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder // method and such, as they are only used on aliases (Pat<> and InstAlias<>). // The actual parsing, encoding, decoding are handled by the destination // instructions, which use mod_imm. def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; } def mod_imm_not : Operand, PatLeaf<(imm), [{ return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1; }], imm_not_XFORM> { let ParserMatchClass = ModImmNotAsmOperand; } def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; } def mod_imm_neg : Operand, PatLeaf<(imm), [{ unsigned Value = -(unsigned)N->getZExtValue(); return Value && ARM_AM::getSOImmVal(Value) != -1; }], imm_neg_XFORM> { let ParserMatchClass = ModImmNegAsmOperand; } /// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal() def arm_i32imm : IntImmLeafuseMovt()) return true; if (ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue())) return true; return ARM_AM::isSOImmTwoPartValNeg(Imm.getZExtValue()); }]>; /// imm0_1 predicate - Immediate in the range [0,1]. def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; } def imm0_1 : Operand { let ParserMatchClass = Imm0_1AsmOperand; } /// imm0_3 predicate - Immediate in the range [0,3]. def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; } def imm0_3 : Operand { let ParserMatchClass = Imm0_3AsmOperand; } /// imm0_7 predicate - Immediate in the range [0,7]. def Imm0_7AsmOperand: ImmAsmOperand<0,7> { let Name = "Imm0_7"; } def imm0_7 : Operand, ImmLeaf= 0 && Imm < 8; }]> { let ParserMatchClass = Imm0_7AsmOperand; } /// imm8_255 predicate - Immediate in the range [8,255]. def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; } def imm8_255 : Operand, ImmLeaf= 8 && Imm < 256; }]> { let ParserMatchClass = Imm8_255AsmOperand; } /// imm8 predicate - Immediate is exactly 8. def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; } def imm8 : Operand, ImmLeaf { let ParserMatchClass = Imm8AsmOperand; } /// imm16 predicate - Immediate is exactly 16. def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; } def imm16 : Operand, ImmLeaf { let ParserMatchClass = Imm16AsmOperand; } /// imm32 predicate - Immediate is exactly 32. def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; } def imm32 : Operand, ImmLeaf { let ParserMatchClass = Imm32AsmOperand; } def imm8_or_16 : ImmLeaf; /// imm1_7 predicate - Immediate in the range [1,7]. def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; } def imm1_7 : Operand, ImmLeaf 0 && Imm < 8; }]> { let ParserMatchClass = Imm1_7AsmOperand; } /// imm1_15 predicate - Immediate in the range [1,15]. def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; } def imm1_15 : Operand, ImmLeaf 0 && Imm < 16; }]> { let ParserMatchClass = Imm1_15AsmOperand; } /// imm1_31 predicate - Immediate in the range [1,31]. def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; } def imm1_31 : Operand, ImmLeaf 0 && Imm < 32; }]> { let ParserMatchClass = Imm1_31AsmOperand; } /// imm0_15 predicate - Immediate in the range [0,15]. def Imm0_15AsmOperand: ImmAsmOperand<0,15> { let Name = "Imm0_15"; } def imm0_15 : Operand, ImmLeaf= 0 && Imm < 16; }]> { let ParserMatchClass = Imm0_15AsmOperand; } /// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31]. def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; } def imm0_31 : Operand, ImmLeaf= 0 && Imm < 32; }]> { let ParserMatchClass = Imm0_31AsmOperand; } /// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32]. def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; } def imm0_32 : Operand, ImmLeaf= 0 && Imm < 33; }]> { let ParserMatchClass = Imm0_32AsmOperand; } /// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63]. def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; } def imm0_63 : Operand, ImmLeaf= 0 && Imm < 64; }]> { let ParserMatchClass = Imm0_63AsmOperand; } /// imm0_239 predicate - Immediate in the range [0,239]. def Imm0_239AsmOperand : ImmAsmOperand<0,239> { let Name = "Imm0_239"; } def imm0_239 : Operand, ImmLeaf= 0 && Imm < 240; }]> { let ParserMatchClass = Imm0_239AsmOperand; } /// imm0_255 predicate - Immediate in the range [0,255]. def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; } def imm0_255 : Operand, ImmLeaf= 0 && Imm < 256; }]> { let ParserMatchClass = Imm0_255AsmOperand; } /// imm0_65535 - An immediate is in the range [0,65535]. def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; } def imm0_65535 : Operand, ImmLeaf= 0 && Imm < 65536; }]> { let ParserMatchClass = Imm0_65535AsmOperand; } // imm0_65535_neg - An immediate whose negative value is in the range [0.65535]. def imm0_65535_neg : Operand, ImmLeaf= 0 && -Imm < 65536; }]>; // imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference // a relocatable expression. // // FIXME: This really needs a Thumb version separate from the ARM version. // While the range is the same, and can thus use the same match class, // the encoding is different so it should have a different encoder method. def Imm0_65535ExprAsmOperand: AsmOperandClass { let Name = "Imm0_65535Expr"; let RenderMethod = "addImmOperands"; let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression"; } def imm0_65535_expr : Operand { let EncoderMethod = "getHiLo16ImmOpValue"; let ParserMatchClass = Imm0_65535ExprAsmOperand; } def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; } def imm256_65535_expr : Operand { let ParserMatchClass = Imm256_65535ExprAsmOperand; } /// imm24b - True if the 32-bit immediate is encodable in 24 bits. def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> { let Name = "Imm24bit"; let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]"; } def imm24b : Operand, ImmLeaf= 0 && Imm <= 0xffffff; }]> { let ParserMatchClass = Imm24bitAsmOperand; } /// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield /// e.g., 0xf000ffff def BitfieldAsmOperand : AsmOperandClass { let Name = "Bitfield"; let ParserMethod = "parseBitfield"; } def bf_inv_mask_imm : Operand, PatLeaf<(imm), [{ return ARM::isBitFieldInvertedMask(N->getZExtValue()); }] > { let EncoderMethod = "getBitfieldInvertedMaskOpValue"; let PrintMethod = "printBitfieldInvMaskImmOperand"; let DecoderMethod = "DecodeBitfieldMaskOperand"; let ParserMatchClass = BitfieldAsmOperand; let GISelPredicateCode = [{ // There's better methods of implementing this check. IntImmLeaf<> would be // equivalent and have less boilerplate but we need a test for C++ // predicates and this one causes new rules to be imported into GlobalISel // without requiring additional features first. const auto &MO = MI.getOperand(1); if (!MO.isCImm()) return false; return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue()); }]; } def imm1_32_XFORM: SDNodeXFormgetTargetConstant((int)N->getZExtValue() - 1, SDLoc(N), MVT::i32); }]>; def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> { let Name = "Imm1_32"; } def imm1_32 : Operand, PatLeaf<(imm), [{ uint64_t Imm = N->getZExtValue(); return Imm > 0 && Imm <= 32; }], imm1_32_XFORM> { let PrintMethod = "printImmPlusOneOperand"; let ParserMatchClass = Imm1_32AsmOperand; } def imm1_16_XFORM: SDNodeXFormgetTargetConstant((int)N->getZExtValue() - 1, SDLoc(N), MVT::i32); }]>; def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; } def imm1_16 : Operand, ImmLeaf 0 && Imm <= 16; }], imm1_16_XFORM> { let PrintMethod = "printImmPlusOneOperand"; let ParserMatchClass = Imm1_16AsmOperand; } def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "MVEShiftImm1_7"; // Reason we're doing this is because instruction vshll.s8 t1 encoding // accepts 1,7 but the t2 encoding accepts 8. By doing this we can get a // better diagnostic message if someone uses bigger immediate than the t1/t2 // encodings allow. let DiagnosticString = "operand must be an immediate in the range [1,8]"; } def mve_shift_imm1_7 : Operand, // SelectImmediateInRange / isScaledConstantInRange uses a // half-open interval, so the parameters <1,8> mean 1-7 inclusive ComplexPattern", [], []> { let ParserMatchClass = MVEShiftImm1_7AsmOperand; let EncoderMethod = "getMVEShiftImmOpValue"; } def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "MVEShiftImm1_15"; // Reason we're doing this is because instruction vshll.s16 t1 encoding // accepts 1,15 but the t2 encoding accepts 16. By doing this we can get a // better diagnostic message if someone uses bigger immediate than the t1/t2 // encodings allow. let DiagnosticString = "operand must be an immediate in the range [1,16]"; } def mve_shift_imm1_15 : Operand, // SelectImmediateInRange / isScaledConstantInRange uses a // half-open interval, so the parameters <1,16> mean 1-15 inclusive ComplexPattern", [], []> { let ParserMatchClass = MVEShiftImm1_15AsmOperand; let EncoderMethod = "getMVEShiftImmOpValue"; } // Define ARM specific addressing modes. // addrmode_imm12 := reg +/- imm12 // def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; } class AddrMode_Imm12 : MemOperand, ComplexPattern { // 12-bit immediate operand. Note that instructions using this encode // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other // immediate values are as normal. let EncoderMethod = "getAddrModeImm12OpValue"; let DecoderMethod = "DecodeAddrModeImm12Operand"; let ParserMatchClass = MemImm12OffsetAsmOperand; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } def addrmode_imm12 : AddrMode_Imm12 { let PrintMethod = "printAddrModeImm12Operand"; } def addrmode_imm12_pre : AddrMode_Imm12 { let PrintMethod = "printAddrModeImm12Operand"; } // ldst_so_reg := reg +/- reg shop imm // def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; } def ldst_so_reg : MemOperand, ComplexPattern { let EncoderMethod = "getLdStSORegOpValue"; // FIXME: Simplify the printer let PrintMethod = "printAddrMode2Operand"; let DecoderMethod = "DecodeSORegMemOperand"; let ParserMatchClass = MemRegOffsetAsmOperand; let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift); } // postidx_imm8 := +/- [0,255] // // 9 bit value: // {8} 1 is imm8 is non-negative. 0 otherwise. // {7-0} [0,255] imm8 value. def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; } def postidx_imm8 : MemOperand { let PrintMethod = "printPostIdxImm8Operand"; let ParserMatchClass = PostIdxImm8AsmOperand; let MIOperandInfo = (ops i32imm); } // postidx_imm8s4 := +/- [0,1020] // // 9 bit value: // {8} 1 is imm8 is non-negative. 0 otherwise. // {7-0} [0,255] imm8 value, scaled by 4. def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; } def postidx_imm8s4 : MemOperand { let PrintMethod = "printPostIdxImm8s4Operand"; let ParserMatchClass = PostIdxImm8s4AsmOperand; let MIOperandInfo = (ops i32imm); } // postidx_reg := +/- reg // def PostIdxRegAsmOperand : AsmOperandClass { let Name = "PostIdxReg"; let ParserMethod = "parsePostIdxReg"; } def postidx_reg : MemOperand { let EncoderMethod = "getPostIdxRegOpValue"; let DecoderMethod = "DecodePostIdxReg"; let PrintMethod = "printPostIdxRegOperand"; let ParserMatchClass = PostIdxRegAsmOperand; let MIOperandInfo = (ops GPRnopc, i32imm); } def PostIdxRegShiftedAsmOperand : AsmOperandClass { let Name = "PostIdxRegShifted"; let ParserMethod = "parsePostIdxReg"; } def am2offset_reg : MemOperand, ComplexPattern { let EncoderMethod = "getAddrMode2OffsetOpValue"; let PrintMethod = "printAddrMode2OffsetOperand"; // When using this for assembly, it's always as a post-index offset. let ParserMatchClass = PostIdxRegShiftedAsmOperand; let MIOperandInfo = (ops GPRnopc, i32imm); } // FIXME: am2offset_imm should only need the immediate, not the GPR. Having // the GPR is purely vestigal at this point. def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; } def am2offset_imm : MemOperand, ComplexPattern { let EncoderMethod = "getAddrMode2OffsetOpValue"; let PrintMethod = "printAddrMode2OffsetOperand"; let ParserMatchClass = AM2OffsetImmAsmOperand; let MIOperandInfo = (ops GPRnopc, i32imm); } // addrmode3 := reg +/- reg // addrmode3 := reg +/- imm8 // // FIXME: split into imm vs. reg versions. def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; } class AddrMode3 : MemOperand, ComplexPattern { let EncoderMethod = "getAddrMode3OpValue"; let ParserMatchClass = AddrMode3AsmOperand; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } def addrmode3 : AddrMode3 { let PrintMethod = "printAddrMode3Operand"; } def addrmode3_pre : AddrMode3 { let PrintMethod = "printAddrMode3Operand"; } // FIXME: split into imm vs. reg versions. // FIXME: parser method to handle +/- register. def AM3OffsetAsmOperand : AsmOperandClass { let Name = "AM3Offset"; let ParserMethod = "parseAM3Offset"; } def am3offset : MemOperand, ComplexPattern { let EncoderMethod = "getAddrMode3OffsetOpValue"; let PrintMethod = "printAddrMode3OffsetOperand"; let ParserMatchClass = AM3OffsetAsmOperand; let MIOperandInfo = (ops GPR, i32imm); } // ldstm_mode := {ia, ib, da, db} // def ldstm_mode : OptionalDefOperand { let EncoderMethod = "getLdStmModeOpValue"; let PrintMethod = "printLdStmModeOperand"; } // addrmode5 := reg +/- imm8*4 // def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; } class AddrMode5 : MemOperand, ComplexPattern { let EncoderMethod = "getAddrMode5OpValue"; let DecoderMethod = "DecodeAddrMode5Operand"; let ParserMatchClass = AddrMode5AsmOperand; let MIOperandInfo = (ops GPR:$base, i32imm); } def addrmode5 : AddrMode5 { let PrintMethod = "printAddrMode5Operand"; } def addrmode5_pre : AddrMode5 { let PrintMethod = "printAddrMode5Operand"; } // addrmode5fp16 := reg +/- imm8*2 // def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; } class AddrMode5FP16 : MemOperand, ComplexPattern { let EncoderMethod = "getAddrMode5FP16OpValue"; let DecoderMethod = "DecodeAddrMode5FP16Operand"; let ParserMatchClass = AddrMode5FP16AsmOperand; let MIOperandInfo = (ops GPR:$base, i32imm); } def addrmode5fp16 : AddrMode5FP16 { let PrintMethod = "printAddrMode5FP16Operand"; } // addrmode6 := reg with optional alignment // def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; } def addrmode6 : MemOperand, ComplexPattern{ let PrintMethod = "printAddrMode6Operand"; let MIOperandInfo = (ops GPR:$addr, i32imm:$align); let EncoderMethod = "getAddrMode6AddressOpValue"; let DecoderMethod = "DecodeAddrMode6Operand"; let ParserMatchClass = AddrMode6AsmOperand; } def am6offset : MemOperand, ComplexPattern { let PrintMethod = "printAddrMode6OffsetOperand"; let MIOperandInfo = (ops GPR); let EncoderMethod = "getAddrMode6OffsetOpValue"; let DecoderMethod = "DecodeGPRRegisterClass"; } // Special version of addrmode6 to handle alignment encoding for VST1/VLD1 // (single element from one lane) for size 32. def addrmode6oneL32 : MemOperand, ComplexPattern{ let PrintMethod = "printAddrMode6Operand"; let MIOperandInfo = (ops GPR:$addr, i32imm); let EncoderMethod = "getAddrMode6OneLane32AddressOpValue"; } // Base class for addrmode6 with specific alignment restrictions. class AddrMode6Align : MemOperand, ComplexPattern{ let PrintMethod = "printAddrMode6Operand"; let MIOperandInfo = (ops GPR:$addr, i32imm:$align); let EncoderMethod = "getAddrMode6AddressOpValue"; let DecoderMethod = "DecodeAddrMode6Operand"; } // Special version of addrmode6 to handle no allowed alignment encoding for // VLD/VST instructions and checking the alignment is not specified. def AddrMode6AlignNoneAsmOperand : AsmOperandClass { let Name = "AlignedMemoryNone"; let DiagnosticString = "alignment must be omitted"; } def addrmode6alignNone : AddrMode6Align { // The alignment specifier can only be omitted. let ParserMatchClass = AddrMode6AlignNoneAsmOperand; } // Special version of addrmode6 to handle 16-bit alignment encoding for // VLD/VST instructions and checking the alignment value. def AddrMode6Align16AsmOperand : AsmOperandClass { let Name = "AlignedMemory16"; let DiagnosticString = "alignment must be 16 or omitted"; } def addrmode6align16 : AddrMode6Align { // The alignment specifier can only be 16 or omitted. let ParserMatchClass = AddrMode6Align16AsmOperand; } // Special version of addrmode6 to handle 32-bit alignment encoding for // VLD/VST instructions and checking the alignment value. def AddrMode6Align32AsmOperand : AsmOperandClass { let Name = "AlignedMemory32"; let DiagnosticString = "alignment must be 32 or omitted"; } def addrmode6align32 : AddrMode6Align { // The alignment specifier can only be 32 or omitted. let ParserMatchClass = AddrMode6Align32AsmOperand; } // Special version of addrmode6 to handle 64-bit alignment encoding for // VLD/VST instructions and checking the alignment value. def AddrMode6Align64AsmOperand : AsmOperandClass { let Name = "AlignedMemory64"; let DiagnosticString = "alignment must be 64 or omitted"; } def addrmode6align64 : AddrMode6Align { // The alignment specifier can only be 64 or omitted. let ParserMatchClass = AddrMode6Align64AsmOperand; } // Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding // for VLD/VST instructions and checking the alignment value. def AddrMode6Align64or128AsmOperand : AsmOperandClass { let Name = "AlignedMemory64or128"; let DiagnosticString = "alignment must be 64, 128 or omitted"; } def addrmode6align64or128 : AddrMode6Align { // The alignment specifier can only be 64, 128 or omitted. let ParserMatchClass = AddrMode6Align64or128AsmOperand; } // Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment // encoding for VLD/VST instructions and checking the alignment value. def AddrMode6Align64or128or256AsmOperand : AsmOperandClass { let Name = "AlignedMemory64or128or256"; let DiagnosticString = "alignment must be 64, 128, 256 or omitted"; } def addrmode6align64or128or256 : AddrMode6Align { // The alignment specifier can only be 64, 128, 256 or omitted. let ParserMatchClass = AddrMode6Align64or128or256AsmOperand; } // Special version of addrmode6 to handle alignment encoding for VLD-dup // instructions, specifically VLD4-dup. def addrmode6dup : MemOperand, ComplexPattern{ let PrintMethod = "printAddrMode6Operand"; let MIOperandInfo = (ops GPR:$addr, i32imm); let EncoderMethod = "getAddrMode6DupAddressOpValue"; // FIXME: This is close, but not quite right. The alignment specifier is // different. let ParserMatchClass = AddrMode6AsmOperand; } // Base class for addrmode6dup with specific alignment restrictions. class AddrMode6DupAlign : MemOperand, ComplexPattern{ let PrintMethod = "printAddrMode6Operand"; let MIOperandInfo = (ops GPR:$addr, i32imm); let EncoderMethod = "getAddrMode6DupAddressOpValue"; } // Special version of addrmode6 to handle no allowed alignment encoding for // VLD-dup instruction and checking the alignment is not specified. def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass { let Name = "DupAlignedMemoryNone"; let DiagnosticString = "alignment must be omitted"; } def addrmode6dupalignNone : AddrMode6DupAlign { // The alignment specifier can only be omitted. let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand; } // Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup // instruction and checking the alignment value. def AddrMode6dupAlign16AsmOperand : AsmOperandClass { let Name = "DupAlignedMemory16"; let DiagnosticString = "alignment must be 16 or omitted"; } def addrmode6dupalign16 : AddrMode6DupAlign { // The alignment specifier can only be 16 or omitted. let ParserMatchClass = AddrMode6dupAlign16AsmOperand; } // Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup // instruction and checking the alignment value. def AddrMode6dupAlign32AsmOperand : AsmOperandClass { let Name = "DupAlignedMemory32"; let DiagnosticString = "alignment must be 32 or omitted"; } def addrmode6dupalign32 : AddrMode6DupAlign { // The alignment specifier can only be 32 or omitted. let ParserMatchClass = AddrMode6dupAlign32AsmOperand; } // Special version of addrmode6 to handle 64-bit alignment encoding for VLD // instructions and checking the alignment value. def AddrMode6dupAlign64AsmOperand : AsmOperandClass { let Name = "DupAlignedMemory64"; let DiagnosticString = "alignment must be 64 or omitted"; } def addrmode6dupalign64 : AddrMode6DupAlign { // The alignment specifier can only be 64 or omitted. let ParserMatchClass = AddrMode6dupAlign64AsmOperand; } // Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding // for VLD instructions and checking the alignment value. def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass { let Name = "DupAlignedMemory64or128"; let DiagnosticString = "alignment must be 64, 128 or omitted"; } def addrmode6dupalign64or128 : AddrMode6DupAlign { // The alignment specifier can only be 64, 128 or omitted. let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand; } // addrmodepc := pc + reg // def addrmodepc : MemOperand, ComplexPattern { let PrintMethod = "printAddrModePCOperand"; let MIOperandInfo = (ops GPR, i32imm); } // addr_offset_none := reg // def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; } def addr_offset_none : MemOperand, ComplexPattern { let PrintMethod = "printAddrMode7Operand"; let DecoderMethod = "DecodeAddrMode7Operand"; let ParserMatchClass = MemNoOffsetAsmOperand; let MIOperandInfo = (ops GPR:$base); } // t_addr_offset_none := reg [r0-r7] def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; } def t_addr_offset_none : MemOperand { let PrintMethod = "printAddrMode7Operand"; let DecoderMethod = "DecodetGPRRegisterClass"; let ParserMatchClass = MemNoOffsetTAsmOperand; let MIOperandInfo = (ops tGPR:$base); } def nohash_imm : Operand { let PrintMethod = "printNoHashImmediate"; } def CoprocNumAsmOperand : AsmOperandClass { let Name = "CoprocNum"; let ParserMethod = "parseCoprocNumOperand"; } def p_imm : Operand { let PrintMethod = "printPImmediate"; let ParserMatchClass = CoprocNumAsmOperand; let DecoderMethod = "DecodeCoprocessor"; } def CoprocRegAsmOperand : AsmOperandClass { let Name = "CoprocReg"; let ParserMethod = "parseCoprocRegOperand"; } def c_imm : Operand { let PrintMethod = "printCImmediate"; let ParserMatchClass = CoprocRegAsmOperand; } def CoprocOptionAsmOperand : AsmOperandClass { let Name = "CoprocOption"; let ParserMethod = "parseCoprocOptionOperand"; } def coproc_option_imm : Operand { let PrintMethod = "printCoprocOptionImm"; let ParserMatchClass = CoprocOptionAsmOperand; } //===----------------------------------------------------------------------===// include "ARMInstrFormats.td" //===----------------------------------------------------------------------===// // Multiclass helpers... // /// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a /// binop that produces a value. let TwoOperandAliasConstraint = "$Rn = $Rd" in multiclass AsI1_bin_irs opcod, string opc, InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, SDPatternOperator opnode, bit Commutable = 0> { // The register-immediate version is re-materializable. This is useful // in particular for taking the address of a local. let isReMaterializable = 1 in { def ri : AsI1, Sched<[WriteALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> imm; let Inst{25} = 1; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-0} = imm; } } def rr : AsI1, Sched<[WriteALU, ReadALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{25} = 0; let isCommutable = Commutable; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-4} = 0b00000000; let Inst{3-0} = Rm; } def rsi : AsI1, Sched<[WriteALUsi, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-5} = shift{11-5}; let Inst{4} = 0; let Inst{3-0} = shift{3-0}; } def rsr : AsI1, Sched<[WriteALUsr, ReadALUsr]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-8} = shift{11-8}; let Inst{7} = 0; let Inst{6-5} = shift{6-5}; let Inst{4} = 1; let Inst{3-0} = shift{3-0}; } } /// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are /// reversed. The 'rr' form is only defined for the disassembler; for codegen /// it is equivalent to the AsI1_bin_irs counterpart. let TwoOperandAliasConstraint = "$Rn = $Rd" in multiclass AsI1_rbin_irs opcod, string opc, InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, SDNode opnode> { // The register-immediate version is re-materializable. This is useful // in particular for taking the address of a local. let isReMaterializable = 1 in { def ri : AsI1, Sched<[WriteALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> imm; let Inst{25} = 1; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-0} = imm; } } def rr : AsI1, Sched<[WriteALU, ReadALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{11-4} = 0b00000000; let Inst{25} = 0; let Inst{3-0} = Rm; let Inst{15-12} = Rd; let Inst{19-16} = Rn; } def rsi : AsI1, Sched<[WriteALUsi, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-5} = shift{11-5}; let Inst{4} = 0; let Inst{3-0} = shift{3-0}; } def rsr : AsI1, Sched<[WriteALUsr, ReadALUsr]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-8} = shift{11-8}; let Inst{7} = 0; let Inst{6-5} = shift{6-5}; let Inst{4} = 1; let Inst{3-0} = shift{3-0}; } } /// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default. /// /// These opcodes will be converted to the real non-S opcodes by /// AdjustInstrPostInstrSelection after giving them an optional CPSR operand. let hasPostISelHook = 1, Defs = [CPSR] in { multiclass AsI1_bin_s_irs { def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p), 4, iii, [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>, Sched<[WriteALU, ReadALU]>; def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p), 4, iir, [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>, Sched<[WriteALU, ReadALU, ReadALU]> { let isCommutable = Commutable; } def rsi : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift, pred:$p), 4, iis, [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift))]>, Sched<[WriteALUsi, ReadALU]>; def rsr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift, pred:$p), 4, iis, [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_reg:$shift))]>, Sched<[WriteALUSsr, ReadALUsr]>; } } /// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG /// operands are reversed. let hasPostISelHook = 1, Defs = [CPSR] in { multiclass AsI1_rbin_s_is { def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p), 4, iii, [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>, Sched<[WriteALU, ReadALU]>; def rsi : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift, pred:$p), 4, iis, [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn))]>, Sched<[WriteALUsi, ReadALU]>; def rsr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift, pred:$p), 4, iis, [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn))]>, Sched<[WriteALUSsr, ReadALUsr]>; } } /// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test /// patterns. Similar to AsI1_bin_irs except the instruction does not produce /// a explicit result, only implicitly set CPSR. let isCompare = 1, Defs = [CPSR] in { multiclass AI1_cmp_irs opcod, string opc, InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, SDPatternOperator opnode, bit Commutable = 0, string rrDecoderMethod = ""> { def ri : AI1, Sched<[WriteCMP, ReadALU]> { bits<4> Rn; bits<12> imm; let Inst{25} = 1; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-0} = imm; let Unpredictable{15-12} = 0b1111; } def rr : AI1, Sched<[WriteCMP, ReadALU, ReadALU]> { bits<4> Rn; bits<4> Rm; let isCommutable = Commutable; let Inst{25} = 0; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-4} = 0b00000000; let Inst{3-0} = Rm; let DecoderMethod = rrDecoderMethod; let Unpredictable{15-12} = 0b1111; } def rsi : AI1, Sched<[WriteCMPsi, ReadALU]> { bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-5} = shift{11-5}; let Inst{4} = 0; let Inst{3-0} = shift{3-0}; let Unpredictable{15-12} = 0b1111; } def rsr : AI1, Sched<[WriteCMPsr, ReadALU]> { bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-8} = shift{11-8}; let Inst{7} = 0; let Inst{6-5} = shift{6-5}; let Inst{4} = 1; let Inst{3-0} = shift{3-0}; let Unpredictable{15-12} = 0b1111; } } } /// AI_ext_rrot - A unary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. /// FIXME: Remove the 'r' variant. Its rot_imm is zero. class AI_ext_rrot opcod, string opc, PatFrag opnode> : AExtI, Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> { bits<4> Rd; bits<4> Rm; bits<2> rot; let Inst{19-16} = 0b1111; let Inst{15-12} = Rd; let Inst{11-10} = rot; let Inst{3-0} = Rm; } class AI_ext_rrot_np opcod, string opc> : AExtI, Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> { bits<2> rot; let Inst{19-16} = 0b1111; let Inst{11-10} = rot; } /// AI_exta_rrot - A binary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. class AI_exta_rrot opcod, string opc, PatFrag opnode> : AExtI, Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> { bits<4> Rd; bits<4> Rm; bits<4> Rn; bits<2> rot; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-10} = rot; let Inst{9-4} = 0b000111; let Inst{3-0} = Rm; } class AI_exta_rrot_np opcod, string opc> : AExtI, Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> { bits<4> Rn; bits<2> rot; let Inst{19-16} = Rn; let Inst{11-10} = rot; } /// AI1_adde_sube_irs - Define instructions and patterns for adde and sube. let TwoOperandAliasConstraint = "$Rn = $Rd" in multiclass AI1_adde_sube_irs opcod, string opc, SDNode opnode, bit Commutable = 0> { let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { def ri : AsI1, Requires<[IsARM]>, Sched<[WriteALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> imm; let Inst{25} = 1; let Inst{15-12} = Rd; let Inst{19-16} = Rn; let Inst{11-0} = imm; } def rr : AsI1, Requires<[IsARM]>, Sched<[WriteALU, ReadALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{11-4} = 0b00000000; let Inst{25} = 0; let isCommutable = Commutable; let Inst{3-0} = Rm; let Inst{15-12} = Rd; let Inst{19-16} = Rn; } def rsi : AsI1, Requires<[IsARM]>, Sched<[WriteALUsi, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-5} = shift{11-5}; let Inst{4} = 0; let Inst{3-0} = shift{3-0}; } def rsr : AsI1, Requires<[IsARM]>, Sched<[WriteALUsr, ReadALUsr]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-8} = shift{11-8}; let Inst{7} = 0; let Inst{6-5} = shift{6-5}; let Inst{4} = 1; let Inst{3-0} = shift{3-0}; } } } /// AI1_rsc_irs - Define instructions and patterns for rsc let TwoOperandAliasConstraint = "$Rn = $Rd" in multiclass AI1_rsc_irs opcod, string opc, SDNode opnode> { let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { def ri : AsI1, Requires<[IsARM]>, Sched<[WriteALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> imm; let Inst{25} = 1; let Inst{15-12} = Rd; let Inst{19-16} = Rn; let Inst{11-0} = imm; } def rr : AsI1, Sched<[WriteALU, ReadALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{11-4} = 0b00000000; let Inst{25} = 0; let Inst{3-0} = Rm; let Inst{15-12} = Rd; let Inst{19-16} = Rn; } def rsi : AsI1, Requires<[IsARM]>, Sched<[WriteALUsi, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-5} = shift{11-5}; let Inst{4} = 0; let Inst{3-0} = shift{3-0}; } def rsr : AsI1, Requires<[IsARM]>, Sched<[WriteALUsr, ReadALUsr]> { bits<4> Rd; bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-8} = shift{11-8}; let Inst{7} = 0; let Inst{6-5} = shift{6-5}; let Inst{4} = 1; let Inst{3-0} = shift{3-0}; } } } let canFoldAsLoad = 1, isReMaterializable = 1 in { multiclass AI_ldr1 { // Note: We use the complex addrmode_imm12 rather than just an input // GPR and a constrained immediate so that we can use this to match // frame index references and avoid matching constant pool references. def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr), AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> { bits<4> Rt; bits<17> addr; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{19-16} = addr{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = addr{11-0}; // imm12 } def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift), AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> { bits<4> Rt; bits<17> shift; let shift{4} = 0; // Inst{4} = 0 let Inst{23} = shift{12}; // U (add = ('U' == 1)) let Inst{19-16} = shift{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = shift{11-0}; } } } let canFoldAsLoad = 1, isReMaterializable = 1 in { multiclass AI_ldr1nopc { // Note: We use the complex addrmode_imm12 rather than just an input // GPR and a constrained immediate so that we can use this to match // frame index references and avoid matching constant pool references. def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt), (ins addrmode_imm12:$addr), AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> { bits<4> Rt; bits<17> addr; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{19-16} = addr{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = addr{11-0}; // imm12 } def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt), (ins ldst_so_reg:$shift), AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> { bits<4> Rt; bits<17> shift; let shift{4} = 0; // Inst{4} = 0 let Inst{23} = shift{12}; // U (add = ('U' == 1)) let Inst{19-16} = shift{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = shift{11-0}; } } } multiclass AI_str1 { // Note: We use the complex addrmode_imm12 rather than just an input // GPR and a constrained immediate so that we can use this to match // frame index references and avoid matching constant pool references. def i12 : AI2ldst<0b010, 0, isByte, (outs), (ins GPR:$Rt, addrmode_imm12:$addr), AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", [(opnode GPR:$Rt, addrmode_imm12:$addr)]> { bits<4> Rt; bits<17> addr; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{19-16} = addr{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = addr{11-0}; // imm12 } def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift), AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", [(opnode GPR:$Rt, ldst_so_reg:$shift)]> { bits<4> Rt; bits<17> shift; let shift{4} = 0; // Inst{4} = 0 let Inst{23} = shift{12}; // U (add = ('U' == 1)) let Inst{19-16} = shift{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = shift{11-0}; } } multiclass AI_str1nopc { // Note: We use the complex addrmode_imm12 rather than just an input // GPR and a constrained immediate so that we can use this to match // frame index references and avoid matching constant pool references. def i12 : AI2ldst<0b010, 0, isByte, (outs), (ins GPRnopc:$Rt, addrmode_imm12:$addr), AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> { bits<4> Rt; bits<17> addr; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{19-16} = addr{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = addr{11-0}; // imm12 } def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPRnopc:$Rt, ldst_so_reg:$shift), AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> { bits<4> Rt; bits<17> shift; let shift{4} = 0; // Inst{4} = 0 let Inst{23} = shift{12}; // U (add = ('U' == 1)) let Inst{19-16} = shift{16-13}; // Rn let Inst{15-12} = Rt; let Inst{11-0} = shift{11-0}; } } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in /// the function. The first operand is the ID# for this instruction, the second /// is the index into the MachineConstantPool that this is, the third is the /// size in bytes of this constant pool entry. let hasSideEffects = 0, isNotDuplicable = 1, hasNoSchedulingInfo = 1 in def CONSTPOOL_ENTRY : PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, i32imm:$size), NoItinerary, []>; /// A jumptable consisting of direct 32-bit addresses of the destination basic /// blocks (either absolute, or relative to the start of the jump-table in PIC /// mode). Used mostly in ARM and Thumb-1 modes. def JUMPTABLE_ADDRS : PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, i32imm:$size), NoItinerary, []>; /// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables /// that cannot be optimised to use TBB or TBH. def JUMPTABLE_INSTS : PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, i32imm:$size), NoItinerary, []>; /// A jumptable consisting of 8-bit unsigned integers representing offsets from /// a TBB instruction. def JUMPTABLE_TBB : PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, i32imm:$size), NoItinerary, []>; /// A jumptable consisting of 16-bit unsigned integers representing offsets from /// a TBH instruction. def JUMPTABLE_TBH : PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, i32imm:$size), NoItinerary, []>; // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE // from removing one half of the matched pairs. That breaks PEI, which assumes // these will always be in pairs, and asserts if it finds otherwise. Better way? let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { def ADJCALLSTACKUP : PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary, [(ARMcallseq_end timm:$amt1, timm:$amt2)]>; def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary, [(ARMcallseq_start timm:$amt, timm:$amt2)]>; } def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary, "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>, Requires<[IsARM, HasV6]> { bits<8> imm; let Inst{27-8} = 0b00110010000011110000; let Inst{7-0} = imm; let DecoderMethod = "DecodeHINTInstruction"; } def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>; def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>; def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>; def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>; def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>; def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>; def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>; def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>; // Clear BHB instruction def : InstAlias<"clrbhb$p", (HINT 22, pred:$p), 0>, Requires<[IsARM, HasV8]>; def : InstAlias<"clrbhb$p", (HINT 22, pred:$p), 1>, Requires<[IsARM, HasV8, HasCLRBHB]>; def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel", "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV6]> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{3-0} = Rm; let Inst{15-12} = Rd; let Inst{19-16} = Rn; let Inst{27-20} = 0b01101000; let Inst{7-4} = 0b1011; let Inst{11-8} = 0b1111; let Unpredictable{11-8} = 0b1111; } // The 16-bit operand $val can be used by a debugger to store more information // about the breakpoint. def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary, "bkpt", "\t$val", []>, Requires<[IsARM]> { bits<16> val; let Inst{3-0} = val{3-0}; let Inst{19-8} = val{15-4}; let Inst{27-20} = 0b00010010; let Inst{31-28} = 0xe; // AL let Inst{7-4} = 0b0111; } // default immediate for breakpoint mnemonic def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>; def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary, "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> { bits<16> val; let Inst{3-0} = val{3-0}; let Inst{19-8} = val{15-4}; let Inst{27-20} = 0b00010000; let Inst{31-28} = 0xe; // AL let Inst{7-4} = 0b0111; } // Change Processor State // FIXME: We should use InstAlias to handle the optional operands. class CPS : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops), []>, Requires<[IsARM]> { bits<2> imod; bits<3> iflags; bits<5> mode; bit M; let Inst{31-28} = 0b1111; let Inst{27-20} = 0b00010000; let Inst{19-18} = imod; let Inst{17} = M; // Enabled if mode is set; let Inst{16-9} = 0b00000000; let Inst{8-6} = iflags; let Inst{5} = 0; let Inst{4-0} = mode; } let DecoderMethod = "DecodeCPSInstruction" in { let M = 1 in def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode), "$imod\t$iflags, $mode">; let mode = 0, M = 0 in def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">; let imod = 0, iflags = 0, M = 1 in def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">; } // Preload signals the memory system of possible future data/instruction access. multiclass APreLoad read, bits<1> data, string opc> { def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm, IIC_Preload, !strconcat(opc, "\t$addr"), [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>, Sched<[WritePreLd]> { bits<4> Rt; bits<17> addr; let Inst{31-26} = 0b111101; let Inst{25} = 0; // 0 for immediate form let Inst{24} = data; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{22} = read; let Inst{21-20} = 0b01; let Inst{19-16} = addr{16-13}; // Rn let Inst{15-12} = 0b1111; let Inst{11-0} = addr{11-0}; // imm12 } def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload, !strconcat(opc, "\t$shift"), [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>, Sched<[WritePreLd]> { bits<17> shift; let Inst{31-26} = 0b111101; let Inst{25} = 1; // 1 for register form let Inst{24} = data; let Inst{23} = shift{12}; // U (add = ('U' == 1)) let Inst{22} = read; let Inst{21-20} = 0b01; let Inst{19-16} = shift{16-13}; // Rn let Inst{15-12} = 0b1111; let Inst{11-0} = shift{11-0}; let Inst{4} = 0; } } defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>; defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>; defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>; def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary, "setend\t$end", []>, Requires<[IsARM]>, Deprecated { bits<1> end; let Inst{31-10} = 0b1111000100000001000000; let Inst{9} = end; let Inst{8-0} = 0; } def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt", [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> { bits<4> opt; let Inst{27-4} = 0b001100100000111100001111; let Inst{3-0} = opt; } // A8.8.247 UDF - Undefined (Encoding A1) def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary, "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> { bits<16> imm16; let Inst{31-28} = 0b1110; // AL let Inst{27-25} = 0b011; let Inst{24-20} = 0b11111; let Inst{19-8} = imm16{15-4}; let Inst{7-4} = 0b1111; let Inst{3-0} = imm16{3-0}; } /* * A5.4 Permanently UNDEFINED instructions. * * For most targets use UDF #65006, for which the OS will generate SIGTRAP. * Other UDF encodings generate SIGILL. * * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb. * Encoding A1: * 1110 0111 1111 iiii iiii iiii 1111 iiii * Encoding T1: * 1101 1110 iiii iiii * It uses the following encoding: * 1110 0111 1111 1110 1101 1110 1111 0000 * - In ARM: UDF #60896; * - In Thumb: UDF #254 followed by a branch-to-self. */ let isBarrier = 1, isTerminator = 1 in def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary, "trap", [(trap)]>, Requires<[IsARM,UseNaClTrap]> { let Inst = 0xe7fedef0; } let isBarrier = 1, isTerminator = 1 in def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary, "trap", [(trap)]>, Requires<[IsARM,DontUseNaClTrap]> { let Inst = 0xe7ffdefe; } def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>; def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>; // Address computation and loads and stores in PIC mode. let isNotDuplicable = 1 in { def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p), 4, IIC_iALUr, [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>, Sched<[WriteALU, ReadALU]>; let AddedComplexity = 10 in { def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), 4, IIC_iLoad_r, [(set GPR:$dst, (load addrmodepc:$addr))]>; def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 4, IIC_iLoad_bh_r, [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>; def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 4, IIC_iLoad_bh_r, [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>; def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 4, IIC_iLoad_bh_r, [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>; def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 4, IIC_iLoad_bh_r, [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>; } let AddedComplexity = 10 in { def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>; def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src, addrmodepc:$addr)]>; def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>; } } // isNotDuplicable = 1 // LEApcrel - Load a pc-relative address into a register without offending the // assembler. let hasSideEffects = 0, isReMaterializable = 1 in // The 'adr' mnemonic encodes differently if the label is before or after // the instruction. The {24-21} opcode bits are set by the fixup, as we don't // know until then which form of the instruction will be used. def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label), MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>, Sched<[WriteALU, ReadALU]> { bits<4> Rd; bits<14> label; let Inst{27-25} = 0b001; let Inst{24} = 0; let Inst{23-22} = label{13-12}; let Inst{21} = 0; let Inst{20} = 0; let Inst{19-16} = 0b1111; let Inst{15-12} = Rd; let Inst{11-0} = label{11-0}; } let hasSideEffects = 1 in { def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p), 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>; def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p), 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>; } //===----------------------------------------------------------------------===// // Control Flow Instructions. // let isReturn = 1, isTerminator = 1, isBarrier = 1 in { // ARMV4T and above def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br, "bx", "\tlr", [(ARMretflag)]>, Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> { let Inst{27-0} = 0b0001001011111111111100011110; } // ARMV4 only def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br, "mov", "\tpc, lr", [(ARMretflag)]>, Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> { let Inst{27-0} = 0b0001101000001111000000001110; } // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets // the user-space one). def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p), 4, IIC_Br, [(ARMintretflag imm:$offset)]>; } // Indirect branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { // ARMV4T and above def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst", [(brind GPR:$dst)]>, Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> { bits<4> dst; let Inst{31-4} = 0b1110000100101111111111110001; let Inst{3-0} = dst; } def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx", "\t$dst", [/* pattern left blank */]>, Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> { bits<4> dst; let Inst{27-4} = 0b000100101111111111110001; let Inst{3-0} = dst; } } // SP is marked as a use to prevent stack-pointer assignments that appear // immediately before calls from potentially appearing dead. let isCall = 1, // FIXME: Do we really need a non-predicated version? If so, it should // at least be a pseudo instruction expanding to the predicated version // at MC lowering time. Defs = [LR], Uses = [SP] in { def BL : ABXI<0b1011, (outs), (ins arm_bl_target:$func), IIC_Br, "bl\t$func", [(ARMcall tglobaladdr:$func)]>, Requires<[IsARM]>, Sched<[WriteBrL]> { let Inst{31-28} = 0b1110; bits<24> func; let Inst{23-0} = func; let DecoderMethod = "DecodeBranchImmInstruction"; } def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func), IIC_Br, "bl", "\t$func", [(ARMcall_pred tglobaladdr:$func)]>, Requires<[IsARM]>, Sched<[WriteBrL]> { bits<24> func; let Inst{23-0} = func; let DecoderMethod = "DecodeBranchImmInstruction"; } // ARMv5T and above def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm, IIC_Br, "blx\t$func", []>, Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> { bits<4> func; let Inst{31-4} = 0b1110000100101111111111110011; let Inst{3-0} = func; } def BLX_noip : ARMPseudoExpand<(outs), (ins GPRnoip:$func), 4, IIC_Br, [], (BLX GPR:$func)>, Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]>; def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm, IIC_Br, "blx", "\t$func", []>, Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> { bits<4> func; let Inst{27-4} = 0b000100101111111111110011; let Inst{3-0} = func; } def BLX_pred_noip : ARMPseudoExpand<(outs), (ins GPRnoip:$func), 4, IIC_Br, [], (BLX_pred GPR:$func, (ops 14, zero_reg))>, Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]>; // ARMv4T // Note: Restrict $func to the tGPR regclass to prevent it being in LR. def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func), 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>; // ARMv4 def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func), 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>; // mov lr, pc; b if callee is marked noreturn to avoid confusing the // return stack predictor. def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func), 8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>, Requires<[IsARM]>, Sched<[WriteBr]>; // push lr before the call def BL_PUSHLR : ARMPseudoInst<(outs), (ins GPRlr:$ra, arm_bl_target:$func), 4, IIC_Br, []>, Requires<[IsARM]>, Sched<[WriteBr]>; } def : ARMPat<(ARMcall GPR:$func), (BLX $func)>, Requires<[IsARM, HasV5T, NoSLSBLRMitigation]>; def : ARMPat<(ARMcall GPRnoip:$func), (BLX_noip $func)>, Requires<[IsARM, HasV5T, SLSBLRMitigation]>; def : ARMPat<(ARMcall_pred GPR:$func), (BLX_pred $func)>, Requires<[IsARM, HasV5T, NoSLSBLRMitigation]>; def : ARMPat<(ARMcall_pred GPRnoip:$func), (BLX_pred_noip $func)>, Requires<[IsARM, HasV5T, SLSBLRMitigation]>; let isBranch = 1, isTerminator = 1 in { // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target), IIC_Br, "b", "\t$target", [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>, Sched<[WriteBr]> { bits<24> target; let Inst{23-0} = target; let DecoderMethod = "DecodeBranchImmInstruction"; } let isBarrier = 1 in { // B is "predicable" since it's just a Bcc with an 'always' condition. let isPredicable = 1 in // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly // should be sufficient. // FIXME: Is B really a Barrier? That doesn't seem right. def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br, [(br bb:$target)], (Bcc arm_br_target:$target, (ops 14, zero_reg))>, Sched<[WriteBr]>; let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in { def BR_JTr : ARMPseudoInst<(outs), (ins GPR:$target, i32imm:$jt), 0, IIC_Br, [(ARMbrjt GPR:$target, tjumptable:$jt)]>, Sched<[WriteBr]>; def BR_JTm_i12 : ARMPseudoInst<(outs), (ins addrmode_imm12:$target, i32imm:$jt), 0, IIC_Br, [(ARMbrjt (i32 (load addrmode_imm12:$target)), tjumptable:$jt)]>, Sched<[WriteBrTbl]>; def BR_JTm_rs : ARMPseudoInst<(outs), (ins ldst_so_reg:$target, i32imm:$jt), 0, IIC_Br, [(ARMbrjt (i32 (load ldst_so_reg:$target)), tjumptable:$jt)]>, Sched<[WriteBrTbl]>; def BR_JTadd : ARMPseudoInst<(outs), (ins GPR:$target, GPR:$idx, i32imm:$jt), 0, IIC_Br, [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>, Sched<[WriteBrTbl]>; } // isNotDuplicable = 1, isIndirectBranch = 1 } // isBarrier = 1 } // BLX (immediate) def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary, "blx\t$target", []>, Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> { let Inst{31-25} = 0b1111101; bits<25> target; let Inst{23-0} = target{24-1}; let Inst{24} = target{0}; let isCall = 1; } // Branch and Exchange Jazelle def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func", [/* pattern left blank */]>, Sched<[WriteBr]> { bits<4> func; let Inst{23-20} = 0b0010; let Inst{19-8} = 0xfff; let Inst{7-4} = 0b0010; let Inst{3-0} = func; let isBranch = 1; let isIndirectBranch = 1; } // Tail calls. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in { def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst, i32imm:$SPDiff), IIC_Br, []>, Sched<[WriteBr]>; def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst, i32imm:$SPDiff), IIC_Br, []>, Sched<[WriteBr]>; def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst), 4, IIC_Br, [], (Bcc arm_br_target:$dst, (ops 14, zero_reg))>, Requires<[IsARM]>, Sched<[WriteBr]>; def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst), 4, IIC_Br, [], (BX GPR:$dst)>, Sched<[WriteBr]>, Requires<[IsARM, HasV4T]>; } // Secure Monitor Call is a system instruction. def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt", []>, Requires<[IsARM, HasTrustZone]> { bits<4> opt; let Inst{23-4} = 0b01100000000000000111; let Inst{3-0} = opt; } def : MnemonicAlias<"smi", "smc">; // Supervisor Call (Software Interrupt) let isCall = 1, Uses = [SP] in { def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>, Sched<[WriteBr]> { bits<24> svc; let Inst{23-0} = svc; } } // Store Return State class SRSI : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm, NoItinerary, asm, "", []> { bits<5> mode; let Inst{31-28} = 0b1111; let Inst{27-25} = 0b100; let Inst{22} = 1; let Inst{21} = wb; let Inst{20} = 0; let Inst{19-16} = 0b1101; // SP let Inst{15-5} = 0b00000101000; let Inst{4-0} = mode; } def SRSDA : SRSI<0, "srsda\tsp, $mode"> { let Inst{24-23} = 0; } def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> { let Inst{24-23} = 0; } def SRSDB : SRSI<0, "srsdb\tsp, $mode"> { let Inst{24-23} = 0b10; } def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> { let Inst{24-23} = 0b10; } def SRSIA : SRSI<0, "srsia\tsp, $mode"> { let Inst{24-23} = 0b01; } def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> { let Inst{24-23} = 0b01; } def SRSIB : SRSI<0, "srsib\tsp, $mode"> { let Inst{24-23} = 0b11; } def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> { let Inst{24-23} = 0b11; } def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>; def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>; def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>; def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>; def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>; def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>; def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>; def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>; // Return From Exception class RFEI : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm, NoItinerary, asm, "", []> { bits<4> Rn; let Inst{31-28} = 0b1111; let Inst{27-25} = 0b100; let Inst{22} = 0; let Inst{21} = wb; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-0} = 0xa00; } def RFEDA : RFEI<0, "rfeda\t$Rn"> { let Inst{24-23} = 0; } def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> { let Inst{24-23} = 0; } def RFEDB : RFEI<0, "rfedb\t$Rn"> { let Inst{24-23} = 0b10; } def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> { let Inst{24-23} = 0b10; } def RFEIA : RFEI<0, "rfeia\t$Rn"> { let Inst{24-23} = 0b01; } def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> { let Inst{24-23} = 0b01; } def RFEIB : RFEI<0, "rfeib\t$Rn"> { let Inst{24-23} = 0b11; } def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> { let Inst{24-23} = 0b11; } // Hypervisor Call is a system instruction let isCall = 1 in { def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary, "hvc", "\t$imm", []>, Requires<[IsARM, HasVirtualization]> { bits<16> imm; // Even though HVC isn't predicable, it's encoding includes a condition field. // The instruction is undefined if the condition field is 0xf otherwise it is // unpredictable if it isn't condition AL (0xe). let Inst{31-28} = 0b1110; let Unpredictable{31-28} = 0b1111; let Inst{27-24} = 0b0001; let Inst{23-20} = 0b0100; let Inst{19-8} = imm{15-4}; let Inst{7-4} = 0b0111; let Inst{3-0} = imm{3-0}; } } // Return from exception in Hypervisor mode. let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>, Requires<[IsARM, HasVirtualization]> { let Inst{23-0} = 0b011000000000000001101110; } //===----------------------------------------------------------------------===// // Load / Store Instructions. // // Load defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>; defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si, zextloadi8>; defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>; defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si, truncstorei8>; // Special LDR for loads from non-pc-relative constpools. let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0, isReMaterializable = 1, isCodeGenOnly = 1 in def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr), AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr", []> { bits<4> Rt; bits<17> addr; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{19-16} = 0b1111; let Inst{15-12} = Rt; let Inst{11-0} = addr{11-0}; // imm12 } // Loads with zero extension def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr", [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>; // Loads with sign extension def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr", [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>; def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr", [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>; let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in { // Load doubleword def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr), LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>, Requires<[IsARM, HasV5TE]>; } let mayLoad = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in { def LOADDUAL : ARMPseudoInst<(outs GPRPairOp:$Rt), (ins addrmode3:$addr), 64, IIC_iLoad_d_r, []>, Requires<[IsARM, HasV5TE]> { let AM = AddrMode3; } } def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "lda", "\t$Rt, $addr", []>; def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldab", "\t$Rt, $addr", []>; def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldah", "\t$Rt, $addr", []>; // Indexed loads multiclass AI2_ldridx { def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii, opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { bits<17> addr; let Inst{25} = 0; let Inst{23} = addr{12}; let Inst{19-16} = addr{16-13}; let Inst{11-0} = addr{11-0}; let DecoderMethod = "DecodeLDRPreImm"; } def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir, opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { bits<17> addr; let Inst{25} = 1; let Inst{23} = addr{12}; let Inst{19-16} = addr{16-13}; let Inst{11-0} = addr{11-0}; let Inst{4} = 0; let DecoderMethod = "DecodeLDRPreReg"; } def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), (ins addr_offset_none:$addr, am2offset_reg:$offset), IndexModePost, LdFrm, iir, opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 1; let Inst{23} = offset{12}; let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let Inst{4} = 0; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), (ins addr_offset_none:$addr, am2offset_imm:$offset), IndexModePost, LdFrm, iii, opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 0; let Inst{23} = offset{12}; let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } } let mayLoad = 1, hasSideEffects = 0 in { // FIXME: for LDR_PRE_REG etc. the itinerary should be either IIC_iLoad_ru or // IIC_iLoad_siu depending on whether it the offset register is shifted. defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>; defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>; } multiclass AI3_ldridx op, string opc, InstrItinClass itin> { def _PRE : AI3ldstidx { bits<14> addr; let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr{12-9}; // Rn let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{3-0} = addr{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } def _POST : AI3ldstidx { bits<10> offset; bits<4> addr; let Inst{23} = offset{8}; // U bit let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr; let Inst{11-8} = offset{7-4}; // imm7_4/zero let Inst{3-0} = offset{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } } let mayLoad = 1, hasSideEffects = 0 in { defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>; defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>; defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>; let hasExtraDefRegAllocReq = 1 in { def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), (ins addrmode3_pre:$addr), IndexModePre, LdMiscFrm, IIC_iLoad_d_ru, "ldrd", "\t$Rt, $Rt2, $addr!", "$addr.base = $Rn_wb", []> { bits<14> addr; let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr{12-9}; // Rn let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{3-0} = addr{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), (ins addr_offset_none:$addr, am3offset:$offset), IndexModePost, LdMiscFrm, IIC_iLoad_d_ru, "ldrd", "\t$Rt, $Rt2, $addr, $offset", "$addr.base = $Rn_wb", []> { bits<10> offset; bits<4> addr; let Inst{23} = offset{8}; // U bit let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr; let Inst{11-8} = offset{7-4}; // imm7_4/zero let Inst{3-0} = offset{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } } // hasExtraDefRegAllocReq = 1 } // mayLoad = 1, hasSideEffects = 0 // LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT. let mayLoad = 1, hasSideEffects = 0 in { def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), (ins addr_offset_none:$addr, am2offset_reg:$offset), IndexModePost, LdFrm, IIC_iLoad_ru, "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 1; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-5} = offset{11-5}; let Inst{4} = 0; let Inst{3-0} = offset{3-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def LDRT_POST_IMM : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), (ins addr_offset_none:$addr, am2offset_imm:$offset), IndexModePost, LdFrm, IIC_iLoad_ru, "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 0; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), (ins