#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the SparseBitVector class. See the doxygen comment for /// SparseBitVector for more details on the algorithm used. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SPARSEBITVECTOR_H #define LLVM_ADT_SPARSEBITVECTOR_H #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include namespace llvm { /// SparseBitVector is an implementation of a bitvector that is sparse by only /// storing the elements that have non-zero bits set. In order to make this /// fast for the most common cases, SparseBitVector is implemented as a linked /// list of SparseBitVectorElements. We maintain a pointer to the last /// SparseBitVectorElement accessed (in the form of a list iterator), in order /// to make multiple in-order test/set constant time after the first one is /// executed. Note that using vectors to store SparseBitVectorElement's does /// not work out very well because it causes insertion in the middle to take /// enormous amounts of time with a large amount of bits. Other structures that /// have better worst cases for insertion in the middle (various balanced trees, /// etc) do not perform as well in practice as a linked list with this iterator /// kept up to date. They are also significantly more memory intensive. template struct SparseBitVectorElement { public: using BitWord = unsigned long; using size_type = unsigned; enum { BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT, BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE, BITS_PER_ELEMENT = ElementSize }; private: // Index of Element in terms of where first bit starts. unsigned ElementIndex; BitWord Bits[BITWORDS_PER_ELEMENT]; SparseBitVectorElement() { ElementIndex = ~0U; memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); } public: explicit SparseBitVectorElement(unsigned Idx) { ElementIndex = Idx; memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); } // Comparison. bool operator==(const SparseBitVectorElement &RHS) const { if (ElementIndex != RHS.ElementIndex) return false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i] != RHS.Bits[i]) return false; return true; } bool operator!=(const SparseBitVectorElement &RHS) const { return !(*this == RHS); } // Return the bits that make up word Idx in our element. BitWord word(unsigned Idx) const { assert(Idx < BITWORDS_PER_ELEMENT); return Bits[Idx]; } unsigned index() const { return ElementIndex; } bool empty() const { for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i]) return false; return true; } void set(unsigned Idx) { Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); } bool test_and_set(unsigned Idx) { bool old = test(Idx); if (!old) { set(Idx); return true; } return false; } void reset(unsigned Idx) { Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); } bool test(unsigned Idx) const { return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE)); } size_type count() const { unsigned NumBits = 0; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) NumBits += llvm::popcount(Bits[i]); return NumBits; } /// find_first - Returns the index of the first set bit. int find_first() const { for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i] != 0) return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); llvm_unreachable("Illegal empty element"); } /// find_last - Returns the index of the last set bit. int find_last() const { for (unsigned I = 0; I < BITWORDS_PER_ELEMENT; ++I) { unsigned Idx = BITWORDS_PER_ELEMENT - I - 1; if (Bits[Idx] != 0) return Idx * BITWORD_SIZE + BITWORD_SIZE - countLeadingZeros(Bits[Idx]) - 1; } llvm_unreachable("Illegal empty element"); } /// find_next - Returns the index of the next set bit starting from the /// "Curr" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Curr) const { if (Curr >= BITS_PER_ELEMENT) return -1; unsigned WordPos = Curr / BITWORD_SIZE; unsigned BitPos = Curr % BITWORD_SIZE; BitWord Copy = Bits[WordPos]; assert(WordPos <= BITWORDS_PER_ELEMENT && "Word Position outside of element"); // Mask off previous bits. Copy &= ~0UL << BitPos; if (Copy != 0) return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); // Check subsequent words. for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i) if (Bits[i] != 0) return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); return -1; } // Union this element with RHS and return true if this one changed. bool unionWith(const SparseBitVectorElement &RHS) { bool changed = false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { BitWord old = changed ? 