//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Interface for the implementations of runtime dynamic linker facilities. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Triple.h" #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/ExecutionEngine/RuntimeDyldChecker.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/Host.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/SwapByteOrder.h" #include #include #include #include using namespace llvm; using namespace llvm::object; namespace llvm { #define UNIMPLEMENTED_RELOC(RelType) \ case RelType: \ return make_error("Unimplemented relocation: " #RelType) /// SectionEntry - represents a section emitted into memory by the dynamic /// linker. class SectionEntry { /// Name - section name. std::string Name; /// Address - address in the linker's memory where the section resides. uint8_t *Address; /// Size - section size. Doesn't include the stubs. size_t Size; /// LoadAddress - the address of the section in the target process's memory. /// Used for situations in which JIT-ed code is being executed in the address /// space of a separate process. If the code executes in the same address /// space where it was JIT-ed, this just equals Address. uint64_t LoadAddress; /// StubOffset - used for architectures with stub functions for far /// relocations (like ARM). uintptr_t StubOffset; /// The total amount of space allocated for this section. This includes the /// section size and the maximum amount of space that the stubs can occupy. size_t AllocationSize; /// ObjAddress - address of the section in the in-memory object file. Used /// for calculating relocations in some object formats (like MachO). uintptr_t ObjAddress; public: SectionEntry(StringRef name, uint8_t *address, size_t size, size_t allocationSize, uintptr_t objAddress) : Name(std::string(name)), Address(address), Size(size), LoadAddress(reinterpret_cast(address)), StubOffset(size), AllocationSize(allocationSize), ObjAddress(objAddress) { // AllocationSize is used only in asserts, prevent an "unused private field" // warning: (void)AllocationSize; } StringRef getName() const { return Name; } uint8_t *getAddress() const { return Address; } /// Return the address of this section with an offset. uint8_t *getAddressWithOffset(unsigned OffsetBytes) const { assert(OffsetBytes <= AllocationSize && "Offset out of bounds!"); return Address + OffsetBytes; } size_t getSize() const { return Size; } uint64_t getLoadAddress() const { return LoadAddress; } void setLoadAddress(uint64_t LA) { LoadAddress = LA; } /// Return the load address of this section with an offset. uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const { assert(OffsetBytes <= AllocationSize && "Offset out of bounds!"); return LoadAddress + OffsetBytes; } uintptr_t getStubOffset() const { return StubOffset; } void advanceStubOffset(unsigned StubSize) { StubOffset += StubSize; assert(StubOffset <= AllocationSize && "Not enough space allocated!"); } uintptr_t getObjAddress() const { return ObjAddress; } }; /// RelocationEntry - used to represent relocations internally in the dynamic /// linker. class RelocationEntry { public: /// SectionID - the section this relocation points to. unsigned SectionID; /// Offset - offset into the section. uint64_t Offset; /// RelType - relocation type. uint32_t RelType; /// Addend - the relocation addend encoded in the instruction itself. Also /// used to make a relocation section relative instead of symbol relative. int64_t Addend; struct SectionPair { uint32_t SectionA; uint32_t SectionB; }; /// SymOffset - Section offset of the relocation entry's symbol (used for GOT /// lookup). union { uint64_t SymOffset; SectionPair Sections; }; /// True if this is a PCRel relocation (MachO specific). bool IsPCRel; /// The size of this relocation (MachO specific). unsigned Size; // ARM (MachO and COFF) specific. bool IsTargetThumbFunc = false; RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend) : SectionID(id), Offset(offset), RelType(type), Addend(addend), SymOffset(0), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {} RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, uint64_t symoffset) : SectionID(id), Offset(offset), RelType(type), Addend(addend), SymOffset(symoffset), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {} RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, bool IsPCRel, unsigned