//===--- InitPreprocessor.cpp - PP initialization code. ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the clang::InitializePreprocessor function. // //===----------------------------------------------------------------------===// #include "clang/Basic/FileManager.h" #include "clang/Basic/HLSLRuntime.h" #include "clang/Basic/MacroBuilder.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SyncScope.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/FrontendOptions.h" #include "clang/Frontend/Utils.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Serialization/ASTReader.h" #include "llvm/ADT/APFloat.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" using namespace clang; static bool MacroBodyEndsInBackslash(StringRef MacroBody) { while (!MacroBody.empty() && isWhitespace(MacroBody.back())) MacroBody = MacroBody.drop_back(); return !MacroBody.empty() && MacroBody.back() == '\\'; } // Append a #define line to Buf for Macro. Macro should be of the form XXX, // in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit // "#define XXX Y z W". To get a #define with no value, use "XXX=". static void DefineBuiltinMacro(MacroBuilder &Builder, StringRef Macro, DiagnosticsEngine &Diags) { std::pair MacroPair = Macro.split('='); StringRef MacroName = MacroPair.first; StringRef MacroBody = MacroPair.second; if (MacroName.size() != Macro.size()) { // Per GCC -D semantics, the macro ends at \n if it exists. StringRef::size_type End = MacroBody.find_first_of("\n\r"); if (End != StringRef::npos) Diags.Report(diag::warn_fe_macro_contains_embedded_newline) << MacroName; MacroBody = MacroBody.substr(0, End); // We handle macro bodies which end in a backslash by appending an extra // backslash+newline. This makes sure we don't accidentally treat the // backslash as a line continuation marker. if (MacroBodyEndsInBackslash(MacroBody)) Builder.defineMacro(MacroName, Twine(MacroBody) + "\\\n"); else Builder.defineMacro(MacroName, MacroBody); } else { // Push "macroname 1". Builder.defineMacro(Macro); } } /// AddImplicitInclude - Add an implicit \#include of the specified file to the /// predefines buffer. /// As these includes are generated by -include arguments the header search /// logic is going to search relatively to the current working directory. static void AddImplicitInclude(MacroBuilder &Builder, StringRef File) { Builder.append(Twine("#include \"") + File + "\""); } static void AddImplicitIncludeMacros(MacroBuilder &Builder, StringRef File) { Builder.append(Twine("#__include_macros \"") + File + "\""); // Marker token to stop the __include_macros fetch loop. Builder.append("##"); // ##? } /// Add an implicit \#include using the original file used to generate /// a PCH file. static void AddImplicitIncludePCH(MacroBuilder &Builder, Preprocessor &PP, const PCHContainerReader &PCHContainerRdr, StringRef ImplicitIncludePCH) { std::string OriginalFile = ASTReader::getOriginalSourceFile( std::string(ImplicitIncludePCH), PP.getFileManager(), PCHContainerRdr, PP.getDiagnostics()); if (OriginalFile.empty()) return; AddImplicitInclude(Builder, OriginalFile); } /// PickFP - This is used to pick a value based on the FP semantics of the /// specified FP model. template static T PickFP(const llvm::fltSemantics *Sem, T IEEEHalfVal, T IEEESingleVal, T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal, T IEEEQuadVal) { if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEhalf()) return IEEEHalfVal; if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEsingle()) return IEEESingleVal; if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEdouble()) return IEEEDoubleVal; if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::x87DoubleExtended()) return