0 : Bits[i]; Bits[i] |= RHS.Bits[i]; if (!changed && old != Bits[i]) changed = true; } return changed; } // Return true if we have any bits in common with RHS bool intersects(const SparseBitVectorElement &RHS) const { for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { if (RHS.Bits[i] & Bits[i]) return true; } return false; } // Intersect this Element with RHS and return true if this one changed. // BecameZero is set to true if this element became all-zero bits. bool intersectWith(const SparseBitVectorElement &RHS, bool &BecameZero) { bool changed = false; bool allzero = true; BecameZero = false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { BitWord old = changed ? 0 : Bits[i]; Bits[i] &= RHS.Bits[i]; if (Bits[i] != 0) allzero = false; if (!changed && old != Bits[i]) changed = true; } BecameZero = allzero; return changed; } // Intersect this Element with the complement of RHS and return true if this // one changed. BecameZero is set to true if this element became all-zero // bits. bool intersectWithComplement(const SparseBitVectorElement &RHS, bool &BecameZero) { bool changed = false; bool allzero = true; BecameZero = false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { BitWord old = changed ? 0 : Bits[i]; Bits[i] &= ~RHS.Bits[i]; if (Bits[i] != 0) allzero = false; if (!changed && old != Bits[i]) changed = true; } BecameZero = allzero; return changed; } // Three argument version of intersectWithComplement that intersects // RHS1 & ~RHS2 into this element void intersectWithComplement(const SparseBitVectorElement &RHS1, const SparseBitVectorElement &RHS2, bool &BecameZero) { bool allzero = true; BecameZero = false; for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i]; if (Bits[i] != 0) allzero = false; } BecameZero = allzero; } }; template class SparseBitVector { using ElementList = std::list>; using ElementListIter = typename ElementList::iterator; using ElementListConstIter = typename ElementList::const_iterator; enum { BITWORD_SIZE = SparseBitVectorElement::BITWORD_SIZE }; ElementList Elements; // Pointer to our current Element. This has no visible effect on the external // state of a SparseBitVector, it's just used to improve performance in the // common case of testing/modifying bits with similar indices. mutable ElementListIter CurrElementIter; // This is like std::lower_bound, except we do linear searching from the // current position. ElementListIter FindLowerBoundImpl(unsigned ElementIndex) const { // We cache a non-const iterator so we're forced to resort to const_cast to // get the begin/end in the case where 'this' is const. To avoid duplication // of code with the only difference being whether the const cast is present // 'this' is always const in this particular function and we sort out the // difference in FindLowerBound and FindLowerBoundConst. ElementListIter Begin = const_cast *>(this)->Elements.begin(); ElementListIter End = const_cast *>(this)->Elements.end(); if (Elements.empty()) { CurrElementIter = Begin; return CurrElementIter; } // Make sure our current iterator is valid. if (CurrElementIter == End) --CurrElementIter; // Search from our current iterator, either backwards or forwards, // depending on what element we are looking for. ElementListIter ElementIter = CurrElementIter; if (CurrElementIter->index() == ElementIndex) { return ElementIter; } else if (CurrElementIter->index() > ElementIndex) { while (ElementIter != Begin && ElementIter->index() > ElementIndex) --ElementIter; } else { while (ElementIter != End && ElementIter->index() < ElementIndex) ++ElementIter; } CurrElementIter = ElementIter; return ElementIter; } ElementListConstIter FindLowerBoundConst(unsigned ElementIndex) const { return FindLowerBoundImpl(ElementIndex); } ElementListIter FindLowerBound(unsigned ElementIndex) { return FindLowerBoundImpl(ElementIndex); } // Iterator to walk set bits in the bitmap. This iterator is a lot uglier // than it would be, in order to be efficient. class SparseBitVectorIterator { private: bool AtEnd; const SparseBitVector *BitVector = nullptr; // Current element inside of bitmap. ElementListConstIter Iter; // Current bit number inside of our bitmap. unsigned