Size) : SectionID(id), Offset(offset), RelType(type), Addend(addend), SymOffset(0), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) {} RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB, uint64_t SectionBOffset, bool IsPCRel, unsigned Size) : SectionID(id), Offset(offset), RelType(type), Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) { Sections.SectionA = SectionA; Sections.SectionB = SectionB; } RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB, uint64_t SectionBOffset, bool IsPCRel, unsigned Size, bool IsTargetThumbFunc) : SectionID(id), Offset(offset), RelType(type), Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(IsTargetThumbFunc) { Sections.SectionA = SectionA; Sections.SectionB = SectionB; } }; class RelocationValueRef { public: unsigned SectionID = 0; uint64_t Offset = 0; int64_t Addend = 0; const char *SymbolName = nullptr; bool IsStubThumb = false; inline bool operator==(const RelocationValueRef &Other) const { return SectionID == Other.SectionID && Offset == Other.Offset && Addend == Other.Addend && SymbolName == Other.SymbolName && IsStubThumb == Other.IsStubThumb; } inline bool operator<(const RelocationValueRef &Other) const { if (SectionID != Other.SectionID) return SectionID < Other.SectionID; if (Offset != Other.Offset) return Offset < Other.Offset; if (Addend != Other.Addend) return Addend < Other.Addend; if (IsStubThumb != Other.IsStubThumb) return IsStubThumb < Other.IsStubThumb; return SymbolName < Other.SymbolName; } }; /// Symbol info for RuntimeDyld. class SymbolTableEntry { public: SymbolTableEntry() = default; SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags) : Offset(Offset), SectionID(SectionID), Flags(Flags) {} unsigned getSectionID() const { return SectionID; } uint64_t getOffset() const { return Offset; } void setOffset(uint64_t NewOffset) { Offset = NewOffset; } JITSymbolFlags getFlags() const { return Flags; } private: uint64_t Offset = 0; unsigned SectionID = 0; JITSymbolFlags Flags = JITSymbolFlags::None; }; typedef StringMap RTDyldSymbolTable; class RuntimeDyldImpl { friend class RuntimeDyld::LoadedObjectInfo; protected: static const unsigned AbsoluteSymbolSection = ~0U; // The MemoryManager to load objects into. RuntimeDyld::MemoryManager &MemMgr; // The symbol resolver to use for external symbols. JITSymbolResolver &Resolver; // A list of all sections emitted by the dynamic linker. These sections are // referenced in the code by means of their index in this list - SectionID. // Because references may be kept while the list grows, use a container that // guarantees reference stability. typedef std::deque SectionList; SectionList Sections; typedef unsigned SID; // Type for SectionIDs #define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1)) // Keep a map of sections from object file to the SectionID which // references it. typedef std::map ObjSectionToIDMap; // A global symbol table for symbols from all loaded modules. RTDyldSymbolTable GlobalSymbolTable; // Keep a map of common symbols to their info pairs typedef std::vector CommonSymbolList; // For each symbol, keep a list of relocations based on it. Anytime // its address is reassigned (the JIT re-compiled the function, e.g.), // the relocations get re-resolved. // The symbol (or section) the relocation is sourced from is the Key // in the relocation list where it's stored. typedef SmallVector RelocationList; // Relocations to sections already loaded. Indexed by SectionID which is the // source of the address. The target where the address will be written is // SectionID/Offset in the relocation itself. std::unordered_map Relocations; // Relocations to external symbols that are not yet resolved. Symbols are // external when they aren't found in the global symbol table of all loaded // modules. This map is indexed by symbol name. StringMap ExternalSymbolRelocations; typedef std::map StubMap; Triple::ArchType Arch; bool IsTargetLittleEndian; bool IsMipsO32ABI; bool IsMipsN32ABI; bool IsMipsN64ABI; // True if all sections should be passed to the memory manager, false if only // sections containing relocations should be. Defaults to 'false'. bool ProcessAllSections; // This mutex prevents simultaneously loading objects from two different // threads. This keeps us from having to protect individual data structures // and guarantees that section allocation requests to the memory manager // won't be interleaved between modules. It is also used in mapSectionAddress // and resolveRelocations to protect write access to internal data