X87DoubleExtendedVal; if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::PPCDoubleDouble()) return PPCDoubleDoubleVal; assert(Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEquad()); return IEEEQuadVal; } static void DefineFloatMacros(MacroBuilder &Builder, StringRef Prefix, const llvm::fltSemantics *Sem, StringRef Ext) { const char *DenormMin, *Epsilon, *Max, *Min; DenormMin = PickFP(Sem, "5.9604644775390625e-8", "1.40129846e-45", "4.9406564584124654e-324", "3.64519953188247460253e-4951", "4.94065645841246544176568792868221e-324", "6.47517511943802511092443895822764655e-4966"); int Digits = PickFP(Sem, 3, 6, 15, 18, 31, 33); int DecimalDigits = PickFP(Sem, 5, 9, 17, 21, 33, 36); Epsilon = PickFP(Sem, "9.765625e-4", "1.19209290e-7", "2.2204460492503131e-16", "1.08420217248550443401e-19", "4.94065645841246544176568792868221e-324", "1.92592994438723585305597794258492732e-34"); int MantissaDigits = PickFP(Sem, 11, 24, 53, 64, 106, 113); int Min10Exp = PickFP(Sem, -4, -37, -307, -4931, -291, -4931); int Max10Exp = PickFP(Sem, 4, 38, 308, 4932, 308, 4932); int MinExp = PickFP(Sem, -13, -125, -1021, -16381, -968, -16381); int MaxExp = PickFP(Sem, 16, 128, 1024, 16384, 1024, 16384); Min = PickFP(Sem, "6.103515625e-5", "1.17549435e-38", "2.2250738585072014e-308", "3.36210314311209350626e-4932", "2.00416836000897277799610805135016e-292", "3.36210314311209350626267781732175260e-4932"); Max = PickFP(Sem, "6.5504e+4", "3.40282347e+38", "1.7976931348623157e+308", "1.18973149535723176502e+4932", "1.79769313486231580793728971405301e+308", "1.18973149535723176508575932662800702e+4932"); SmallString<32> DefPrefix; DefPrefix = "__"; DefPrefix += Prefix; DefPrefix += "_"; Builder.defineMacro(DefPrefix + "DENORM_MIN__", Twine(DenormMin)+Ext); Builder.defineMacro(DefPrefix + "HAS_DENORM__"); Builder.defineMacro(DefPrefix + "DIG__", Twine(Digits)); Builder.defineMacro(DefPrefix + "DECIMAL_DIG__", Twine(DecimalDigits)); Builder.defineMacro(DefPrefix + "EPSILON__", Twine(Epsilon)+Ext); Builder.defineMacro(DefPrefix + "HAS_INFINITY__"); Builder.defineMacro(DefPrefix + "HAS_QUIET_NAN__"); Builder.defineMacro(DefPrefix + "MANT_DIG__", Twine(MantissaDigits)); Builder.defineMacro(DefPrefix + "MAX_10_EXP__", Twine(Max10Exp)); Builder.defineMacro(DefPrefix + "MAX_EXP__", Twine(MaxExp)); Builder.defineMacro(DefPrefix + "MAX__", Twine(Max)+Ext); Builder.defineMacro(DefPrefix + "MIN_10_EXP__","("+Twine(Min10Exp)+")"); Builder.defineMacro(DefPrefix + "MIN_EXP__", "("+Twine(MinExp)+")"); Builder.defineMacro(DefPrefix + "MIN__", Twine(Min)+Ext); } /// DefineTypeSize - Emit a macro to the predefines buffer that declares a macro /// named MacroName with the max value for a type with width 'TypeWidth' a /// signedness of 'isSigned' and with a value suffix of 'ValSuffix' (e.g. LL). static void DefineTypeSize(const Twine &MacroName, unsigned TypeWidth, StringRef ValSuffix, bool isSigned, MacroBuilder &Builder) { llvm::APInt MaxVal = isSigned ? llvm::APInt::getSignedMaxValue(TypeWidth) : llvm::APInt::getMaxValue(TypeWidth); Builder.defineMacro(MacroName, toString(MaxVal, 10, isSigned) + ValSuffix); } /// DefineTypeSize - An overloaded helper that uses TargetInfo to determine /// the width, suffix, and signedness of the given type static void DefineTypeSize(const Twine &MacroName, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { DefineTypeSize(MacroName, TI.getTypeWidth(Ty), TI.getTypeConstantSuffix(Ty), TI.isTypeSigned(Ty), Builder); } static void DefineFmt(const Twine &Prefix, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { bool IsSigned = TI.isTypeSigned(Ty); StringRef FmtModifier = TI.getTypeFormatModifier(Ty); for (const char *Fmt = IsSigned ? "di" : "ouxX"; *Fmt; ++Fmt) { Builder.defineMacro(Prefix + "_FMT" + Twine(*Fmt) + "__", Twine("\"") + FmtModifier + Twine(*Fmt) + "\""); } } static void DefineType(const Twine &MacroName, TargetInfo::IntType Ty, MacroBuilder &Builder) { Builder.defineMacro(MacroName, TargetInfo::getTypeName(Ty)); } static void DefineTypeWidth(const Twine &MacroName, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { Builder.defineMacro(MacroName, Twine(TI.getTypeWidth(Ty))); } static void DefineTypeSizeof(StringRef MacroName, unsigned BitWidth, const TargetInfo &TI, MacroBuilder &Builder) { Builder.defineMacro(MacroName, Twine(BitWidth / TI.getCharWidth())); } // This will generate a macro based on the prefix with `_MAX__` as the suffix // for the max value representable for the type, and a macro with a `_WIDTH__` // suffix for the width of the type. static void DefineTypeSizeAndWidth(const Twine &Prefix, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { DefineTypeSize(Prefix + "_MAX__", Ty, TI, Builder); DefineTypeWidth(Prefix + "_WIDTH__", Ty, TI, Builder); } static void DefineExactWidthIntType(TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { int TypeWidth = TI.getTypeWidth(Ty); bool IsSigned = TI.isTypeSigned(Ty); // Use the target specified int64 type, when appropriate, so that [u]int64_t // ends up being defined in terms of the correct type. if (TypeWidth == 64) Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type(); // Use the target specified int16 type when appropriate. Some MCU targets // (such as AVR) have definition of [u]int16_t to [un]signed int. if (TypeWidth == 16) Ty = IsSigned ? TI.getInt16Type() : TI.getUInt16Type(); const char *Prefix = IsSigned ? "__INT" : "__UINT"; DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder); DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder); StringRef ConstSuffix(TI.getTypeConstantSuffix(Ty)); Builder.defineMacro(Prefix + Twine(TypeWidth) + "_C_SUFFIX__", ConstSuffix); } static void DefineExactWidthIntTypeSize(TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { int TypeWidth = TI.getTypeWidth(Ty); bool IsSigned = TI.isTypeSigned(Ty); // Use the target specified int64 type, when appropriate, so that [u]int64_t // ends up being defined in terms of the correct type. if (TypeWidth == 64) Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type(); // We don't need to define a _WIDTH macro for the exact-width types because // we already know the width. const char *Prefix = IsSigned ? "__INT" : "__UINT"; DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder); } static void DefineLeastWidthIntType(unsigned TypeWidth, bool IsSigned, const TargetInfo &TI, MacroBuilder &Builder) { TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned); if (Ty == TargetInfo::NoInt) return; const char *Prefix = IsSigned ? "__INT_LEAST" : "__UINT_LEAST"; DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder); // We only want the *_WIDTH macro for the signed types to avoid too many // predefined macros (the unsigned width and the signed width are identical.) if (IsSigned) DefineTypeSizeAndWidth(Prefix + Twine(TypeWidth), Ty, TI, Builder); else DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder); DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder); } static void DefineFastIntType(unsigned TypeWidth, bool IsSigned, const TargetInfo &TI, MacroBuilder &Builder) { // stdint.h currently defines the fast int types as equivalent to the least // types. TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned); if (Ty == TargetInfo::NoInt) return; const char *Prefix = IsSigned ? "__INT_FAST" : "__UINT_FAST"; DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder); // We only want the *_WIDTH macro for the signed types to avoid too many // predefined macros (the unsigned width and the signed width are