BitNumber; // Current word number inside of our element. unsigned WordNumber; // Current bits from the element. typename SparseBitVectorElement::BitWord Bits; // Move our iterator to the first non-zero bit in the bitmap. void AdvanceToFirstNonZero() { if (AtEnd) return; if (BitVector->Elements.empty()) { AtEnd = true; return; } Iter = BitVector->Elements.begin(); BitNumber = Iter->index() * ElementSize; unsigned BitPos = Iter->find_first(); BitNumber += BitPos; WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; Bits = Iter->word(WordNumber); Bits >>= BitPos % BITWORD_SIZE; } // Move our iterator to the next non-zero bit. void AdvanceToNextNonZero() { if (AtEnd) return; while (Bits && !(Bits & 1)) { Bits >>= 1; BitNumber += 1; } // See if we ran out of Bits in this word. if (!Bits) { int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ; // If we ran out of set bits in this element, move to next element. if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) { ++Iter; WordNumber = 0; // We may run out of elements in the bitmap. if (Iter == BitVector->Elements.end()) { AtEnd = true; return; } // Set up for next non-zero word in bitmap. BitNumber = Iter->index() * ElementSize; NextSetBitNumber = Iter->find_first(); BitNumber += NextSetBitNumber; WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; Bits = Iter->word(WordNumber); Bits >>= NextSetBitNumber % BITWORD_SIZE; } else { WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE; Bits = Iter->word(WordNumber); Bits >>= NextSetBitNumber % BITWORD_SIZE; BitNumber = Iter->index() * ElementSize; BitNumber += NextSetBitNumber; } } } public: SparseBitVectorIterator() = default; SparseBitVectorIterator(const SparseBitVector *RHS, bool end = false):BitVector(RHS) { Iter = BitVector->Elements.begin(); BitNumber = 0; Bits = 0; WordNumber = ~0; AtEnd = end; AdvanceToFirstNonZero(); } // Preincrement. inline SparseBitVectorIterator& operator++() { ++BitNumber; Bits >>= 1; AdvanceToNextNonZero(); return *this; } // Postincrement. inline SparseBitVectorIterator operator++(int) { SparseBitVectorIterator tmp = *this; ++*this; return tmp; } // Return the current set bit number. unsigned operator*() const { return BitNumber; } bool operator==(const SparseBitVectorIterator &RHS) const { // If they are both at the end, ignore the rest of the fields. if (AtEnd && RHS.AtEnd) return true; // Otherwise they are the same if they have the same bit number and // bitmap. return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber; } bool operator!=(const SparseBitVectorIterator &RHS) const { return !(*this == RHS); } }; public: using iterator = SparseBitVectorIterator; SparseBitVector() : Elements(), CurrElementIter(Elements.begin()) {} SparseBitVector(const SparseBitVector &RHS) : Elements(RHS.Elements), CurrElementIter(Elements.begin()) {} SparseBitVector(SparseBitVector &&RHS) : Elements(std::move(RHS.Elements)), CurrElementIter(Elements.begin()) {} // Clear. void clear() { Elements.clear(); } // Assignment SparseBitVector& operator=(const SparseBitVector& RHS) { if (this == &RHS) return *this; Elements = RHS.Elements; CurrElementIter = Elements.begin(); return *this; } SparseBitVector &operator=(SparseBitVector &&RHS) { Elements = std::move(RHS.Elements); CurrElementIter = Elements.begin(); return *this; } // Test, Reset, and Set a bit in the bitmap. bool test(unsigned Idx) const { if (Elements.empty()) return false; unsigned ElementIndex = Idx / ElementSize; ElementListConstIter ElementIter = FindLowerBoundConst(ElementIndex); // If we can't find an element that is supposed to contain this bit, there // is nothing more to do. if (ElementIter == Elements.end() || ElementIter->index() != ElementIndex) return false; return ElementIter->test(Idx % ElementSize); } void reset(unsigned Idx) { if (Elements.empty()) return; unsigned ElementIndex = Idx / ElementSize; ElementListIter ElementIter = FindLowerBound(ElementIndex); // If we can't find an element that is supposed to contain this bit, there // is nothing more to do. if (ElementIter == Elements.end() || ElementIter->index() != ElementIndex) return; ElementIter->reset(Idx % ElementSize); // When the element is zeroed out, delete it. if (ElementIter->empty()) { ++CurrElementIter; Elements.erase(ElementIter); } } void set(unsigned Idx) { unsigned ElementIndex = Idx / ElementSize; ElementListIter