structures. // // loadObject may be called on the same thread during the handling of of // processRelocations, and that's OK. The handling of the relocation lists // is written in such a way as to work correctly if new elements are added to // the end of the list while the list is being processed. sys::Mutex lock; using NotifyStubEmittedFunction = RuntimeDyld::NotifyStubEmittedFunction; NotifyStubEmittedFunction NotifyStubEmitted; virtual unsigned getMaxStubSize() const = 0; virtual Align getStubAlignment() = 0; bool HasError; std::string ErrorStr; void writeInt16BE(uint8_t *Addr, uint16_t Value) { llvm::support::endian::write( Addr, Value, IsTargetLittleEndian ? support::little : support::big); } void writeInt32BE(uint8_t *Addr, uint32_t Value) { llvm::support::endian::write( Addr, Value, IsTargetLittleEndian ? support::little : support::big); } void writeInt64BE(uint8_t *Addr, uint64_t Value) { llvm::support::endian::write( Addr, Value, IsTargetLittleEndian ? support::little : support::big); } virtual void setMipsABI(const ObjectFile &Obj) { IsMipsO32ABI = false; IsMipsN32ABI = false; IsMipsN64ABI = false; } /// Endian-aware read Read the least significant Size bytes from Src. uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const; /// Endian-aware write. Write the least significant Size bytes from Value to /// Dst. void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const; /// Generate JITSymbolFlags from a libObject symbol. virtual Expected getJITSymbolFlags(const SymbolRef &Sym); /// Modify the given target address based on the given symbol flags. /// This can be used by subclasses to tweak addresses based on symbol flags, /// For example: the MachO/ARM target uses it to set the low bit if the target /// is a thumb symbol. virtual uint64_t modifyAddressBasedOnFlags(uint64_t Addr, JITSymbolFlags Flags) const { return Addr; } /// Given the common symbols discovered in the object file, emit a /// new section for them and update the symbol mappings in the object and /// symbol table. Error emitCommonSymbols(const ObjectFile &Obj, CommonSymbolList &CommonSymbols, uint64_t CommonSize, uint32_t CommonAlign); /// Emits section data from the object file to the MemoryManager. /// \param IsCode if it's true then allocateCodeSection() will be /// used for emits, else allocateDataSection() will be used. /// \return SectionID. Expected emitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode); /// Find Section in LocalSections. If the secton is not found - emit /// it and store in LocalSections. /// \param IsCode if it's true then allocateCodeSection() will be /// used for emmits, else allocateDataSection() will be used. /// \return SectionID. Expected findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections); // Add a relocation entry that uses the given section. void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID); // Add a relocation entry that uses the given symbol. This symbol may // be found in the global symbol table, or it may be external. void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName); /// Emits long jump instruction to Addr. /// \return Pointer to the memory area for emitting target address. uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0); /// Resolves relocations from Relocs list with address from Value. void resolveRelocationList(const RelocationList &Relocs, uint64_t Value); /// A object file specific relocation resolver /// \param RE The relocation to be resolved /// \param Value Target symbol address to apply the relocation action virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0; /// Parses one or more object file relocations (some object files use /// relocation pairs) and stores it to Relocations or SymbolRelocations /// (this depends on the object file type). /// \return Iterator to the next relocation that needs to be parsed. virtual Expected processRelocationRef(unsigned SectionID, relocation_iterator RelI, const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) = 0; void applyExternalSymbolRelocations( const StringMap ExternalSymbolMap); /// Resolve relocations to external symbols. Error resolveExternalSymbols(); // Compute an upper bound of the memory that is required to load all // sections Error computeTotalAllocSize(const ObjectFile &Obj, uint64_t &CodeSize, Align &CodeAlign, uint64_t &RODataSize, Align &RODataAlign, uint64_t &RWDataSize, Align &RWDataAlign); // Compute GOT size unsigned