identical.) if (IsSigned) DefineTypeSizeAndWidth(Prefix + Twine(TypeWidth), Ty, TI, Builder); else DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder); DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder); } /// Get the value the ATOMIC_*_LOCK_FREE macro should have for a type with /// the specified properties. static const char *getLockFreeValue(unsigned TypeWidth, const TargetInfo &TI) { // Fully-aligned, power-of-2 sizes no larger than the inline // width will be inlined as lock-free operations. // Note: we do not need to check alignment since _Atomic(T) is always // appropriately-aligned in clang. if (TI.hasBuiltinAtomic(TypeWidth, TypeWidth)) return "2"; // "always lock free" // We cannot be certain what operations the lib calls might be // able to implement as lock-free on future processors. return "1"; // "sometimes lock free" } /// Add definitions required for a smooth interaction between /// Objective-C++ automated reference counting and libstdc++ (4.2). static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts, MacroBuilder &Builder) { Builder.defineMacro("_GLIBCXX_PREDEFINED_OBJC_ARC_IS_SCALAR"); std::string Result; { // Provide specializations for the __is_scalar type trait so that // lifetime-qualified objects are not considered "scalar" types, which // libstdc++ uses as an indicator of the presence of trivial copy, assign, // default-construct, and destruct semantics (none of which hold for // lifetime-qualified objects in ARC). llvm::raw_string_ostream Out(Result); Out << "namespace std {\n" << "\n" << "struct __true_type;\n" << "struct __false_type;\n" << "\n"; Out << "template struct __is_scalar;\n" << "\n"; if (LangOpts.ObjCAutoRefCount) { Out << "template\n" << "struct __is_scalar<__attribute__((objc_ownership(strong))) _Tp> {\n" << " enum { __value = 0 };\n" << " typedef __false_type __type;\n" << "};\n" << "\n"; } if (LangOpts.ObjCWeak) { Out << "template\n" << "struct __is_scalar<__attribute__((objc_ownership(weak))) _Tp> {\n" << " enum { __value = 0 };\n" << " typedef __false_type __type;\n" << "};\n" << "\n"; } if (LangOpts.ObjCAutoRefCount) { Out << "template\n" << "struct __is_scalar<__attribute__((objc_ownership(autoreleasing)))" << " _Tp> {\n" << " enum { __value = 0 };\n" << " typedef __false_type __type;\n" << "};\n" << "\n"; } Out << "}\n"; } Builder.append(Result); } static void InitializeStandardPredefinedMacros(const TargetInfo &TI, const LangOptions &LangOpts, const FrontendOptions &FEOpts, MacroBuilder &Builder) { if (LangOpts.HLSL) { Builder.defineMacro("__hlsl_clang"); // HLSL Version Builder.defineMacro("__HLSL_VERSION", Twine((unsigned)LangOpts.getHLSLVersion())); if (LangOpts.NativeHalfType) Builder.defineMacro("__HLSL_ENABLE_16_BIT", Twine((unsigned)LangOpts.getHLSLVersion())); // Shader target information // "enums" for shader stages Builder.defineMacro("__SHADER_STAGE_VERTEX", Twine((uint32_t)ShaderStage::Vertex)); Builder.defineMacro("__SHADER_STAGE_PIXEL", Twine((uint32_t)ShaderStage::Pixel)); Builder.defineMacro("__SHADER_STAGE_GEOMETRY", Twine((uint32_t)ShaderStage::Geometry)); Builder.defineMacro("__SHADER_STAGE_HULL", Twine((uint32_t)ShaderStage::Hull)); Builder.defineMacro("__SHADER_STAGE_DOMAIN", Twine((uint32_t)ShaderStage::Domain)); Builder.defineMacro("__SHADER_STAGE_COMPUTE", Twine((uint32_t)ShaderStage::Compute)); Builder.defineMacro("__SHADER_STAGE_AMPLIFICATION", Twine((uint32_t)ShaderStage::Amplification)); Builder.defineMacro("__SHADER_STAGE_MESH", Twine((uint32_t)ShaderStage::Mesh)); Builder.defineMacro("__SHADER_STAGE_LIBRARY", Twine((uint32_t)ShaderStage::Library)); // The current shader stage itself uint32_t StageInteger = static_cast( hlsl::getStageFromEnvironment(TI.getTriple().getEnvironment())); Builder.defineMacro("__SHADER_TARGET_STAGE", Twine(StageInteger)); // Add target versions if (TI.getTriple().getOS() == llvm::Triple::ShaderModel) { VersionTuple Version = TI.getTriple().getOSVersion(); Builder.defineMacro("__SHADER_TARGET_MAJOR", Twine(Version.getMajor())); unsigned Minor = Version.getMinor().value_or(0); Builder.defineMacro("__SHADER_TARGET_MINOR", Twine(Minor)); } return; } // C++ [cpp.predefined]p1: // The following macro names shall be defined by the implementation: // -- __STDC__ // [C++] Whether __STDC__ is predefined and if so, what its value is, // are implementation-defined. // (Removed in C++20.) if (!LangOpts.MSVCCompat && !LangOpts.TraditionalCPP) Builder.defineMacro("__STDC__"); // -- __STDC_HOSTED__ // The integer literal 1 if the implementation is a hosted // implementation or the integer literal 0 if it is not. if (LangOpts.Freestanding) Builder.defineMacro("__STDC_HOSTED__", "0"); else Builder.defineMacro("__STDC_HOSTED__"); // -- __STDC_VERSION__ // [C++] Whether __STDC_VERSION__ is predefined and if so, what its // value is, are implementation-defined. // (Removed in C++20.) if (!LangOpts.CPlusPlus) { // FIXME: Use correct value for C23. if (LangOpts.C2x) Builder.defineMacro("__STDC_VERSION__", "202000L"); else if (LangOpts.C17) Builder.defineMacro("__STDC_VERSION__", "201710L"); else if (LangOpts.C11) Builder.defineMacro("__STDC_VERSION__", "201112L"); else if (LangOpts.C99) Builder.defineMacro("__STDC_VERSION__", "199901L"); else if (!LangOpts.GNUMode && LangOpts.Digraphs) Builder.defineMacro("__STDC_VERSION__", "199409L"); } else { // -- __cplusplus // FIXME: Use correct value for C++23. if (LangOpts.CPlusPlus2b) Builder.defineMacro("__cplusplus", "202101L"); // [C++20] The integer literal 202002L. else if (LangOpts.CPlusPlus20) Builder.defineMacro("__cplusplus", "202002L"); // [C++17] The integer literal 201703L. else if (LangOpts.CPlusPlus17) Builder.defineMacro("__cplusplus", "201703L"); // [C++14] The name __cplusplus is defined to the value 201402L when // compiling a C++ translation unit. else if (LangOpts.CPlusPlus14) Builder.defineMacro("__cplusplus", "201402L"); // [C++11] The name __cplusplus is defined to the value 201103L when // compiling a C++ translation unit. else if (LangOpts.CPlusPlus11) Builder.defineMacro("__cplusplus", "201103L"); // [C++03] The name __cplusplus is defined to the value 199711L when // compiling a C++ translation unit. else Builder.defineMacro("__cplusplus", "199711L"); // -- __STDCPP_DEFAULT_NEW_ALIGNMENT__ // [C++17] An integer literal of type std::size_t whose value is the // alignment guaranteed by a call to operator new(std::size_t) // // We provide this in all language modes, since it seems generally useful. Builder.defineMacro("__STDCPP_DEFAULT_NEW_ALIGNMENT__", Twine(TI.getNewAlign() / TI.getCharWidth()) + TI.getTypeConstantSuffix(TI.getSizeType())); // -- __STDCPP_­THREADS__ // Defined, and has the value integer literal 1, if and only if a // program can have more than one thread of execution. if (LangOpts.getThreadModel() == LangOptions::ThreadModelKind::POSIX) Builder.defineMacro("__STDCPP_THREADS__", "1"); } // In C11 these are environment macros. In C++11 they are only defined // as part of . To prevent breakage when mixing C and C++ // code, define these macros unconditionally. We can define them // unconditionally, as Clang always uses UTF-16 and UTF-32 for 16-bit // and 32-bit character literals. Builder.defineMacro("__STDC_UTF_16__", "1"); Builder.defineMacro("__STDC_UTF_32__", "1"); if (LangOpts.ObjC) Builder.defineMacro("__OBJC__"); // OpenCL v1.0/1.1 s6.9, v1.2/2.0 s6.10: Preprocessor Directives and Macros. if (LangOpts.OpenCL) { if (LangOpts.CPlusPlus) { switch (LangOpts.OpenCLCPlusPlusVersion) { case 