ElementIter; if (Elements.empty()) { ElementIter = Elements.emplace(Elements.end(), ElementIndex); } else { ElementIter = FindLowerBound(ElementIndex); if (ElementIter == Elements.end() || ElementIter->index() != ElementIndex) { // We may have hit the beginning of our SparseBitVector, in which case, // we may need to insert right after this element, which requires moving // the current iterator forward one, because insert does insert before. if (ElementIter != Elements.end() && ElementIter->index() < ElementIndex) ++ElementIter; ElementIter = Elements.emplace(ElementIter, ElementIndex); } } CurrElementIter = ElementIter; ElementIter->set(Idx % ElementSize); } bool test_and_set(unsigned Idx) { bool old = test(Idx); if (!old) { set(Idx); return true; } return false; } bool operator!=(const SparseBitVector &RHS) const { return !(*this == RHS); } bool operator==(const SparseBitVector &RHS) const { ElementListConstIter Iter1 = Elements.begin(); ElementListConstIter Iter2 = RHS.Elements.begin(); for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end(); ++Iter1, ++Iter2) { if (*Iter1 != *Iter2) return false; } return Iter1 == Elements.end() && Iter2 == RHS.Elements.end(); } // Union our bitmap with the RHS and return true if we changed. bool operator|=(const SparseBitVector &RHS) { if (this == &RHS) return false; bool changed = false; ElementListIter Iter1 = Elements.begin(); ElementListConstIter Iter2 = RHS.Elements.begin(); // If RHS is empty, we are done if (RHS.Elements.empty()) return false; while (Iter2 != RHS.Elements.end()) { if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) { Elements.insert(Iter1, *Iter2); ++Iter2; changed = true; } else if (Iter1->index() == Iter2->index()) { changed |= Iter1->unionWith(*Iter2); ++Iter1; ++Iter2; } else { ++Iter1; } } CurrElementIter = Elements.begin(); return changed; } // Intersect our bitmap with the RHS and return true if ours changed. bool operator&=(const SparseBitVector &RHS) { if (this == &RHS) return false; bool changed = false; ElementListIter Iter1 = Elements.begin(); ElementListConstIter Iter2 = RHS.Elements.begin(); // Check if both bitmaps are empty. if (Elements.empty() && RHS.Elements.empty()) return false; // Loop through, intersecting as we go, erasing elements when necessary. while (Iter2 != RHS.Elements.end()) { if (Iter1 == Elements.end()) { CurrElementIter = Elements.begin(); return changed; } if (Iter1->index() > Iter2->index()) { ++Iter2; } else if (Iter1->index() == Iter2->index()) { bool BecameZero; changed |= Iter1->intersectWith(*Iter2, BecameZero); if (BecameZero) { ElementListIter IterTmp = Iter1; ++Iter1; Elements.erase(IterTmp); } else { ++Iter1; } ++Iter2; } else { ElementListIter IterTmp = Iter1; ++Iter1; Elements.erase(IterTmp); changed = true; } } if (Iter1 != Elements.end()) { Elements.erase(Iter1, Elements.end()); changed = true; } CurrElementIter = Elements.begin(); return changed; } // Intersect our bitmap with the complement of the RHS and return true // if ours changed. bool intersectWithComplement(const SparseBitVector &RHS) { if (this == &RHS) { if (!empty()) { clear(); return true; } return false; } bool changed = false; ElementListIter Iter1 = Elements.begin(); ElementListConstIter Iter2 = RHS.Elements.begin(); // If either our bitmap or RHS is empty, we are done if (Elements.empty() || RHS.Elements.empty()) return false; // Loop through, intersecting as we go, erasing elements when necessary. while (Iter2 != RHS.Elements.end()) { if (Iter1 == Elements.end()) { CurrElementIter = Elements.begin(); return changed; } if (Iter1->index() > Iter2->index()) { ++Iter2; } else if (Iter1->index() == Iter2->index()) { bool BecameZero; changed |= Iter1->intersectWithComplement(*Iter2, BecameZero); if (BecameZero) { ElementListIter IterTmp = Iter1; ++Iter1; Elements.erase(IterTmp); } else { ++Iter1; } ++Iter2; } else { ++Iter1; } } CurrElementIter = Elements.begin(); return changed; } bool intersectWithComplement(const SparseBitVector *RHS) const { return intersectWithComplement(*RHS); } // Three argument version of intersectWithComplement. // Result of RHS1 & ~RHS2 is stored into this bitmap. void intersectWithComplement(const SparseBitVector &RHS1, const SparseBitVector &RHS2) { if (this == &RHS1) { intersectWithComplement(RHS2); return; } else if (this == &RHS2) { SparseBitVector