computeGOTSize(const ObjectFile &Obj); // Compute the stub buffer size required for a section unsigned computeSectionStubBufSize(const ObjectFile &Obj, const SectionRef &Section); // Implementation of the generic part of the loadObject algorithm. Expected loadObjectImpl(const object::ObjectFile &Obj); // Return size of Global Offset Table (GOT) entry virtual size_t getGOTEntrySize() { return 0; } // Hook for the subclasses to do further processing when a symbol is added to // the global symbol table. This function may modify the symbol table entry. virtual void processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Entry) {} // Return true if the relocation R may require allocating a GOT entry. virtual bool relocationNeedsGot(const RelocationRef &R) const { return false; } // Return true if the relocation R may require allocating a stub. virtual bool relocationNeedsStub(const RelocationRef &R) const { return true; // Conservative answer } public: RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver) : MemMgr(MemMgr), Resolver(Resolver), ProcessAllSections(false), HasError(false) { } virtual ~RuntimeDyldImpl(); void setProcessAllSections(bool ProcessAllSections) { this->ProcessAllSections = ProcessAllSections; } virtual std::unique_ptr loadObject(const object::ObjectFile &Obj) = 0; uint64_t getSectionLoadAddress(unsigned SectionID) const { if (SectionID == AbsoluteSymbolSection) return 0; else return Sections[SectionID].getLoadAddress(); } uint8_t *getSectionAddress(unsigned SectionID) const { if (SectionID == AbsoluteSymbolSection) return nullptr; else return Sections[SectionID].getAddress(); } StringRef getSectionContent(unsigned SectionID) const { if (SectionID == AbsoluteSymbolSection) return {}; else return StringRef( reinterpret_cast(Sections[SectionID].getAddress()), Sections[SectionID].getStubOffset() + getMaxStubSize()); } uint8_t* getSymbolLocalAddress(StringRef Name) const { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name); if (pos == GlobalSymbolTable.end()) return nullptr; const auto &SymInfo = pos->second; // Absolute symbols do not have a local address. if (SymInfo.getSectionID() == AbsoluteSymbolSection) return nullptr; return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset(); } unsigned getSymbolSectionID(StringRef Name) const { auto GSTItr = GlobalSymbolTable.find(Name); if (GSTItr == GlobalSymbolTable.end()) return ~0U; return GSTItr->second.getSectionID(); } JITEvaluatedSymbol getSymbol(StringRef Name) const { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name); if (pos == GlobalSymbolTable.end()) return nullptr; const auto &SymEntry = pos->second; uint64_t SectionAddr = 0; if (SymEntry.getSectionID() != AbsoluteSymbolSection) SectionAddr = getSectionLoadAddress(SymEntry.getSectionID()); uint64_t TargetAddr = SectionAddr + SymEntry.getOffset(); // FIXME: Have getSymbol should return the actual address and the client // modify it based on the flags. This will require clients to be // aware of the target architecture, which we should build // infrastructure for. TargetAddr = modifyAddressBasedOnFlags(TargetAddr, SymEntry.getFlags()); return JITEvaluatedSymbol(TargetAddr, SymEntry.getFlags()); } std::map getSymbolTable() const { std::map Result; for (const auto &KV : GlobalSymbolTable) { auto SectionID = KV.second.getSectionID(); uint64_t SectionAddr = getSectionLoadAddress(SectionID); Result[KV.first()] = JITEvaluatedSymbol(SectionAddr + KV.second.getOffset(), KV.second.getFlags()); } return Result; } void resolveRelocations(); void resolveLocalRelocations(); static void finalizeAsync( std::unique_ptr This, unique_function, std::unique_ptr, Error)> OnEmitted, object::OwningBinary O, std::unique_ptr Info); void reassignSectionAddress(unsigned SectionID, uint64_t Addr); void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress); // Is the linker in an error state? bool hasError() { return HasError; } // Mark the error condition as handled and continue. void clearError() { HasError = false; } // Get the error message. StringRef getErrorString() { return ErrorStr; } virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0; void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) { this->NotifyStubEmitted = std::move(NotifyStubEmitted); } virtual void registerEHFrames(); void deregisterEHFrames(); virtual Error finalizeLoad(const ObjectFile &ObjImg, ObjSectionToIDMap &SectionMap) { return Error::success(); } }; } // end namespace llvm #endif