addr_offset_none:$addr, am2offset_reg:$offset), IndexModePost, LdFrm, IIC_iLoad_bh_ru, "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 1; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-5} = offset{11-5}; let Inst{4} = 0; let Inst{3-0} = offset{3-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def LDRBT_POST_IMM : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), (ins addr_offset_none:$addr, am2offset_imm:$offset), IndexModePost, LdFrm, IIC_iLoad_bh_ru, "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 0; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } multiclass AI3ldrT op, string opc> { def i : AI3ldstidxT { bits<9> offset; let Inst{23} = offset{8}; let Inst{22} = 1; let Inst{11-8} = offset{7-4}; let Inst{3-0} = offset{3-0}; } def r : AI3ldstidxT { bits<5> Rm; let Inst{23} = Rm{4}; let Inst{22} = 0; let Inst{11-8} = 0; let Unpredictable{11-8} = 0b1111; let Inst{3-0} = Rm{3-0}; let DecoderMethod = "DecodeLDR"; } def ii : ARMAsmPseudo; } defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">; defm LDRHT : AI3ldrT<0b1011, "ldrht">; defm LDRSHT : AI3ldrT<0b1111, "ldrsht">; } def LDRT_POST : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q), (outs GPR:$Rt)>; def LDRBT_POST : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q), (outs GPR:$Rt)>; // Pseudo instruction ldr Rt, =immediate def LDRConstPool : ARMAsmPseudo<"ldr${q} $Rt, $immediate", (ins const_pool_asm_imm:$immediate, pred:$q), (outs GPR:$Rt)>; // Store // Stores with truncate def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm, IIC_iStore_bh_r, "strh", "\t$Rt, $addr", [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>; // Store doubleword let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in { def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr), StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>, Requires<[IsARM, HasV5TE]> { let Inst{21} = 0; } } let mayStore = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in { def STOREDUAL : ARMPseudoInst<(outs), (ins GPRPairOp:$Rt, addrmode3:$addr), 64, IIC_iStore_d_r, []>, Requires<[IsARM, HasV5TE]> { let AM = AddrMode3; } } // Indexed stores multiclass AI2_stridx { def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre, StFrm, iii, opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { bits<17> addr; let Inst{25} = 0; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{19-16} = addr{16-13}; // Rn let Inst{11-0} = addr{11-0}; // imm12 let DecoderMethod = "DecodeSTRPreImm"; } def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), (ins GPR:$Rt, ldst_so_reg:$addr), IndexModePre, StFrm, iir, opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { bits<17> addr; let Inst{25} = 1; let Inst{23} = addr{12}; // U (add = ('U' == 1)) let Inst{19-16} = addr{16-13}; // Rn let Inst{11-0} = addr{11-0}; let Inst{4} = 0; // Inst{4} = 0 let DecoderMethod = "DecodeSTRPreReg"; } def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), IndexModePost, StFrm, iir, opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 1; let Inst{23} = offset{12}; let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let Inst{4} = 0; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), IndexModePost, StFrm, iii, opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 0; let Inst{23} = offset{12}; let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } } let mayStore = 1, hasSideEffects = 0 in { // FIXME: for STR_PRE_REG etc. the itinerary should be either IIC_iStore_ru or // IIC_iStore_siu depending on whether it the offset register is shifted. defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>; defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>; } def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), (STR_POST_REG GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset)>; def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset)>; def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset)>; def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset)>; // Pseudo-instructions for pattern matching the pre-indexed stores. We can't // put the patterns on the instruction definitions directly as ISel wants // the address base and offset to be separate operands, not a single // complex operand like we represent the instructions themselves. The // pseudos map between the two. let usesCustomInserter = 1, Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in { def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 4, IIC_iStore_ru, [(set GPR:$Rn_wb, (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 4, IIC_iStore_ru, [(set GPR:$Rn_wb, (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 4, IIC_iStore_ru, [(set GPR:$Rn_wb, (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 4, IIC_iStore_ru, [(set GPR:$Rn_wb, (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p), 4, IIC_iStore_ru, [(set GPR:$Rn_wb, (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>; } def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb), (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre, StMiscFrm, IIC_iStore_bh_ru, "strh", "\t$Rt, $addr!", "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> { bits<14> addr; let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr{12-9}; // Rn let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{3-0} = addr{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset), IndexModePost, StMiscFrm, IIC_iStore_bh_ru, "strh", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt, addr_offset_none:$addr, am3offset:$offset))]> { bits<10> offset; bits<4> addr; let Inst{23} = offset{8}; // U bit let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr; let Inst{11-8} = offset{7-4}; // imm7_4/zero let Inst{3-0} = offset{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in { def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb), (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr), IndexModePre, StMiscFrm, IIC_iStore_d_ru, "strd", "\t$Rt, $Rt2, $addr!", "$addr.base = $Rn_wb", []> { bits<14> addr; let Inst{23} = addr{8}; // U bit let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr{12-9}; // Rn let Inst{11-8} = addr{7-4}; // imm7_4/zero let Inst{3-0} = addr{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr, am3offset:$offset), IndexModePost, StMiscFrm, IIC_iStore_d_ru, "strd", "\t$Rt, $Rt2, $addr, $offset", "$addr.base = $Rn_wb", []> { bits<10> offset; bits<4> addr; let Inst{23} = offset{8}; // U bit let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm let Inst{19-16} = addr; let Inst{11-8} = offset{7-4}; // imm7_4/zero let Inst{3-0} = offset{3-0}; // imm3_0/Rm let DecoderMethod = "DecodeAddrMode3Instruction"; } } // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 // STRT, STRBT, and STRHT def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), IndexModePost, StFrm, IIC_iStore_bh_ru, "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 1; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-5} = offset{11-5}; let Inst{4} = 0; let Inst{3-0} = offset{3-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def STRBT_POST_IMM : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), IndexModePost, StFrm, IIC_iStore_bh_ru, "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 0; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def STRBT_POST : ARMAsmPseudo<"strbt${q} $Rt, $addr", (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>; let mayStore = 1, hasSideEffects = 0 in { def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), IndexModePost, StFrm, IIC_iStore_ru, "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 1; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-5} = offset{11-5}; let Inst{4} = 0; let Inst{3-0} = offset{3-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } def STRT_POST_IMM : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), IndexModePost, StFrm, IIC_iStore_ru, "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> { // {12} isAdd // {11-0} imm12/Rm bits<14> offset; bits<4> addr; let Inst{25} = 0; let Inst{23} = offset{12}; let Inst{21} = 1; // overwrite let Inst{19-16} = addr; let Inst{11-0} = offset{11-0}; let DecoderMethod = "DecodeAddrMode2IdxInstruction"; } } def STRT_POST : ARMAsmPseudo<"strt${q} $Rt, $addr", (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>; multiclass AI3strT op, string opc> { def i : AI3ldstidxT { bits<9> offset; let Inst{23} = offset{8}; let Inst{22} = 1; let Inst{11-8} = offset{7-4}; let Inst{3-0} = offset{3-0}; } def r : AI3ldstidxT { bits<5> Rm; let Inst{23} = Rm{4}; let Inst{22} = 0; let Inst{11-8} = 0; let Inst{3-0} = Rm{3-0}; } } defm STRHT : AI3strT<0b1011, "strht">; def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "stl", "\t$Rt, $addr", []>; def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "stlb", "\t$Rt, $addr", []>; def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "stlh", "\t$Rt, $addr", []>; //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // multiclass arm_ldst_mult { // IA is the default, so no need for an explicit suffix on the // mnemonic here. Without it is the canonical spelling. def IA : AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeNone, f, itin, !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> { let Inst{24-23} = 0b01; // Increment After let Inst{22} = P_bit; let Inst{21} = 0; // No writeback let Inst{20} = L_bit; } def IA_UPD : AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeUpd, f, itin_upd, !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { let Inst{24-23} = 0b01; // Increment After let Inst{22} = P_bit; let Inst{21} = 1; // Writeback let Inst{20} = L_bit; let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; } def DA : AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeNone, f, itin, !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> { let Inst{24-23} = 0b00; // Decrement After let Inst{22} = P_bit; let Inst{21} = 0; // No writeback let Inst{20} = L_bit; } def DA_UPD : AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeUpd, f, itin_upd, !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { let Inst{24-23} = 0b00; // Decrement After let Inst{22} = P_bit; let Inst{21} = 1; // Writeback let Inst{20} = L_bit; let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; } def DB : AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeNone, f, itin, !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> { let Inst{24-23} = 0b10; // Decrement Before let Inst{22} = P_bit; let Inst{21} = 0; // No writeback let Inst{20} = L_bit; } def DB_UPD : AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeUpd, f, itin_upd, !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { let Inst{24-23} = 0b10; // Decrement Before let Inst{22} = P_bit; let Inst{21} = 1; // Writeback let Inst{20} = L_bit; let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; } def IB : AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeNone, f, itin, !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> { let Inst{24-23} = 0b11; // Increment Before let Inst{22} = P_bit; let Inst{21} = 0; // No writeback let Inst{20} = L_bit; } def IB_UPD : AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), IndexModeUpd, f, itin_upd, !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { let Inst{24-23} = 0b11; // Increment Before let Inst{22} = P_bit; let Inst{21} = 1; // Writeback let Inst{20} = L_bit; let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; } } let hasSideEffects = 0 in { let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m, IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">; let mayStore = 1, hasExtraSrcRegAllocReq = 1 in defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m, IIC_iStore_mu>, ComplexDeprecationPredicate<"ARMStore">; } // hasSideEffects // FIXME: remove when we have a way to marking a MI with these properties. // FIXME: Should pc be an implicit operand like PICADD, etc? let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 4, IIC_iLoad_mBr, [], (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>, RegConstraint<"$Rn = $wb">; let mayLoad = 1, hasExtraDefRegAllocReq = 1 in defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m, IIC_iLoad_mu>; let mayStore = 1, hasExtraSrcRegAllocReq = 1 in defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m, IIC_iStore_mu>; //===----------------------------------------------------------------------===// // Move Instructions. // let hasSideEffects = 0, isMoveReg = 1 in def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<4> Rm; let Inst{19-16} = 0b0000; let Inst{11-4} = 0b00000000; let Inst{25} = 0; let Inst{3-0} = Rm; let Inst{15-12} = Rd; } // A version for the smaller set of tail call registers. let hasSideEffects = 0 in def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm, IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<4> Rm; let Inst{11-4} = 0b00000000; let Inst{25} = 0; let Inst{3-0} = Rm; let Inst{15-12} = Rd; } def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src), DPSoRegRegFrm, IIC_iMOVsr, "mov", "\t$Rd, $src", [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<12> src; let Inst{15-12} = Rd; let Inst{19-16} = 0b0000; let Inst{11-8} = src{11-8}; let Inst{7} = 0; let Inst{6-5} = src{6-5}; let Inst{4} = 1; let Inst{3-0} = src{3-0}; let Inst{25} = 0; } def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src), DPSoRegImmFrm, IIC_iMOVsr, "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<12> src; let Inst{15-12} = Rd; let Inst{19-16} = 0b0000; let Inst{11-5} = src{11-5}; let Inst{4} = 0; let Inst{3-0} = src{3-0}; let Inst{25} = 0; } let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi, "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<12> imm; let Inst{25} = 1; let Inst{15-12} = Rd; let Inst{19-16} = 0b0000; let Inst{11-0} = imm; } let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm), DPFrm, IIC_iMOVi, "movw", "\t$Rd, $imm", [(set GPR:$Rd, imm0_65535:$imm)]>, Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<16> imm; let Inst{15-12} = Rd; let Inst{11-0} = imm{11-0}; let Inst{19-16} = imm{15-12}; let Inst{20} = 0; let Inst{25} = 1; let DecoderMethod = "DecodeArmMOVTWInstruction"; } def : InstAlias<"mov${p} $Rd, $imm", (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>, Requires<[IsARM, HasV6T2]>; // This gets lowered to a single 4-byte instructions let Size = 4 in def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>, Sched<[WriteALU]>; let Constraints = "$src = $Rd" in { def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd), (ins GPR:$src, imm0_65535_expr:$imm), DPFrm, IIC_iMOVi, "movt", "\t$Rd, $imm", [(set GPRnopc:$Rd, (or (and GPR:$src, 0xffff), lo16AllZero:$imm))]>, UnaryDP, Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> { bits<4> Rd; bits<16> imm; let Inst{15-12} = Rd; let Inst{11-0} = imm{11-0}; let Inst{19-16} = imm{15-12}; let Inst{20} = 0; let Inst{25} = 1; let DecoderMethod = "DecodeArmMOVTWInstruction"; } // This gets lowered to a single 4-byte instructions let Size = 4 in def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>, Sched<[WriteALU]>; } // Constraints def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>, Requires<[IsARM, HasV6T2]>; let Uses = [CPSR] in def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi, [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP, Requires<[IsARM]>, Sched<[WriteALU]>; // These aren't really mov instructions, but we have to define them this way // due to flag operands. let Defs = [CPSR] in { def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP, Sched<[WriteALU]>, Requires<[IsARM]>; def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP, Sched<[WriteALU]>, Requires<[IsARM]>; } //===----------------------------------------------------------------------===// // Extend Instructions. // // Sign extenders def SXTB : AI_ext_rrot<0b01101010, "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; def SXTH : AI_ext_rrot<0b01101011, "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; def SXTAB : AI_exta_rrot<0b01101010, "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; def SXTAH : AI_exta_rrot<0b01101011, "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)), (SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>; def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot), i16)), (SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>; def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">; def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src), (SXTB16 GPR:$Src, 0)>; def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)), (SXTB16 GPR:$Src, rot_imm:$rot)>; def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">; def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS), (SXTAB16 GPR:$LHS, GPR:$RHS, 0)>; def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)), (SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>; // Zero extenders let AddedComplexity = 16 in { def UXTB : AI_ext_rrot<0b01101110, "uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>; def UXTH : AI_ext_rrot<0b01101111, "uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>; def UXTB16 : AI_ext_rrot<0b01101100, "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; // FIXME: This pattern incorrectly assumes the shl operator is a rotate. // The transformation should probably be done as a combiner action // instead so we can include a check for masking back in the upper // eight bits of the source into the lower eight bits of the result. //def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF), // (UXTB16r_rot GPR:$Src, 3)>; def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF), (UXTB16 GPR:$Src, 1)>; def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src), (UXTB16 GPR:$Src, 0)>; def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)), (UXTB16 GPR:$Src, rot_imm:$rot)>; def UXTAB : AI_exta_rrot<0b01101110, "uxtab", BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; def UXTAH : AI_exta_rrot<0b01101111, "uxtah", BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)), (UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>; def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)), (UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>; } // This isn't safe in general, the add is two 16-bit units, not a 32-bit add. def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">; def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS), (UXTAB16 GPR:$LHS, GPR:$RHS, 0)>; def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)), (UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>; def SBFX : I<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width), AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>, Requires<[IsARM, HasV6T2]> { bits<4> Rd; bits<4> Rn; bits<5> lsb; bits<5> width; let Inst{27-21} = 0b0111101; let Inst{6-4} = 0b101; let Inst{20-16} = width; let Inst{15-12} = Rd; let Inst{11-7} = lsb; let Inst{3-0} = Rn; } def UBFX : I<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width), AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>, Requires<[IsARM, HasV6T2]> { bits<4> Rd; bits<4> Rn; bits<5> lsb; bits<5> width; let Inst{27-21} = 0b0111111; let Inst{6-4} = 0b101; let Inst{20-16} = width; let Inst{15-12} = Rd; let Inst{11-7} = lsb; let Inst{3-0} = Rn; } //===----------------------------------------------------------------------===// // Arithmetic Instructions. // let isAdd = 1 in defm ADD : AsI1_bin_irs<0b0100, "add", IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>; defm SUB : AsI1_bin_irs<0b0010, "sub", IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>; // ADD and SUB with 's' bit set. // // Currently, ADDS/SUBS are pseudo opcodes that exist only in the // selection DAG. They are "lowered" to real ADD/SUB opcodes by // AdjustInstrPostInstrSelection where we determine whether or not to // set the "s" bit based on CPSR liveness. // // FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen // support for an optional CPSR definition that corresponds to the DAG // node's second value. We can then eliminate the implicit def of CPSR. let isAdd = 1 in defm ADDS : AsI1_bin_s_irs; defm SUBS : AsI1_bin_s_irs; def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>; def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>; def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift), (SUBSrsi $Rn, so_reg_imm:$shift)>; def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift), (SUBSrsr $Rn, so_reg_reg:$shift)>; let isAdd = 1 in defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>; defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>; defm RSB : AsI1_rbin_irs<0b0011, "rsb", IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>; // FIXME: Eliminate them if we can write def : Pat patterns which defines // CPSR and the implicit def of CPSR is not needed. defm RSBS : AsI1_rbin_s_is; defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>; // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. // The assume-no-carry-in form uses the negation of the input since add/sub // assume opposite meanings of the carry flag (i.e., carry == !borrow). // See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory // details. def : ARMPat<(add GPR:$src, mod_imm_neg:$imm), (SUBri GPR:$src, mod_imm_neg:$imm)>; def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm), (SUBSri GPR:$src, mod_imm_neg:$imm)>; def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm), (SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>, Requires<[IsARM, HasV6T2]>; def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm), (SUBSrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>, Requires<[IsARM, HasV6T2]>; // The with-carry-in form matches bitwise not instead of the negation. // Effectively, the inverse interpretation of the carry flag already accounts // for part of the negation. def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR), (SBCri GPR:$src, mod_imm_not:$imm)>; def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR), (SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>, Requires<[IsARM, HasV6T2]>; // Note: These are implemented in C++ code, because they have to generate // ADD/SUBrs instructions, which use a complex pattern that a xform function // cannot produce. // (mul X, 2^n+1) -> (add (X << n), X) // (mul X, 2^n-1) -> (rsb X, (X << n)) // ARM Arithmetic Instruction // GPR:$dst = GPR:$a op GPR:$b class AAI op27_20, bits<8> op11_4, string opc, list pattern = [], dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm), string asm = "\t$Rd, $Rn, $Rm"> : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>, Sched<[WriteALU, ReadALU, ReadALU]> { bits<4> Rn; bits<4> Rd; bits<4> Rm; let Inst{27-20} = op27_20; let Inst{11-4} = op11_4; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{3-0} = Rm; let Unpredictable{11-8} = 0b1111; } // Wrappers around the AAI class class AAIRevOpr op27_20, bits<8> op11_4, string opc, list pattern = []> : AAI; class AAIIntrinsic op27_20, bits<8> op11_4, string opc, Intrinsic intrinsic> : AAI; // Saturating add/subtract let hasSideEffects = 1 in { def QADD8 : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>; def QADD16 : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>; def QSUB16 : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>; def QSUB8 : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>; def QDADD : AAIRevOpr<0b00010100, 0b00000101, "qdadd", [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>; def QDSUB : AAIRevOpr<0b00010110, 0b00000101, "qdsub", [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>; def QSUB : AAIRevOpr<0b00010010, 0b00000101, "qsub", [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>; let DecoderMethod = "DecodeQADDInstruction" in def QADD : AAIRevOpr<0b00010000, 0b00000101, "qadd", [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>; } def : ARMV5TEPat<(saddsat GPR:$a, GPR:$b), (QADD GPR:$a, GPR:$b)>; def : ARMV5TEPat<(ssubsat GPR:$a, GPR:$b), (QSUB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(saddsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)), (QDADD rGPR:$Rm, rGPR:$Rn)>; def : ARMV5TEPat<(ssubsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)), (QDSUB rGPR:$Rm, rGPR:$Rn)>; def : ARMV6Pat<(ARMqadd8b rGPR:$Rm, rGPR:$Rn), (QADD8 rGPR:$Rm, rGPR:$Rn)>; def : ARMV6Pat<(ARMqsub8b rGPR:$Rm, rGPR:$Rn), (QSUB8 rGPR:$Rm, rGPR:$Rn)>; def : ARMV6Pat<(ARMqadd16b rGPR:$Rm, rGPR:$Rn), (QADD16 rGPR:$Rm, rGPR:$Rn)>; def : ARMV6Pat<(ARMqsub16b rGPR:$Rm, rGPR:$Rn), (QSUB16 rGPR:$Rm, rGPR:$Rn)>; def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>; def UQADD8 : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>; def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>; def UQSUB8 : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>; def QASX : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>; def QSAX : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>; def UQASX : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>; def UQSAX : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>; def : ARMV6Pat<(ARMuqadd8b rGPR:$Rm, rGPR:$Rn), (UQADD8 rGPR:$Rm, rGPR:$Rn)>; def : ARMV6Pat<(ARMuqsub8b rGPR:$Rm, rGPR:$Rn), (UQSUB8 rGPR:$Rm, rGPR:$Rn)>; def : ARMV6Pat<(ARMuqadd16b rGPR:$Rm, rGPR:$Rn), (UQADD16 rGPR:$Rm, rGPR:$Rn)>; def : ARMV6Pat<(ARMuqsub16b rGPR:$Rm, rGPR:$Rn), (UQSUB16 rGPR:$Rm, rGPR:$Rn)>; // Signed/Unsigned add/subtract def SASX : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>; def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>; def SADD8 : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>; def SSAX : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>; def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>; def SSUB8 : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>; def UASX : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>; def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>; def UADD8 : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>; def USAX : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>; def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>; def USUB8 : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>; // Signed/Unsigned halving add/subtract def SHASX : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>; def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>; def SHADD8 : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>; def SHSAX : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>; def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>; def SHSUB8 : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>; def UHASX : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>; def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>; def UHADD8 : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>; def UHSAX : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>; def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>; def UHSUB8 : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>; // Unsigned Sum of Absolute Differences [and Accumulate]. def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), MulFrm /* for convenience */, NoItinerary, "usad8", "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{27-20} = 0b01111000; let Inst{15-12} = 0b1111; let Inst{7-4} = 0b0001; let Inst{19-16} = Rd; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), MulFrm /* for convenience */, NoItinerary, "usada8", "\t$Rd, $Rn, $Rm, $Ra", [(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>, Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{ bits<4> Rd; bits<4> Rn; bits<4> Rm; bits<4> Ra; let Inst{27-20} = 0b01111000; let Inst{7-4} = 0b0001; let Inst{19-16} = Rd; let Inst{15-12} = Ra; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } // Signed/Unsigned saturate def SSAT : AI<(outs GPRnopc:$Rd), (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>, Requires<[IsARM,HasV6]>{ bits<4> Rd; bits<5> sat_imm; bits<4> Rn; bits<8> sh; let Inst{27-21} = 0b0110101; let Inst{5-4} = 0b01; let Inst{20-16} = sat_imm; let Inst{15-12} = Rd; let Inst{11-7} = sh{4-0}; let Inst{6} = sh{5}; let Inst{3-0} = Rn; } def SSAT16 : AI<(outs GPRnopc:$Rd), (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm, NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>, Requires<[IsARM,HasV6]>{ bits<4> Rd; bits<4> sat_imm; bits<4> Rn; let Inst{27-20} = 0b01101010; let Inst{11-4} = 0b11110011; let Inst{15-12} = Rd; let Inst{19-16} = sat_imm; let Inst{3-0} = Rn; } def USAT : AI<(outs GPRnopc:$Rd), (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>, Requires<[IsARM,HasV6]> { bits<4> Rd; bits<5> sat_imm; bits<4> Rn; bits<8> sh; let Inst{27-21} = 0b0110111; let Inst{5-4} = 0b01; let Inst{15-12} = Rd; let Inst{11-7} = sh{4-0}; let Inst{6} = sh{5}; let Inst{20-16} = sat_imm; let Inst{3-0} = Rn; } def USAT16 : AI<(outs GPRnopc:$Rd), (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm, NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>, Requires<[IsARM,HasV6]>{ bits<4> Rd; bits<4> sat_imm; bits<4> Rn; let Inst{27-20} = 0b01101110; let Inst{11-4} = 0b11110011; let Inst{15-12} = Rd; let Inst{19-16} = sat_imm; let Inst{3-0} = Rn; } def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos), (SSAT imm1_32:$pos, GPRnopc:$a, 0)>; def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos), (USAT imm0_31:$pos, GPRnopc:$a, 0)>; def : ARMPat<(ARMssat GPRnopc:$Rn, imm0_31:$imm), (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>; def : ARMPat<(ARMusat GPRnopc:$Rn, imm0_31:$imm), (USAT imm0_31:$imm, GPRnopc:$Rn, 0)>; def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos), (SSAT16 imm1_16:$pos, GPRnopc:$a)>; def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos), (USAT16 imm0_15:$pos, GPRnopc:$a)>; def : ARMV6Pat<(int_arm_ssat (shl GPRnopc:$a, imm0_31:$shft), imm1_32:$pos), (SSAT imm1_32:$pos, GPRnopc:$a, imm0_31:$shft)>; def : ARMV6Pat<(int_arm_ssat (sra GPRnopc:$a, asr_imm:$shft), imm1_32:$pos), (SSAT imm1_32:$pos, GPRnopc:$a, asr_imm:$shft)>; def : ARMV6Pat<(int_arm_usat (shl GPRnopc:$a, imm0_31:$shft), imm0_31:$pos), (USAT imm0_31:$pos, GPRnopc:$a, imm0_31:$shft)>; def : ARMV6Pat<(int_arm_usat (sra GPRnopc:$a, asr_imm:$shft), imm0_31:$pos), (USAT imm0_31:$pos, GPRnopc:$a, asr_imm:$shft)>; def : ARMPat<(ARMssat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos), (SSAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>; def : ARMPat<(ARMssat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos), (SSAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>; def : ARMPat<(ARMusat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos), (USAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>; def : ARMPat<(ARMusat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos), (USAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>; //===----------------------------------------------------------------------===// // Bitwise Instructions. // defm AND : AsI1_bin_irs<0b0000, "and", IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>; defm ORR : AsI1_bin_irs<0b1100, "orr", IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>; defm EOR : AsI1_bin_irs<0b0001, "eor", IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>; defm BIC : AsI1_bin_irs<0b1110, "bic", IIC_iBITi, IIC_iBITr, IIC_iBITsr, BinOpFrag<(and node:$LHS, (not node:$RHS))>>; // FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just // like in the actual instruction encoding. The complexity of mapping the mask // to the lsb/msb pair should be handled by ISel, not encapsulated in the // instruction description. def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm), AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, "bfc", "\t$Rd, $imm", "$src = $Rd", [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>, Requires<[IsARM, HasV6T2]> { bits<4> Rd; bits<10> imm; let Inst{27-21} = 0b0111110; let Inst{6-0} = 0b0011111; let Inst{15-12} = Rd; let Inst{11-7} = imm{4-0}; // lsb let Inst{20-16} = imm{9-5}; // msb } // A8.6.18 BFI - Bitfield insert (Encoding A1) def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm), AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd", [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm))]>, Requires<[IsARM, HasV6T2]> { bits<4> Rd; bits<4> Rn; bits<10> imm; let Inst{27-21} = 0b0111110; let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15 let Inst{15-12} = Rd; let Inst{11-7} = imm{4-0}; // lsb let Inst{20-16} = imm{9-5}; // width let Inst{3-0} = Rn; } def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr, "mvn", "\t$Rd, $Rm", [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<4> Rm; let Inst{25} = 0; let Inst{19-16} = 0b0000; let Inst{11-4} = 0b00000000; let Inst{15-12} = Rd; let Inst{3-0} = Rm; let Unpredictable{19-16} = 0b1111; } def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift), DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = 0b0000; let Inst{15-12} = Rd; let Inst{11-5} = shift{11-5}; let Inst{4} = 0; let Inst{3-0} = shift{3-0}; let Unpredictable{19-16} = 0b1111; } def MVNsr : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift), DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", [(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<12> shift; let Inst{25} = 0; let Inst{19-16} = 0b0000; let Inst{15-12} = Rd; let Inst{11-8} = shift{11-8}; let Inst{7} = 0; let Inst{6-5} = shift{6-5}; let Inst{4} = 1; let Inst{3-0} = shift{3-0}; let Unpredictable{19-16} = 0b1111; } let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMVNi, "mvn", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> { bits<4> Rd; bits<12> imm; let Inst{25} = 1; let Inst{19-16} = 0b0000; let Inst{15-12} = Rd; let Inst{11-0} = imm; } let AddedComplexity = 1 in def : ARMPat<(and GPR:$src, mod_imm_not:$imm), (BICri GPR:$src, mod_imm_not:$imm)>; //===----------------------------------------------------------------------===// // Multiply Instructions. // class AsMul1I32 opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AsMul1I { bits<4> Rd; bits<4> Rm; bits<4> Rn; let Inst{19-16} = Rd; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } class AsMul1I64 opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AsMul1I { bits<4> RdLo; bits<4> RdHi; bits<4> Rm; bits<4> Rn; let Inst{19-16} = RdHi; let Inst{15-12} = RdLo; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } class AsMla1I64 opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : AsMul1I { bits<4> RdLo; bits<4> RdHi; bits<4> Rm; bits<4> Rn; let Inst{19-16} = RdHi; let Inst{15-12} = RdLo; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } // FIXME: The v5 pseudos are only necessary for the additional Constraint // property. Remove them when it's possible to add those properties // on an individual MachineInstr, not just an instruction description. let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in { def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>, Requires<[IsARM, HasV6]>, Sched<[WriteMUL32, ReadMUL, ReadMUL]> { let Inst{15-12} = 0b0000; let Unpredictable{15-12} = 0b1111; } let Constraints = "@earlyclobber $Rd" in def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 4, IIC_iMUL32, [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))], (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>, Requires<[IsARM, NoV6, UseMulOps]>, Sched<[WriteMUL32, ReadMUL, ReadMUL]>; } def MLA : AsMul1I32<0b0000001, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra), IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra", [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>, Requires<[IsARM, HasV6, UseMulOps]>, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> { bits<4> Ra; let Inst{15-12} = Ra; } let Constraints = "@earlyclobber $Rd" in def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s), 4, IIC_iMAC32, [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))], (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>, Requires<[IsARM, NoV6]>, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>; def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra", [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>, Requires<[IsARM, HasV6T2, UseMulOps]>, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> { bits<4> Rd; bits<4> Rm; bits<4> Rn; bits<4> Ra; let Inst{19-16} = Rd; let Inst{15-12} = Ra; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } // Extra precision multiplies with low / high results let hasSideEffects = 0 in { let isCommutable = 1 in { def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, "smull", "\t$RdLo, $RdHi, $Rn, $Rm", [(set GPR:$RdLo, GPR:$RdHi, (smullohi GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV6]>, Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>; def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, "umull", "\t$RdLo, $RdHi, $Rn, $Rm", [(set GPR:$RdLo, GPR:$RdHi, (umullohi GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV6]>, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>; let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in { def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 4, IIC_iMUL64, [(set GPR:$RdLo, GPR:$RdHi, (smullohi GPR:$Rn, GPR:$Rm))], (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, Requires<[IsARM, NoV6]>, Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>; def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 4, IIC_iMUL64, [(set GPR:$RdLo, GPR:$RdHi, (umullohi GPR:$Rn, GPR:$Rm))], (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, Requires<[IsARM, NoV6]>, Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>; } } // Multiply + accumulate def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64, "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>; def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64, "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>; def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64, "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> { bits<4> RdLo; bits<4> RdHi; bits<4> Rm; bits<4> Rn; let Inst{19-16} = RdHi; let Inst{15-12} = RdLo; let Inst{11-8} = Rm; let Inst{3-0} = Rn; } let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in { def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s), 4, IIC_iMAC64, [], (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s)>, Requires<[IsARM, NoV6]>, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>; def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s), 4, IIC_iMAC64, [], (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s)>, Requires<[IsARM, NoV6]>, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>; } } // hasSideEffects // Most significant word multiply def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV6]>, Sched<[WriteMUL32, ReadMUL, ReadMUL]> { let Inst{15-12} = 0b1111; } def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>, Requires<[IsARM, HasV6]>, Sched<[WriteMUL32, ReadMUL, ReadMUL]> { let Inst{15-12} = 0b1111; } def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra", [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>, Requires<[IsARM, HasV6, UseMulOps]>, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>; def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra", [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>, Requires<[IsARM, HasV6]>, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>; def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>, Requires<[IsARM, HasV6, UseMulOps]>, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>; def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra", [(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>, Requires<[IsARM, HasV6]>, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>; multiclass AI_smul { def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV5TE]>, Sched<[WriteMUL16, ReadMUL, ReadMUL]>; def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV5TE]>, Sched<[WriteMUL16, ReadMUL, ReadMUL]>; def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV5TE]>, Sched<[WriteMUL16, ReadMUL, ReadMUL]>; def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV5TE]>, Sched<[WriteMUL16, ReadMUL, ReadMUL]>; def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV5TE]>, Sched<[WriteMUL16, ReadMUL, ReadMUL]>; def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasV5TE]>, Sched<[WriteMUL16, ReadMUL, ReadMUL]>; } multiclass AI_smla { let DecoderMethod = "DecodeSMLAInstruction" in { def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra", [(set GPRnopc:$Rd, (add