RHS2Copy(RHS2); intersectWithComplement(RHS1, RHS2Copy); return; } Elements.clear(); CurrElementIter = Elements.begin(); ElementListConstIter Iter1 = RHS1.Elements.begin(); ElementListConstIter Iter2 = RHS2.Elements.begin(); // If RHS1 is empty, we are done // If RHS2 is empty, we still have to copy RHS1 if (RHS1.Elements.empty()) return; // Loop through, intersecting as we go, erasing elements when necessary. while (Iter2 != RHS2.Elements.end()) { if (Iter1 == RHS1.Elements.end()) return; if (Iter1->index() > Iter2->index()) { ++Iter2; } else if (Iter1->index() == Iter2->index()) { bool BecameZero = false; Elements.emplace_back(Iter1->index()); Elements.back().intersectWithComplement(*Iter1, *Iter2, BecameZero); if (BecameZero) Elements.pop_back(); ++Iter1; ++Iter2; } else { Elements.push_back(*Iter1++); } } // copy the remaining elements std::copy(Iter1, RHS1.Elements.end(), std::back_inserter(Elements)); } void intersectWithComplement(const SparseBitVector *RHS1, const SparseBitVector *RHS2) { intersectWithComplement(*RHS1, *RHS2); } bool intersects(const SparseBitVector *RHS) const { return intersects(*RHS); } // Return true if we share any bits in common with RHS bool intersects(const SparseBitVector &RHS) const { ElementListConstIter Iter1 = Elements.begin(); ElementListConstIter Iter2 = RHS.Elements.begin(); // Check if both bitmaps are empty. if (Elements.empty() && RHS.Elements.empty()) return false; // Loop through, intersecting stopping when we hit bits in common. while (Iter2 != RHS.Elements.end()) { if (Iter1 == Elements.end()) return false; if (Iter1->index() > Iter2->index()) { ++Iter2; } else if (Iter1->index() == Iter2->index()) { if (Iter1->intersects(*Iter2)) return true; ++Iter1; ++Iter2; } else { ++Iter1; } } return false; } // Return true iff all bits set in this SparseBitVector are // also set in RHS. bool contains(const SparseBitVector &RHS) const { SparseBitVector Result(*this); Result &= RHS; return (Result == RHS); } // Return the first set bit in the bitmap. Return -1 if no bits are set. int find_first() const { if (Elements.empty()) return -1; const SparseBitVectorElement &First = *(Elements.begin()); return (First.index() * ElementSize) + First.find_first(); } // Return the last set bit in the bitmap. Return -1 if no bits are set. int find_last() const { if (Elements.empty()) return -1; const SparseBitVectorElement &Last = *(Elements.rbegin()); return (Last.index() * ElementSize) + Last.find_last(); } // Return true if the SparseBitVector is empty bool empty() const { return Elements.empty(); } unsigned count() const { unsigned BitCount = 0; for (ElementListConstIter Iter = Elements.begin(); Iter != Elements.end(); ++Iter) BitCount += Iter->count(); return BitCount; } iterator begin() const { return iterator(this); } iterator end() const { return iterator(this, true); } }; // Convenience functions to allow Or and And without dereferencing in the user // code. template inline bool operator |=(SparseBitVector &LHS, const SparseBitVector *RHS) { return LHS |= *RHS; } template inline bool operator |=(SparseBitVector *LHS, const SparseBitVector &RHS) { return LHS->operator|=(RHS); } template inline bool operator &=(SparseBitVector *LHS, const SparseBitVector &RHS) { return LHS->operator&=(RHS); } template inline bool operator &=(SparseBitVector &LHS, const SparseBitVector *RHS) { return LHS &= *RHS; } // Convenience functions for infix union, intersection, difference operators. template inline SparseBitVector operator|(const SparseBitVector &LHS, const SparseBitVector &RHS) { SparseBitVector Result(LHS); Result |= RHS; return Result; } template inline SparseBitVector operator&(const SparseBitVector &LHS, const SparseBitVector &RHS) { SparseBitVector Result(LHS); Result &= RHS; return Result; } template inline SparseBitVector operator-(const SparseBitVector &LHS, const SparseBitVector &RHS) { SparseBitVector Result; Result.intersectWithComplement(LHS, RHS); return Result; } // Dump a SparseBitVector to a stream template void dump(const SparseBitVector &LHS, raw_ostream &out) { out << "["; typename SparseBitVector::iterator bi = LHS.begin(), be = LHS.end(); if (bi != be) { out << *bi; for (++bi; bi != be; ++bi) { out << " " << *bi; } } out << "]\n"; } } // end namespace llvm #endif // LLVM_ADT_SPARSEBITVECTOR_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif