//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the AArch64 specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "AArch64Subtarget.h" #include "AArch64.h" #include "AArch64InstrInfo.h" #include "AArch64PBQPRegAlloc.h" #include "AArch64TargetMachine.h" #include "GISel/AArch64CallLowering.h" #include "GISel/AArch64LegalizerInfo.h" #include "GISel/AArch64RegisterBankInfo.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/AArch64TargetParser.h" #include "llvm/Support/TargetParser.h" using namespace llvm; #define DEBUG_TYPE "aarch64-subtarget" #define GET_SUBTARGETINFO_CTOR #define GET_SUBTARGETINFO_TARGET_DESC #include "AArch64GenSubtargetInfo.inc" static cl::opt EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if " "converter pass"), cl::init(true), cl::Hidden); // If OS supports TBI, use this flag to enable it. static cl::opt UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of " "an address is ignored"), cl::init(false), cl::Hidden); static cl::opt UseNonLazyBind("aarch64-enable-nonlazybind", cl::desc("Call nonlazybind functions via direct GOT load"), cl::init(false), cl::Hidden); static cl::opt UseAA("aarch64-use-aa", cl::init(true), cl::desc("Enable the use of AA during codegen.")); static cl::opt OverrideVectorInsertExtractBaseCost( "aarch64-insert-extract-base-cost", cl::desc("Base cost of vector insert/extract element"), cl::Hidden); // Reserve a list of X# registers, so they are unavailable for register // allocator, but can still be used as ABI requests, such as passing arguments // to function call. static cl::list ReservedRegsForRA("reserve-regs-for-regalloc", cl::desc("Reserve physical " "registers, so they can't be used by register allocator. " "Should only be used for testing register allocator."), cl::CommaSeparated, cl::Hidden); static cl::opt ForceStreamingCompatibleSVE("force-streaming-compatible-sve", cl::init(false), cl::Hidden); unsigned AArch64Subtarget::getVectorInsertExtractBaseCost() const { if (OverrideVectorInsertExtractBaseCost.getNumOccurrences() > 0) return OverrideVectorInsertExtractBaseCost; return VectorInsertExtractBaseCost; } AArch64Subtarget &AArch64Subtarget::initializeSubtargetDependencies( StringRef FS, StringRef CPUString, StringRef TuneCPUString) { // Determine default and user-specified characteristics if (CPUString.empty()) CPUString = "generic"; if (TuneCPUString.empty()) TuneCPUString = CPUString; ParseSubtargetFeatures(CPUString, TuneCPUString, FS); initializeProperties(); return *this; } void AArch64Subtarget::initializeProperties() { // Initialize CPU specific properties. We should add a tablegen feature for // this in the future so we can specify it together with the subtarget // features. switch (ARMProcFamily) { case Others: break; case Carmel: CacheLineSize = 64; break; case CortexA35: case CortexA53: case CortexA55: PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 4; MaxBytesForLoopAlignment = 8; break; case CortexA57: MaxInterleaveFactor = 4; PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 4; MaxBytesForLoopAlignment = 8; break; case CortexA65: PrefFunctionLogAlignment = 3; break; case CortexA72: case CortexA73: case CortexA75: PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 4; MaxBytesForLoopAlignment = 8; break; case CortexA76: case CortexA77: case CortexA78: case CortexA78C: case CortexR82: case CortexX1: case CortexX1C: PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 5; MaxBytesForLoopAlignment = 16; break; case CortexA510: PrefFunctionLogAlignment = 4; VScaleForTuning = 1; PrefLoopLogAlignment = 4; MaxBytesForLoopAlignment = 8; break; case CortexA710: case CortexA715: case CortexX2: case CortexX3: PrefFunctionLogAlignment = 4; VScaleForTuning = 1; PrefLoopLogAlignment = 5; MaxBytesForLoopAlignment = 16; break; case A64FX: CacheLineSize = 256; PrefFunctionLogAlignment = 3; PrefLoopLogAlignment = 2; MaxInterleaveFactor = 4; PrefetchDistance = 128; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 4; VScaleForTuning = 4; break; case AppleA7: case AppleA10: case AppleA11: case AppleA12: case AppleA13: case AppleA14: case AppleA15: case AppleA16: CacheLineSize = 64; PrefetchDistance = 280; MinPrefetchStride = 2048; MaxPrefetchIterationsAhead = 3; switch (ARMProcFamily) { case AppleA14: case AppleA15: case AppleA16: MaxInterleaveFactor = 4; break; default: break; } break; case ExynosM3: MaxInterleaveFactor = 4; MaxJumpTableSize = 20; PrefFunctionLogAlignment = 5; PrefLoopLogAlignment = 4; break; case Falkor: MaxInterleaveFactor = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; CacheLineSize = 128; PrefetchDistance = 820; MinPrefetchStride = 2048; MaxPrefetchIterationsAhead = 8; break; case Kryo: MaxInterleaveFactor = 4; VectorInsertExtractBaseCost = 2; CacheLineSize = 128; PrefetchDistance = 740; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 11; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case NeoverseE1: PrefFunctionLogAlignment = 3; break; case NeoverseN1: PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 5; MaxBytesForLoopAlignment = 16; break; case NeoverseN2: case NeoverseV2: PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 5; MaxBytesForLoopAlignment = 16; VScaleForTuning = 1; break; case NeoverseV1: PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 5; MaxBytesForLoopAlignment = 16; VScaleForTuning = 2; break; case Neoverse512TVB: PrefFunctionLogAlignment = 4; VScaleForTuning = 1; MaxInterleaveFactor = 4; break; case Saphira: MaxInterleaveFactor = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case ThunderX2T99: CacheLineSize = 64; PrefFunctionLogAlignment = 3; PrefLoopLogAlignment = 2; MaxInterleaveFactor = 4; PrefetchDistance = 128; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case ThunderX: case ThunderXT88: case ThunderXT81: case ThunderXT83: CacheLineSize = 128; PrefFunctionLogAlignment = 3; PrefLoopLogAlignment = 2; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case TSV110: CacheLineSize = 64; PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 2; break; case ThunderX3T110: CacheLineSize = 64; PrefFunctionLogAlignment = 4; PrefLoopLogAlignment = 2; MaxInterleaveFactor = 4; PrefetchDistance = 128; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case Ampere1: case Ampere1A: CacheLineSize = 64; PrefFunctionLogAlignment = 6; PrefLoopLogAlignment = 6; MaxInterleaveFactor = 4; break; } } AArch64Subtarget::AArch64Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS, const TargetMachine &TM, bool LittleEndian, unsigned MinSVEVectorSizeInBitsOverride, unsigned MaxSVEVectorSizeInBitsOverride, bool StreamingSVEModeDisabled) : AArch64GenSubtargetInfo(TT, CPU, TuneCPU, FS), ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()), ReserveXRegisterForRA(AArch64::GPR64commonRegClass.getNumRegs()), CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()), IsLittle(LittleEndian), StreamingSVEModeDisabled(StreamingSVEModeDisabled), MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride), MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(FS, CPU, TuneCPU)), TLInfo(TM, *this) { if (AArch64::isX18ReservedByDefault(TT)) ReserveXRegister.set(18); CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering())); InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); Legalizer.reset(new AArch64LegalizerInfo(*this)); auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo()); // FIXME: At this point, we can't rely on Subtarget having RBI. // It's awkward to mix passing RBI and the Subtarget; should we pass // TII/TRI as well? InstSelector.reset(createAArch64InstructionSelector( *static_cast(&TM), *this, *RBI)); RegBankInfo.reset(RBI); auto TRI = getRegisterInfo(); StringSet<> ReservedRegNames; ReservedRegNames.insert(ReservedRegsForRA.begin(), ReservedRegsForRA.end()); for (unsigned i = 0; i < 29; ++i) { if (ReservedRegNames.count(TRI->getName(AArch64::X0 + i))) ReserveXRegisterForRA.set(i); } // X30 is named LR, so we can't use TRI->getName to check X30. if (ReservedRegNames.count("X30") || ReservedRegNames.count("LR")) ReserveXRegisterForRA.set(30); // X29 is named FP, so we can't use TRI->getName to check X29. if (ReservedRegNames.count("X29") || ReservedRegNames.count("FP")) ReserveXRegisterForRA.set(29); } const CallLowering *AArch64Subtarget::getCallLowering() const { return CallLoweringInfo.get(); } const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const { return InlineAsmLoweringInfo.get(); } InstructionSelector *AArch64Subtarget::getInstructionSelector() const { return InstSelector.get(); } const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const { return