GPR:$Ra, (bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>, Requires<[IsARM, HasV5TE, UseMulOps]>, Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>; def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra", [(set GPRnopc:$Rd, (add GPR:$Ra, (bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>, Requires<[IsARM, HasV5TE, UseMulOps]>, Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>; def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra", [(set GPRnopc:$Rd, (add GPR:$Ra, (tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>, Requires<[IsARM, HasV5TE, UseMulOps]>, Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>; def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra", [(set GPRnopc:$Rd, (add GPR:$Ra, (tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>, Requires<[IsARM, HasV5TE, UseMulOps]>, Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>; def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra", [(set GPRnopc:$Rd, (add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>, Requires<[IsARM, HasV5TE, UseMulOps]>, Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>; def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra", [(set GPRnopc:$Rd, (add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>, Requires<[IsARM, HasV5TE, UseMulOps]>, Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>; } } defm SMUL : AI_smul<"smul">; defm SMLA : AI_smla<"smla">; // Halfword multiply accumulate long: SMLAL. class SMLAL opc1, string asm> : AMulxyI64<0b0001010, opc1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi), IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>, RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV5TE]>, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>; def SMLALBB : SMLAL<0b00, "smlalbb">; def SMLALBT : SMLAL<0b10, "smlalbt">; def SMLALTB : SMLAL<0b01, "smlaltb">; def SMLALTT : SMLAL<0b11, "smlaltt">; def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), (SMLALBB $Rn, $Rm, $RLo, $RHi)>; def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), (SMLALBT $Rn, $Rm, $RLo, $RHi)>; def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), (SMLALTB $Rn, $Rm, $RLo, $RHi)>; def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), (SMLALTT $Rn, $Rm, $RLo, $RHi)>; // Helper class for AI_smld. class AMulDualIbase : AI, Requires<[IsARM, HasV6]> { bits<4> Rn; bits<4> Rm; let Inst{27-23} = 0b01110; let Inst{22} = long; let Inst{21-20} = 0b00; let Inst{11-8} = Rm; let Inst{7} = 0; let Inst{6} = sub; let Inst{5} = swap; let Inst{4} = 1; let Inst{3-0} = Rn; } class AMulDualI : AMulDualIbase { bits<4> Rd; let Inst{15-12} = 0b1111; let Inst{19-16} = Rd; } class AMulDualIa : AMulDualIbase { bits<4> Ra; bits<4> Rd; let Inst{19-16} = Rd; let Inst{15-12} = Ra; } class AMulDualI64 : AMulDualIbase { bits<4> RdLo; bits<4> RdHi; let Inst{19-16} = RdHi; let Inst{15-12} = RdLo; } multiclass AI_smld { def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>; def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">, Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>; def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi), NoItinerary, !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">, RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>; def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi), NoItinerary, !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">, RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>; } defm SMLA : AI_smld<0, "smla">; defm SMLS : AI_smld<1, "smls">; def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), (SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>; def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), (SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>; def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), (SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>; def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), (SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>; def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi), (SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>; def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi), (SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>; def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi), (SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>; def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi), (SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>; multiclass AI_sdml { def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">, Sched<[WriteMUL32, ReadMUL, ReadMUL]>; def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">, Sched<[WriteMUL32, ReadMUL, ReadMUL]>; } defm SMUA : AI_sdml<0, "smua">; defm SMUS : AI_sdml<1, "smus">; def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm), (SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>; def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm), (SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>; def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm), (SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>; def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm), (SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>; //===----------------------------------------------------------------------===// // Division Instructions (ARMv7-A with virtualization extension) // def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV, "sdiv", "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasDivideInARM]>, Sched<[WriteDIV]>; def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV, "udiv", "\t$Rd, $Rn, $Rm", [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>, Requires<[IsARM, HasDivideInARM]>, Sched<[WriteDIV]>; //===----------------------------------------------------------------------===// // Misc. Arithmetic Instructions. // def CLZ : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm), IIC_iUNAr, "clz", "\t$Rd, $Rm", [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>, Sched<[WriteALU]>; def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), IIC_iUNAr, "rbit", "\t$Rd, $Rm", [(set GPR:$Rd, (bitreverse GPR:$Rm))]>, Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]>; def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), IIC_iUNAr, "rev", "\t$Rd, $Rm", [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>, Sched<[WriteALU]>; let AddedComplexity = 5 in def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), IIC_iUNAr, "rev16", "\t$Rd, $Rm", [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>, Requires<[IsARM, HasV6]>, Sched<[WriteALU]>; def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)), (REV16 (LDRH addrmode3:$addr))>; def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr), (STRH (REV16 GPR:$Rn), addrmode3:$addr)>; def : ARMV6Pat<(srl (bswap top16Zero:$Rn), (i32 16)), (REV16 GPR:$Rn)>; let AddedComplexity = 5 in def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), IIC_iUNAr, "revsh", "\t$Rd, $Rm", [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>, Requires<[IsARM, HasV6]>, Sched<[WriteALU]>; def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)), (and (srl GPR:$Rm, (i32 8)), 0xFF)), (REVSH GPR:$Rm)>; def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh), IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh", [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF), (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh), 0xFFFF0000)))]>, Requires<[IsARM, HasV6]>, Sched<[WriteALUsi, ReadALU]>; // Alternate cases for PKHBT where identities eliminate some nodes. def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)), (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>; def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)), (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>; // Note: Shifts of 1-15 bits will be transformed to srl instead of sra and // will match the pattern below. def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh), IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh", [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000), (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh), 0xFFFF)))]>, Requires<[IsARM, HasV6]>, Sched<[WriteALUsi, ReadALU]>; // Alternate cases for PKHTB where identities eliminate some nodes. Note that // a shift amount of 0 is *not legal* here, it is PKHBT instead. // We also can not replace a srl (17..31) by an arithmetic shift we would use in // pkhtb src1, src2, asr (17..31). def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), (srl GPRnopc:$src2, imm16:$sh)), (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>; def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), (sra GPRnopc:$src2, imm16_31:$sh)), (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>; def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)), (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>; //===----------------------------------------------------------------------===// // CRC Instructions // // Polynomials: // + CRC32{B,H,W} 0x04C11DB7 // + CRC32C{B,H,W} 0x1EDC6F41 // class AI_crc32 sz, string suffix, SDPatternOperator builtin> : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary, !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm", [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>, Requires<[IsARM, HasV8, HasCRC]> { bits<4> Rd; bits<4> Rn; bits<4> Rm; let Inst{31-28} = 0b1110; let Inst{27-23} = 0b00010; let Inst{22-21} = sz; let Inst{20} = 0; let Inst{19-16} = Rn; let Inst{15-12} = Rd; let Inst{11-10} = 0b00; let Inst{9} = C; let Inst{8} = 0; let Inst{7-4} = 0b0100; let Inst{3-0} = Rm; let Unpredictable{11-8} = 0b1101; } def CRC32B : AI_crc32<0, 0b00, "b", int_arm_crc32b>; def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>; def CRC32H : AI_crc32<0, 0b01, "h", int_arm_crc32h>; def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>; def CRC32W : AI_crc32<0, 0b10, "w", int_arm_crc32w>; def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>; //===----------------------------------------------------------------------===// // ARMv8.1a Privilege Access Never extension // // SETPAN #imm1 def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan", "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> { bits<1> imm; let Inst{31-28} = 0b1111; let Inst{27-20} = 0b00010001; let Inst{19-16} = 0b0000; let Inst{15-10} = 0b000000; let Inst{9} = imm; let Inst{8} = 0b0; let Inst{7-4} = 0b0000; let Inst{3-0} = 0b0000; let Unpredictable{19-16} = 0b1111; let Unpredictable{15-10} = 0b111111; let Unpredictable{8} = 0b1; let Unpredictable{3-0} = 0b1111; } //===----------------------------------------------------------------------===// // Comparison Instructions... // defm CMP : AI1_cmp_irs<0b1010, "cmp", IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>; // ARMcmpZ can re-use the above instruction definitions. def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm), (CMPri GPR:$src, mod_imm:$imm)>; def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs), (CMPrr GPR:$src, GPR:$rhs)>; def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs), (CMPrsi GPR:$src, so_reg_imm:$rhs)>; def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs), (CMPrsr GPR:$src, so_reg_reg:$rhs)>; // Following patterns aimed to prevent usage of CMPrsi and CMPrsr for a comparison // with zero. Usage of CMPri in these cases helps to replace cmp with S-versions of // shift instructions during peephole optimizations pass. def : ARMPat<(ARMcmpZ so_reg_imm:$rhs, 0), (CMPri (MOVsi so_reg_imm:$rhs), 0)>; def : ARMPat<(ARMcmpZ so_reg_reg:$rhs, 0), (CMPri (MOVsr so_reg_reg:$rhs), 0)>; // CMN register-integer let isCompare = 1, Defs = [CPSR] in { def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi, "cmn", "\t$Rn, $imm", [(ARMcmn GPR:$Rn, mod_imm:$imm)]>, Sched<[WriteCMP, ReadALU]> { bits<4> Rn; bits<12> imm; let Inst{25} = 1; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-0} = imm; let Unpredictable{15-12} = 0b1111; } // CMN register-register/shift def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr, "cmn", "\t$Rn, $Rm", [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> { bits<4> Rn; bits<4> Rm; let isCommutable = 1; let Inst{25} = 0; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-4} = 0b00000000; let Inst{3-0} = Rm; let Unpredictable{15-12} = 0b1111; } def CMNzrsi : AI1<0b1011, (outs), (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr, "cmn", "\t$Rn, $shift", [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> GPR:$Rn, so_reg_imm:$shift)]>, Sched<[WriteCMPsi, ReadALU]> { bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-5} = shift{11-5}; let Inst{4} = 0; let Inst{3-0} = shift{3-0}; let Unpredictable{15-12} = 0b1111; } def CMNzrsr : AI1<0b1011, (outs), (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr, "cmn", "\t$Rn, $shift", [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> GPRnopc:$Rn, so_reg_reg:$shift)]>, Sched<[WriteCMPsr, ReadALU]> { bits<4> Rn; bits<12> shift; let Inst{25} = 0; let Inst{20} = 1; let Inst{19-16} = Rn; let Inst{15-12} = 0b0000; let Inst{11-8} = shift{11-8}; let Inst{7} = 0; let Inst{6-5} = shift{6-5}; let Inst{4} = 1; let Inst{3-0} = shift{3-0}; let Unpredictable{15-12} = 0b1111; } } def : ARMPat<(ARMcmp GPR:$src, mod_imm_neg:$imm), (CMNri GPR:$src, mod_imm_neg:$imm)>; def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm), (CMNri GPR:$src, mod_imm_neg:$imm)>; // Note that TST/TEQ don't set all the same flags that CMP does! defm TST : AI1_cmp_irs<0b1000, "tst", IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1, "DecodeTSTInstruction">; defm TEQ : AI1_cmp_irs<0b1001, "teq", IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>; // Pseudo i64 compares for some floating point compares. let usesCustomInserter = 1, isBranch = 1, isTerminator = 1, Defs = [CPSR] in { def BCCi64 : PseudoInst<(outs), (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst), IIC_Br, [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>, Sched<[WriteBr]>; def BCCZi64 : PseudoInst<(outs), (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br, [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>, Sched<[WriteBr]>; } // usesCustomInserter // Conditional moves let hasSideEffects = 0 in { let isCommutable = 1, isSelect = 1 in def MOVCCr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, GPR:$Rm, cmovpred:$p), 4, IIC_iCMOVr, [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm, cmovpred:$p))]>, RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p), 4, IIC_iCMOVsr, [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_imm:$shift, cmovpred:$p))]>, RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p), 4, IIC_iCMOVsr, [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift, cmovpred:$p))]>, RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; let isMoveImm = 1 in def MOVCCi16 : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p), 4, IIC_iMOVi, [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm, cmovpred:$p))]>, RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]>; let isMoveImm = 1 in def MOVCCi : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, mod_imm:$imm, cmovpred:$p), 4, IIC_iCMOVi, [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm, cmovpred:$p))]>, RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; // Two instruction predicate mov immediate. let isMoveImm = 1 in def MOVCCi32imm : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, i32imm:$src, cmovpred:$p), 8, IIC_iCMOVix2, [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src, cmovpred:$p))]>, RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>; let isMoveImm = 1 in def MVNCCi : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, mod_imm:$imm, cmovpred:$p), 4, IIC_iCMOVi, [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm, cmovpred:$p))]>, RegConstraint<"$false = $Rd">, Sched<[WriteALU]>; } // hasSideEffects //===----------------------------------------------------------------------===// // Atomic operations intrinsics // def MemBarrierOptOperand : AsmOperandClass { let Name = "MemBarrierOpt"; let ParserMethod = "parseMemBarrierOptOperand"; } def memb_opt : Operand { let PrintMethod = "printMemBOption"; let ParserMatchClass = MemBarrierOptOperand; let DecoderMethod = "DecodeMemBarrierOption"; } def InstSyncBarrierOptOperand : AsmOperandClass { let Name = "InstSyncBarrierOpt"; let ParserMethod = "parseInstSyncBarrierOptOperand"; } def instsyncb_opt : Operand { let PrintMethod = "printInstSyncBOption"; let ParserMatchClass = InstSyncBarrierOptOperand; let DecoderMethod = "DecodeInstSyncBarrierOption"; } def TraceSyncBarrierOptOperand : AsmOperandClass { let Name = "TraceSyncBarrierOpt"; let ParserMethod = "parseTraceSyncBarrierOptOperand"; } def tsb_opt : Operand { let PrintMethod = "printTraceSyncBOption"; let ParserMatchClass = TraceSyncBarrierOptOperand; } // Memory barriers protect the atomic sequences let hasSideEffects = 1 in { def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>, Requires<[IsARM, HasDB]> { bits<4> opt; let Inst{31-4} = 0xf57ff05; let Inst{3-0} = opt; } def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>, Requires<[IsARM, HasDB]> { bits<4> opt; let Inst{31-4} = 0xf57ff04; let Inst{3-0} = opt; } // ISB has only full system option def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary, "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>, Requires<[IsARM, HasDB]> { bits<4> opt; let Inst{31-4} = 0xf57ff06; let Inst{3-0} = opt; } let hasNoSchedulingInfo = 1 in def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary, "tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> { let Inst{31-0} = 0xe320f012; let DecoderMethod = "DecodeTSBInstruction"; } } // Armv8.5-A speculation barrier def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>, Requires<[IsARM, HasSB]>, Sched<[]> { let Inst{31-0} = 0xf57ff070; let Unpredictable = 0x000fff0f; let hasSideEffects = 1; } let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in { // Pseudo instruction that combines movs + predicated rsbmi // to implement integer ABS def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>; } let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in { def COPY_STRUCT_BYVAL_I32 : PseudoInst< (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment), NoItinerary, [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>; } let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in { // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs... // Copies N registers worth of memory from address %src to address %dst // and returns the incremented addresses. N scratch register will // be attached for the copy to use. def MEMCPY : PseudoInst< (outs GPR:$newdst, GPR:$newsrc), (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops), NoItinerary, [(set GPR:$newdst, GPR:$newsrc, (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>; } def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]>; def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]>; def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]>; def strex_1 : PatFrag<(ops node:$val, node:$ptr), (int_arm_strex node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]>; def strex_2 : PatFrag<(ops node:$val, node:$ptr), (int_arm_strex node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]>; def strex_4 : PatFrag<(ops node:$val, node:$ptr), (int_arm_strex node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]>; def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]>; def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]>; def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]>; def stlex_1 : PatFrag<(ops node:$val, node:$ptr), (int_arm_stlex node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]>; def stlex_2 : PatFrag<(ops node:$val, node:$ptr), (int_arm_stlex node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]>; def stlex_4 : PatFrag<(ops node:$val, node:$ptr), (int_arm_stlex node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]>; let mayLoad = 1 in { def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldrexb", "\t$Rt, $addr", [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>; def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldrexh", "\t$Rt, $addr", [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>; def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldrex", "\t$Rt, $addr", [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>; let