Legalizer.get(); } const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const { return RegBankInfo.get(); } /// Find the target operand flags that describe how a global value should be /// referenced for the current subtarget. unsigned AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { // MachO large model always goes via a GOT, simply to get a single 8-byte // absolute relocation on all global addresses. if (TM.getCodeModel() == CodeModel::Large && isTargetMachO()) return AArch64II::MO_GOT; if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) { if (GV->hasDLLImportStorageClass()) { if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy()) return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORTAUX; return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT; } if (getTargetTriple().isOSWindows()) return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB; return AArch64II::MO_GOT; } // The small code model's direct accesses use ADRP, which cannot // necessarily produce the value 0 (if the code is above 4GB). // Same for the tiny code model, where we have a pc relative LDR. if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) && GV->hasExternalWeakLinkage()) return AArch64II::MO_GOT; // References to tagged globals are marked with MO_NC | MO_TAGGED to indicate // that their nominal addresses are tagged and outside of the code model. In // AArch64ExpandPseudo::expandMI we emit an additional instruction to set the // tag if necessary based on MO_TAGGED. if (AllowTaggedGlobals && !isa(GV->getValueType())) return AArch64II::MO_NC | AArch64II::MO_TAGGED; return AArch64II::MO_NO_FLAG; } unsigned AArch64Subtarget::classifyGlobalFunctionReference( const GlobalValue *GV, const TargetMachine &TM) const { // MachO large model always goes via a GOT, because we don't have the // relocations available to do anything else.. if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() && !GV->hasInternalLinkage()) return AArch64II::MO_GOT; // NonLazyBind goes via GOT unless we know it's available locally. auto *F = dyn_cast(GV); if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) && !TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) return AArch64II::MO_GOT; if (getTargetTriple().isOSWindows()) { if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy() && GV->hasDLLImportStorageClass()) { // On Arm64EC, if we're calling a function directly, use MO_DLLIMPORT, // not MO_DLLIMPORTAUX. return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT; } // Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB. return ClassifyGlobalReference(GV, TM); } return AArch64II::MO_NO_FLAG; } void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const { // LNT run (at least on Cyclone) showed reasonably significant gains for // bi-directional scheduling. 253.perlbmk. Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; // Enabling or Disabling the latency heuristic is a close call: It seems to // help nearly no benchmark on out-of-order architectures, on the other hand // it regresses register pressure on a few benchmarking. Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic; } bool AArch64Subtarget::enableEarlyIfConversion() const { return EnableEarlyIfConvert; } bool AArch64Subtarget::supportsAddressTopByteIgnored() const { if (!UseAddressTopByteIgnored) return false; if (TargetTriple.isDriverKit()) return true; if (TargetTriple.isiOS()) { return TargetTriple.getiOSVersion() >= VersionTuple(8); } return false; } std::unique_ptr AArch64Subtarget::getCustomPBQPConstraints() const { return balanceFPOps() ? std::make_unique() : nullptr; } void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const { // We usually compute max call frame size after ISel. Do the computation now // if the .mir file didn't specify it. Note that this will probably give you // bogus values after PEI has eliminated the callframe setup/destroy pseudo // instructions, specify explicitly if you need it to be correct. MachineFrameInfo &MFI = MF.getFrameInfo(); if (!MFI.isMaxCallFrameSizeComputed()) MFI.computeMaxCallFrameSize(MF); } bool AArch64Subtarget::useAA() const { return UseAA; } bool AArch64Subtarget::forceStreamingCompatibleSVE() const { if (ForceStreamingCompatibleSVE) { assert(hasSVEorSME() && "Expected SVE to be available"); return hasSVEorSME(); } return false; }