hasExtraDefRegAllocReq = 1 in def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr), NoItinerary, "ldrexd", "\t$Rt, $addr", []> { let DecoderMethod = "DecodeDoubleRegLoad"; } def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldaexb", "\t$Rt, $addr", [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>; def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldaexh", "\t$Rt, $addr", [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>; def LDAEX : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), NoItinerary, "ldaex", "\t$Rt, $addr", [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>; let hasExtraDefRegAllocReq = 1 in def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr), NoItinerary, "ldaexd", "\t$Rt, $addr", []> { let DecoderMethod = "DecodeDoubleRegLoad"; } } let mayStore = 1, Constraints = "@earlyclobber $Rd" in { def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "strexb", "\t$Rd, $Rt, $addr", [(set GPR:$Rd, (strex_1 GPR:$Rt, addr_offset_none:$addr))]>; def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "strexh", "\t$Rd, $Rt, $addr", [(set GPR:$Rd, (strex_2 GPR:$Rt, addr_offset_none:$addr))]>; def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "strex", "\t$Rd, $Rt, $addr", [(set GPR:$Rd, (strex_4 GPR:$Rt, addr_offset_none:$addr))]>; let hasExtraSrcRegAllocReq = 1 in def STREXD : AIstrex<0b01, (outs GPR:$Rd), (ins GPRPairOp:$Rt, addr_offset_none:$addr), NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> { let DecoderMethod = "DecodeDoubleRegStore"; } def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "stlexb", "\t$Rd, $Rt, $addr", [(set GPR:$Rd, (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>; def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "stlexh", "\t$Rd, $Rt, $addr", [(set GPR:$Rd, (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>; def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), NoItinerary, "stlex", "\t$Rd, $Rt, $addr", [(set GPR:$Rd, (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>; let hasExtraSrcRegAllocReq = 1 in def STLEXD : AIstlex<0b01, (outs GPR:$Rd), (ins GPRPairOp:$Rt, addr_offset_none:$addr), NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> { let DecoderMethod = "DecodeDoubleRegStore"; } } def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex", [(int_arm_clrex)]>, Requires<[IsARM, HasV6K]> { let Inst{31-0} = 0b11110101011111111111000000011111; } def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr), (STREXB GPR:$Rt, addr_offset_none:$addr)>; def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr), (STREXH GPR:$Rt, addr_offset_none:$addr)>; def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr), (STLEXB GPR:$Rt, addr_offset_none:$addr)>; def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr), (STLEXH GPR:$Rt, addr_offset_none:$addr)>; class acquiring_load : PatFrag<(ops node:$ptr), (base node:$ptr), [{ AtomicOrdering Ordering = cast(N)->getSuccessOrdering(); return isAcquireOrStronger(Ordering); }]>; def atomic_load_acquire_8 : acquiring_load; def atomic_load_acquire_16 : acquiring_load; def atomic_load_acquire_32 : acquiring_load; class releasing_store : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{ AtomicOrdering Ordering = cast(N)->getSuccessOrdering(); return isReleaseOrStronger(Ordering); }]>; def atomic_store_release_8 : releasing_store; def atomic_store_release_16 : releasing_store; def atomic_store_release_32 : releasing_store; let AddedComplexity = 8 in { def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr), (LDAB addr_offset_none:$addr)>; def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>; def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA addr_offset_none:$addr)>; def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val), (STLB GPR:$val, addr_offset_none:$addr)>; def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>; def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL GPR:$val, addr_offset_none:$addr)>; } // SWP/SWPB are deprecated in V6/V7 and optional in v7VE. // FIXME Use InstAlias to generate LDREX/STREX pairs instead. let mayLoad = 1, mayStore = 1 in { def SWP : AIswp<0, (outs GPRnopc:$Rt), (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>, Requires<[IsARM,PreV8]>; def SWPB: AIswp<1, (outs GPRnopc:$Rt), (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>, Requires<[IsARM,PreV8]>; } //===----------------------------------------------------------------------===// // Coprocessor Instructions. // def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", [(int_arm_cdp timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn, timm:$CRm, timm:$opc2)]>, Requires<[IsARM,PreV8]> { bits<4> opc1; bits<4> CRn; bits<4> CRd; bits<4> cop; bits<3> opc2; bits<4> CRm; let Inst{3-0} = CRm; let Inst{4} = 0; let Inst{7-5} = opc2; let Inst{11-8} = cop; let Inst{15-12} = CRd; let Inst{19-16} = CRn; let Inst{23-20} = opc1; let DecoderNamespace = "CoProc"; } def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", [(int_arm_cdp2 timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn, timm:$CRm, timm:$opc2)]>, Requires<[IsARM,PreV8]> { let Inst{31-28} = 0b1111; bits<4> opc1; bits<4> CRn; bits<4> CRd; bits<4> cop; bits<3> opc2; bits<4> CRm; let Inst{3-0} = CRm; let Inst{4} = 0; let Inst{7-5} = opc2; let Inst{11-8} = cop; let Inst{15-12} = CRd; let Inst{19-16} = CRn; let Inst{23-20} = opc1; let DecoderNamespace = "CoProc"; } class ACI pattern, IndexMode im = IndexModeNone, AddrMode am = AddrModeNone> : I { let Inst{27-25} = 0b110; } class ACInoP pattern, IndexMode im = IndexModeNone, AddrMode am = AddrModeNone> : InoP { let Inst{31-28} = 0b1111; let Inst{27-25} = 0b110; } let DecoderNamespace = "CoProc" in { multiclass LdStCop pattern> { def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), asm, "\t$cop, $CRd, $addr", pattern, IndexModeNone, AddrMode5> { bits<13> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 1; // P = 1 let Inst{23} = addr{8}; let Inst{22} = Dbit; let Inst{21} = 0; // W = 0 let Inst{20} = load; let Inst{19-16} = addr{12-9}; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = addr{7-0}; let DecoderMethod = "DecodeCopMemInstruction"; } def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr), asm, "\t$cop, $CRd, $addr!", [], IndexModePre> { bits<13> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 1; // P = 1 let Inst{23} = addr{8}; let Inst{22} = Dbit; let Inst{21} = 1; // W = 1 let Inst{20} = load; let Inst{19-16} = addr{12-9}; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = addr{7-0}; let DecoderMethod = "DecodeCopMemInstruction"; } def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, postidx_imm8s4:$offset), asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> { bits<9> offset; bits<4> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 0; // P = 0 let Inst{23} = offset{8}; let Inst{22} = Dbit; let Inst{21} = 1; // W = 1 let Inst{20} = load; let Inst{19-16} = addr; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = offset{7-0}; let DecoderMethod = "DecodeCopMemInstruction"; } def _OPTION : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, coproc_option_imm:$option), asm, "\t$cop, $CRd, $addr, $option", []> { bits<8> option; bits<4> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 0; // P = 0 let Inst{23} = 1; // U = 1 let Inst{22} = Dbit; let Inst{21} = 0; // W = 0 let Inst{20} = load; let Inst{19-16} = addr; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = option; let DecoderMethod = "DecodeCopMemInstruction"; } } multiclass LdSt2Cop pattern> { def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), asm, "\t$cop, $CRd, $addr", pattern, IndexModeNone, AddrMode5> { bits<13> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 1; // P = 1 let Inst{23} = addr{8}; let Inst{22} = Dbit; let Inst{21} = 0; // W = 0 let Inst{20} = load; let Inst{19-16} = addr{12-9}; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = addr{7-0}; let DecoderMethod = "DecodeCopMemInstruction"; } def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr), asm, "\t$cop, $CRd, $addr!", [], IndexModePre> { bits<13> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 1; // P = 1 let Inst{23} = addr{8}; let Inst{22} = Dbit; let Inst{21} = 1; // W = 1 let Inst{20} = load; let Inst{19-16} = addr{12-9}; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = addr{7-0}; let DecoderMethod = "DecodeCopMemInstruction"; } def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, postidx_imm8s4:$offset), asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> { bits<9> offset; bits<4> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 0; // P = 0 let Inst{23} = offset{8}; let Inst{22} = Dbit; let Inst{21} = 1; // W = 1 let Inst{20} = load; let Inst{19-16} = addr; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = offset{7-0}; let DecoderMethod = "DecodeCopMemInstruction"; } def _OPTION : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, coproc_option_imm:$option), asm, "\t$cop, $CRd, $addr, $option", []> { bits<8> option; bits<4> addr; bits<4> cop; bits<4> CRd; let Inst{24} = 0; // P = 0 let Inst{23} = 1; // U = 1 let Inst{22} = Dbit; let Inst{21} = 0; // W = 0 let Inst{20} = load; let Inst{19-16} = addr; let Inst{15-12} = CRd; let Inst{11-8} = cop; let Inst{7-0} = option; let DecoderMethod = "DecodeCopMemInstruction"; } } defm LDC : LdStCop <1, 0, "ldc", [(int_arm_ldc timm:$cop, timm:$CRd, addrmode5:$addr)]>; defm LDCL : LdStCop <1, 1, "ldcl", [(int_arm_ldcl timm:$cop, timm:$CRd, addrmode5:$addr)]>; defm LDC2 : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>; defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>; defm STC : LdStCop <0, 0, "stc", [(int_arm_stc timm:$cop, timm:$CRd, addrmode5:$addr)]>; defm STCL : LdStCop <0, 1, "stcl", [(int_arm_stcl timm:$cop, timm:$CRd, addrmode5:$addr)]>; defm STC2 : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>; defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>; } // DecoderNamespace = "CoProc" //===----------------------------------------------------------------------===// // Move between coprocessor and ARM core register. // class MovRCopro pattern> : ABI<0b1110, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> { let Inst{20} = direction; let Inst{4} = 1; bits<4> Rt; bits<4> cop; bits<3> opc1; bits<3> opc2; bits<4> CRm; bits<4> CRn; let Inst{15-12} = Rt; let Inst{11-8} = cop; let Inst{23-21} = opc1; let Inst{7-5} = opc2; let Inst{3-0} = CRm; let Inst{19-16} = CRn; let DecoderNamespace = "CoProc"; } def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */, (outs), (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), [(int_arm_mcr timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn, timm:$CRm, timm:$opc2)]>, ComplexDeprecationPredicate<"MCR">; def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm", (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, c_imm:$CRm, 0, pred:$p)>; def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */, (outs GPRwithAPSR:$Rt), (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), []>, ComplexDeprecationPredicate<"MRC">; def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm", (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 0, pred:$p)>; def : ARMPat<(int_arm_mrc timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2), (MRC p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>; class MovRCopro2 pattern> : ABXI<0b1110, oops, iops, NoItinerary, !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> { let Inst{31-24} = 0b11111110; let Inst{20} = direction; let Inst{4} = 1; bits<4> Rt; bits<4> cop; bits<3> opc1; bits<3> opc2; bits<4> CRm; bits<4> CRn; let Inst{15-12} = Rt; let Inst{11-8} = cop; let Inst{23-21} = opc1; let Inst{7-5} = opc2; let Inst{3-0} = CRm; let Inst{19-16} = CRn; let DecoderNamespace = "CoProc"; } def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */, (outs), (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), [(int_arm_mcr2 timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn, timm:$CRm, timm:$opc2)]>, Requires<[IsARM,PreV8]>; def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm", (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, c_imm:$CRm, 0)>; def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */, (outs GPRwithAPSR:$Rt), (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), []>, Requires<[IsARM,PreV8]>; def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm", (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 0)>; def : ARMV5TPat<(int_arm_mrc2 timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2), (MRC2 p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>; class MovRRCopro pattern = []> : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> { let Inst{23-21} = 0b010; let Inst{20} = direction; bits<4> Rt; bits<4> Rt2; bits<4> cop; bits<4> opc1; bits<4> CRm; let Inst{15-12} = Rt; let Inst{19-16} = Rt2; let Inst{11-8} = cop; let Inst{7-4} = opc1; let Inst{3-0} = CRm; } def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */, (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm), [(int_arm_mcrr timm:$cop, timm:$opc1, GPRnopc:$Rt, GPRnopc:$Rt2, timm:$CRm)]>; def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */, (outs GPRnopc:$Rt, GPRnopc:$Rt2), (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>; class MovRRCopro2 pattern = []> : ABXI<0b1100, oops, iops, NoItinerary, !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>, Requires<[IsARM,PreV8]> { let Inst{31-28} = 0b1111; let Inst{23-21} = 0b010; let Inst{20} = direction; bits<4> Rt; bits<4> Rt2; bits<4> cop; bits<4> opc1; bits<4> CRm; let Inst{15-12} = Rt; let Inst{19-16} = Rt2; let Inst{11-8} = cop; let Inst{7-4} = opc1; let Inst{3-0} = CRm; let DecoderMethod = "DecoderForMRRC2AndMCRR2"; } def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */, (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm), [(int_arm_mcrr2 timm:$cop, timm:$opc1, GPRnopc:$Rt, GPRnopc:$Rt2, timm:$CRm)]>; def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */, (outs GPRnopc:$Rt, GPRnopc:$Rt2), (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>; //===----------------------------------------------------------------------===// // Move between special register and ARM core register // // Move to ARM core register from Special Register def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary, "mrs", "\t$Rd, apsr", []> { bits<4> Rd; let Inst{23-16} = 0b00001111; let Unpredictable{19-17} = 0b111; let Inst{15-12} = Rd; let Inst{11-0} = 0b000000000000; let Unpredictable{11-0} = 0b110100001111; } def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>, Requires<[IsARM]>; // The MRSsys instruction is the MRS instruction from the ARM ARM, // section B9.3.9, with the R bit set to 1. def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary, "mrs", "\t$Rd, spsr", []> { bits<4> Rd; let Inst{23-16} = 0b01001111; let Unpredictable{19-16} = 0b1111; let Inst{15-12} = Rd; let Inst{11-0} = 0b000000000000; let Unpredictable{11-0} = 0b110100001111; } // However, the MRS (banked register) system instruction (ARMv7VE) *does* have a // separate encoding (distinguished by bit 5. def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked), NoItinerary, "mrs", "\t$Rd, $banked", []>, Requires<[IsARM, HasVirtualization]> { bits<6> banked; bits<4> Rd; let Inst{23} = 0; let Inst{22} = banked{5}; // R bit let Inst{21-20} = 0b00; let Inst{19-16} = banked{3-0}; let Inst{15-12} = Rd; let Inst{11-9} = 0b001; let Inst{8} = banked{4}; let Inst{7-0} = 0b00000000; } // Move from ARM core register to Special Register // // No need to have both system and application versions of MSR (immediate) or // MSR (register), the encodings are the same and the assembly parser has no way // to distinguish between them. The mask operand contains the special register // (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be // accessed in the special register. let Defs = [CPSR] in def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary, "msr", "\t$mask, $Rn", []> { bits<5> mask; bits<4> Rn; let Inst{23} = 0; let Inst{22} = mask{4}; // R bit let Inst{21-20} = 0b10; let Inst{19-16} = mask{3-0}; let Inst{15-12} = 0b1111; let Inst{11-4} = 0b00000000; let Inst{3-0} = Rn; } let Defs = [CPSR] in def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, mod_imm:$imm), NoItinerary, "msr", "\t$mask, $imm", []> { bits<5> mask; bits<12> imm; let Inst{23} = 0; let Inst{22} = mask{4}; // R bit let Inst{21-20} = 0b10; let Inst{19-16} = mask{3-0}; let Inst{15-12} = 0b1111; let Inst{11-0} = imm; } // However, the MSR (banked register) system instruction (ARMv7VE) *does* have a // separate encoding (distinguished by bit 5. def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn), NoItinerary, "msr", "\t$banked, $Rn", []>, Requires<[IsARM, HasVirtualization]> { bits<6> banked; bits<4> Rn; let Inst{23} = 0; let Inst{22} = banked{5}; // R bit let Inst{21-20} = 0b10; let Inst{19-16} = banked{3-0}; let Inst{15-12} = 0b1111; let Inst{11-9} = 0b001; let Inst{8} = banked{4}; let Inst{7-4} = 0b0000; let Inst{3-0} = Rn; } // Dynamic stack allocation yields a _chkstk for Windows targets. These calls // are needed to probe the stack when allocating more than // 4k bytes in one go. Touching the stack at 4K increments is necessary to // ensure that the guard pages used by the OS virtual memory manager are // allocated in correct sequence. // The main point of having separate instruction are extra unmodelled effects // (compared to ordinary calls) like stack pointer change. def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone, [SDNPHasChain, SDNPSideEffect]>; let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP], hasNoSchedulingInfo = 1 in def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>; def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK, [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary, [(win__dbzchk tGPR:$divisor)]>; //===----------------------------------------------------------------------===// // TLS Instructions // // __aeabi_read_tp preserves the registers r1-r3. // This is a pseudo inst so that we can get the encoding right, // complete with fixup for the aeabi_read_tp function. // TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern // is defined in "ARMInstrThumb.td". let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in { def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br, [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>, Requires<[IsARM, IsReadTPSoft]>; } // Reading thread pointer from coprocessor register def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>, Requires<[IsARM, IsReadTPHard]>; //===----------------------------------------------------------------------===// // SJLJ Exception handling intrinsics // eh_sjlj_setjmp() is an instruction sequence to store the return // address and save #0 in R0 for the non-longjmp case. // Since by its nature we may be coming from some other function to get // here, and we're using the stack frame for the containing function to // save/restore registers, we can't keep anything live in regs across // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon // when we get here from a longjmp(). We force everything out of registers // except for our own input by listing the relevant registers in Defs. By // doing so, we also cause the prologue/epilogue code to actively preserve // all of the callee-saved registers, which is exactly what we want. // A constant value is passed in $val, and we use the location as a scratch. // // These are pseudo-instructions and are lowered to individual MC-insts, so // no encoding information is necessary. // This gets lowered to an instruction sequence of 20 bytes let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR, Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ], hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1, Size = 20 in { def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), NoItinerary, [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, Requires<[IsARM, HasVFP2]>; } // This gets lowered to an instruction sequence of 20 bytes let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ], hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1, Size = 20 in { def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), NoItinerary, [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, Requires<[IsARM, NoVFP]>; } // This gets lowered to an instruction sequence of 16 bytes // FIXME: Non-IOS version(s) let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, Size = 16, Defs = [ R7, LR, SP ] in { def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch), NoItinerary, [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, Requires<[IsARM]>; } let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary, [(ARMeh_sjlj_setup_dispatch)]>; // eh.sjlj.dispatchsetup pseudo-instruction. // This pseudo is used for both ARM and Thumb. Any differences are handled when // the pseudo is expanded (which happens before any passes that need the // instruction size). let isBarrier = 1 in def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // ARMv4 indirect branch using (MOVr PC, dst) let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst), 4, IIC_Br, [(brind GPR:$dst)], (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>, Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst), 4, IIC_Br, [], (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>, Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>; // Large immediate handling. // 32-bit immediate using two piece mod_imms or movw + movt. // This is a single pseudo instruction, the benefit is that it can be remat'd // as a single unit instead of having to handle reg inputs. // FIXME: Remove this when we can do generalized remat. let isReMaterializable = 1, isMoveImm = 1, Size = 8 in def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2, [(set GPR:$dst, (arm_i32imm:$src))]>, Requires<[IsARM]>; def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i, [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>, Requires<[IsARM, DontUseMovt]>; // Pseudo instruction that combines movw + movt + add pc (if PIC). // It also makes it possible to rematerialize the instructions. // FIXME: Remove this when we can do generalized remat and when machine licm // can properly the instructions. let isReMaterializable = 1 in { def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), IIC_iMOVix2addpc, [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>, Requires<[IsARM, UseMovtInPic]>; def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), IIC_iLoadiALU, [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>, Requires<[IsARM, DontUseMovtInPic]>; let AddedComplexity = 10 in def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), NoItinerary, [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>, Requires<[IsARM, DontUseMovtInPic]>; let AddedComplexity = 10 in def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), IIC_iMOVix2ld, [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>, Requires<[IsARM, UseMovtInPic]>; } // isReMaterializable // The many different faces of TLS access. def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst), (MOVi32imm tglobaltlsaddr :$dst)>, Requires<[IsARM, UseMovt]>; def : Pat<(ARMWrapper tglobaltlsaddr:$src), (LDRLIT_ga_abs tglobaltlsaddr:$src)>, Requires<[IsARM, DontUseMovt]>; def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr), (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>; def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr), (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, DontUseMovtInPic]>; let AddedComplexity = 10 in def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)), (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>; // ConstantPool, GlobalAddress, and JumpTable def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>; def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>, Requires<[IsARM, UseMovt]>; def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>, Requires<[IsARM, UseMovt]>; def : ARMPat<(ARMWrapperJT tjumptable:$dst), (LEApcrelJT tjumptable:$dst)>; // TODO: add,sub,and, 3-instr forms? // Tail calls. These patterns also apply to Thumb mode. def : Pat<(ARMtcret tcGPR:$dst, (i32 timm:$SPDiff)), (TCRETURNri tcGPR:$dst, timm:$SPDiff)>; def : Pat<(ARMtcret (i32 tglobaladdr:$dst), (i32 timm:$SPDiff)), (TCRETURNdi texternalsym:$dst, (i32 timm:$SPDiff))>; def : Pat<(ARMtcret (i32 texternalsym:$dst), (i32 timm:$SPDiff)), (TCRETURNdi texternalsym:$dst, i32imm:$SPDiff)>; // Direct calls def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>; def : ARMPat<(ARMcall_nolink texternalsym:$func), (BMOVPCB_CALL texternalsym:$func)>; // zextload i1 -> zextload i8 def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; // extload -> zextload def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>; def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>; def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>; // smul* and smla* def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b), (SMULBB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)), (SMULBB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)), (SMULBT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b), (SMULTB GPR:$a, GPR:$b)>; def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)), (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))), (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))), (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)), (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b), (SMULBB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b), (SMULBT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b), (SMULTB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b), (SMULTT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b), (SMULWB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b), (SMULWT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc), (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc), (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc), (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc), (SMLATT GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc), (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc), (SMLAWT GPR:$a, GPR:$b, GPR:$acc)>; // Pre-v7 uses MCR for synchronization barriers. def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>, Requires<[IsARM, HasV6]>; // SXT/UXT with no rotate let AddedComplexity = 16 in { def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>; def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>; def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>; def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)), (UXTAB GPR:$Rn, GPR:$Rm, 0)>; def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)), (UXTAH GPR:$Rn, GPR:$Rm, 0)>; } def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>; def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>; def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)), (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>; def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)), (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>; // Atomic load/store patterns def : ARMPat<(atomic_load_8 ldst_so_reg:$src), (LDRBrs ldst_so_reg:$src)>; def : ARMPat<(atomic_load_8 addrmode_imm12:$src), (LDRBi12 addrmode_imm12:$src)>; def : ARMPat<(atomic_load_16 addrmode3:$src), (LDRH addrmode3:$src)>; def : ARMPat<(atomic_load_32 ldst_so_reg:$src), (LDRrs ldst_so_reg:$src)>; def : ARMPat<(atomic_load_32 addrmode_imm12:$src), (LDRi12 addrmode_imm12:$src)>; def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val), (STRBrs GPR:$val, ldst_so_reg:$ptr)>; def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val), (STRBi12 GPR:$val, addrmode_imm12:$ptr)>; def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val), (STRH GPR:$val, addrmode3:$ptr)>; def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val), (STRrs GPR:$val, ldst_so_reg:$ptr)>; def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val), (STRi12 GPR:$val, addrmode_imm12:$ptr)>; //===----------------------------------------------------------------------===// // Thumb Support // include "ARMInstrThumb.td" //===----------------------------------------------------------------------===// // Thumb2 Support // include "ARMInstrThumb2.td" //===----------------------------------------------------------------------===// // Floating Point Support // include "ARMInstrVFP.td" //===----------------------------------------------------------------------===// // Advanced SIMD (NEON) Support // include "ARMInstrNEON.td" //===----------------------------------------------------------------------===// // MVE Support // include "ARMInstrMVE.td" //===----------------------------------------------------------------------===// // CDE (Custom Datapath Extension) // include "ARMInstrCDE.td" //===----------------------------------------------------------------------===// // Assembler aliases // // Memory barriers def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>; def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>; def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>; def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>; def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>; // Armv8-R 'Data Full Barrier' def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>; // System instructions def : MnemonicAlias<"swi", "svc">; // Load / Store Multiple def : MnemonicAlias<"ldmfd", "ldm">; def : MnemonicAlias<"ldmia", "ldm">; def : MnemonicAlias<"ldmea", "ldmdb">; def : MnemonicAlias<"stmfd", "stmdb">; def : MnemonicAlias<"stmia", "stm">; def : MnemonicAlias<"stmea", "stm">; // PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the // input operands swapped when the shift amount is zero (i.e., unspecified). def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm", (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>, Requires<[IsARM, HasV6]>; def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm", (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>, Requires<[IsARM, HasV6]>; // PUSH/POP aliases for STM/LDM def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>; def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>; // SSAT/USAT optional shift operand. def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn", (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn", (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; // Extend instruction optional rotate operand. def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm", (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm", (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm", (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"sxtb${p} $Rd, $Rm", (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"sxtb16${p} $Rd, $Rm", (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"sxth${p} $Rd, $Rm", (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm", (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm", (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm", (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"uxtb${p} $Rd, $Rm", (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"uxtb16${p} $Rd, $Rm", (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; def : ARMInstAlias<"uxth${p} $Rd, $Rm", (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; // RFE aliases def : MnemonicAlias<"rfefa", "rfeda">; def : MnemonicAlias<"rfeea", "rfedb">; def : MnemonicAlias<"rfefd", "rfeia">; def : MnemonicAlias<"rfeed", "rfeib">; def : MnemonicAlias<"rfe", "rfeia">; // SRS aliases def : MnemonicAlias<"srsfa", "srsib">; def : MnemonicAlias<"srsea", "srsia">; def : MnemonicAlias<"srsfd", "srsdb">; def : MnemonicAlias<"srsed", "srsda">; def : MnemonicAlias<"srs", "srsia">; // QSAX == QSUBADDX def : MnemonicAlias<"qsubaddx", "qsax">; // SASX == SADDSUBX def : MnemonicAlias<"saddsubx", "sasx">; // SHASX == SHADDSUBX def : MnemonicAlias<"shaddsubx", "shasx">; // SHSAX == SHSUBADDX def : MnemonicAlias<"shsubaddx", "shsax">; // SSAX == SSUBADDX def : MnemonicAlias<"ssubaddx", "ssax">; // UASX == UADDSUBX def : MnemonicAlias<"uaddsubx", "uasx">; // UHASX == UHADDSUBX def : MnemonicAlias<"uhaddsubx", "uhasx">; // UHSAX == UHSUBADDX def : MnemonicAlias<"uhsubaddx", "uhsax">; // UQASX == UQADDSUBX def : MnemonicAlias<"uqaddsubx", "uqasx">; // UQSAX == UQSUBADDX def : MnemonicAlias<"uqsubaddx", "uqsax">; // USAX == USUBADDX def : MnemonicAlias<"usubaddx", "usax">; // "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like // for isel. def : ARMInstSubst<"mov${s}${p} $Rd, $imm", (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"mvn${s}${p} $Rd, $imm", (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>; // Same for AND <--> BIC def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm", (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"bic${s}${p} $Rdn, $imm", (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm", (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"and${s}${p} $Rdn, $imm", (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; // Likewise, "add Rd, mod_imm_neg" -> sub def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm", (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"add${s}${p} $Rd, $imm", (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>; // Likewise, "sub Rd, mod_imm_neg" -> add def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm", (ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"sub${s}${p} $Rd, $imm", (ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm", (SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"adc${s}${p} $Rdn, $imm", (SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm", (ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm", (ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>; // Same for CMP <--> CMN via mod_imm_neg def : ARMInstSubst<"cmp${p} $Rd, $imm", (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>; def : ARMInstSubst<"cmn${p} $Rd, $imm", (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>; // The shifter forms of the MOV instruction are aliased to the ASR, LSL, // LSR, ROR, and RRX instructions. // FIXME: We need C++ parser hooks to map the alias to the MOV // encoding. It seems we should be able to do that sort of thing // in tblgen, but it could get ugly. let TwoOperandAliasConstraint = "$Rm = $Rd" in { def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm", (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p, cc_out:$s)>; def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm", (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p, cc_out:$s)>; def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm", (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p, cc_out:$s)>; def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm", (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p, cc_out:$s)>; } def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm", (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>; let TwoOperandAliasConstraint = "$Rn = $Rd" in { def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm", (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>; def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm", (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>; def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm", (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>; def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm", (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>; } // "neg" is and alias for "rsb rd, rn, #0" def : ARMInstAlias<"neg${s}${p} $Rd, $Rm", (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>; // Pre-v6, 'mov r0, r0' was used as a NOP encoding. def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg), 0>, Requires<[IsARM, NoV6]>; // MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but // the instruction definitions need difference constraints pre-v6. // Use these aliases for the assembly parsing on pre-v6. def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm", (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>, Requires<[IsARM, NoV6]>; def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra", (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s), 0>, Requires<[IsARM, NoV6]>; def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm", (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, Requires<[IsARM, NoV6]>; def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm", (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, Requires<[IsARM, NoV6]>; def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm", (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, Requires<[IsARM, NoV6]>; def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm", (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>, Requires<[IsARM, NoV6]>; // 'it' blocks in ARM mode just validate the predicates. The IT itself // is discarded. def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>; let mayLoad = 1, mayStore =1, hasSideEffects = 1, hasNoSchedulingInfo = 1 in def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn), NoItinerary, [(set GPR:$Rd, (int_arm_space timm:$size, GPR:$Rn))]>; // SpeculationBarrierEndBB must only be used after an unconditional control // flow, i.e. after a terminator for which isBarrier is True. let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in { // This gets lowered to a pair of 4-byte instructions let Size = 8 in def SpeculationBarrierISBDSBEndBB : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>; // This gets lowered to a single 4-byte instructions let Size = 4 in def SpeculationBarrierSBEndBB : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>; } //===---------------------------------- // Atomic cmpxchg for -O0 //===---------------------------------- // The fast register allocator used during -O0 inserts spills to cover any VRegs // live across basic block boundaries. When this happens between an LDXR and an // STXR it can clear the exclusive monitor, causing all cmpxchg attempts to // fail. // Unfortunately, this means we have to have an alternative (expanded // post-regalloc) path for -O0 compilations. Fortunately this path can be // significantly more naive than the standard expansion: we conservatively // assume seq_cst, strong cmpxchg and omit clrex on failure. let Constraints = "@earlyclobber $Rd,@earlyclobber $temp", mayLoad = 1, mayStore = 1 in { def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp), (ins GPR:$addr, GPR:$desired, GPR:$new), NoItinerary, []>, Sched<[]>; def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp), (ins GPR:$addr, GPR:$desired, GPR:$new), NoItinerary, []>, Sched<[]>; def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp), (ins GPR:$addr, GPR:$desired, GPR:$new), NoItinerary, []>, Sched<[]>; def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp), (ins GPR:$addr, GPRPair:$desired, GPRPair:$new), NoItinerary, []>, Sched<[]>; } def : Pat<(atomic_fence (timm), 0), (MEMBARRIER)>; //===----------------------------------------------------------------------===// // Instructions used for emitting unwind opcodes on Windows. //===----------------------------------------------------------------------===// let isPseudo = 1 in { def SEH_StackAlloc : PseudoInst<(outs), (ins i32imm:$size, i32imm:$wide), NoItinerary, []>, Sched<[]>; def SEH_SaveRegs : PseudoInst<(outs), (ins i32imm:$mask, i32imm:$wide), NoItinerary, []>, Sched<[]>; let isTerminator = 1 in def SEH_SaveRegs_Ret : PseudoInst<(outs), (ins i32imm:$mask, i32imm:$wide), NoItinerary, []>, Sched<[]>; def SEH_SaveSP : PseudoInst<(outs), (ins i32imm:$reg), NoItinerary, []>, Sched<[]>; def SEH_SaveFRegs : PseudoInst<(outs), (ins i32imm:$first, i32imm:$last), NoItinerary, []>, Sched<[]>; let isTerminator = 1 in def SEH_SaveLR : PseudoInst<(outs), (ins i32imm:$offst), NoItinerary, []>, Sched<[]>; def SEH_Nop : PseudoInst<(outs), (ins i32imm:$wide), NoItinerary, []>, Sched<[]>; let isTerminator = 1 in def SEH_Nop_Ret : PseudoInst<(outs), (ins i32imm:$wide), NoItinerary, []>, Sched<[]>; def SEH_PrologEnd : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>; def SEH_EpilogStart : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>; let isTerminator = 1 in def SEH_EpilogEnd : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>; }