100: Builder.defineMacro("__OPENCL_CPP_VERSION__", "100"); break; case 202100: Builder.defineMacro("__OPENCL_CPP_VERSION__", "202100"); break; default: llvm_unreachable("Unsupported C++ version for OpenCL"); } Builder.defineMacro("__CL_CPP_VERSION_1_0__", "100"); Builder.defineMacro("__CL_CPP_VERSION_2021__", "202100"); } else { // OpenCL v1.0 and v1.1 do not have a predefined macro to indicate the // language standard with which the program is compiled. __OPENCL_VERSION__ // is for the OpenCL version supported by the OpenCL device, which is not // necessarily the language standard with which the program is compiled. // A shared OpenCL header file requires a macro to indicate the language // standard. As a workaround, __OPENCL_C_VERSION__ is defined for // OpenCL v1.0 and v1.1. switch (LangOpts.OpenCLVersion) { case 100: Builder.defineMacro("__OPENCL_C_VERSION__", "100"); break; case 110: Builder.defineMacro("__OPENCL_C_VERSION__", "110"); break; case 120: Builder.defineMacro("__OPENCL_C_VERSION__", "120"); break; case 200: Builder.defineMacro("__OPENCL_C_VERSION__", "200"); break; case 300: Builder.defineMacro("__OPENCL_C_VERSION__", "300"); break; default: llvm_unreachable("Unsupported OpenCL version"); } } Builder.defineMacro("CL_VERSION_1_0", "100"); Builder.defineMacro("CL_VERSION_1_1", "110"); Builder.defineMacro("CL_VERSION_1_2", "120"); Builder.defineMacro("CL_VERSION_2_0", "200"); Builder.defineMacro("CL_VERSION_3_0", "300"); if (TI.isLittleEndian()) Builder.defineMacro("__ENDIAN_LITTLE__"); if (LangOpts.FastRelaxedMath) Builder.defineMacro("__FAST_RELAXED_MATH__"); } if (LangOpts.SYCLIsDevice || LangOpts.SYCLIsHost) { // SYCL Version is set to a value when building SYCL applications if (LangOpts.getSYCLVersion() == LangOptions::SYCL_2017) Builder.defineMacro("CL_SYCL_LANGUAGE_VERSION", "121"); else if (LangOpts.getSYCLVersion() == LangOptions::SYCL_2020) Builder.defineMacro("SYCL_LANGUAGE_VERSION", "202001"); } // Not "standard" per se, but available even with the -undef flag. if (LangOpts.AsmPreprocessor) Builder.defineMacro("__ASSEMBLER__"); if (LangOpts.CUDA) { if (LangOpts.GPURelocatableDeviceCode) Builder.defineMacro("__CLANG_RDC__"); if (!LangOpts.HIP) Builder.defineMacro("__CUDA__"); } if (LangOpts.HIP) { Builder.defineMacro("__HIP__"); Builder.defineMacro("__HIPCC__"); Builder.defineMacro("__HIP_MEMORY_SCOPE_SINGLETHREAD", "1"); Builder.defineMacro("__HIP_MEMORY_SCOPE_WAVEFRONT", "2"); Builder.defineMacro("__HIP_MEMORY_SCOPE_WORKGROUP", "3"); Builder.defineMacro("__HIP_MEMORY_SCOPE_AGENT", "4"); Builder.defineMacro("__HIP_MEMORY_SCOPE_SYSTEM", "5"); if (LangOpts.CUDAIsDevice) Builder.defineMacro("__HIP_DEVICE_COMPILE__"); if (LangOpts.GPUDefaultStream == LangOptions::GPUDefaultStreamKind::PerThread) Builder.defineMacro("HIP_API_PER_THREAD_DEFAULT_STREAM"); } } /// Initialize the predefined C++ language feature test macros defined in /// ISO/IEC JTC1/SC22/WG21 (C++) SD-6: "SG10 Feature Test Recommendations". static void InitializeCPlusPlusFeatureTestMacros(const LangOptions &LangOpts, MacroBuilder &Builder) { // C++98 features. if (LangOpts.RTTI) Builder.defineMacro("__cpp_rtti", "199711L"); if (LangOpts.CXXExceptions) Builder.defineMacro("__cpp_exceptions", "199711L"); // C++11 features. if (LangOpts.CPlusPlus11) { Builder.defineMacro("__cpp_unicode_characters", "200704L"); Builder.defineMacro("__cpp_raw_strings", "200710L"); Builder.defineMacro("__cpp_unicode_literals", "200710L"); Builder.defineMacro("__cpp_user_defined_literals", "200809L"); Builder.defineMacro("__cpp_lambdas", "200907L"); Builder.defineMacro("__cpp_constexpr", LangOpts.CPlusPlus2b ? "202211L" : LangOpts.CPlusPlus20 ? "201907L" : LangOpts.CPlusPlus17 ? "201603L" : LangOpts.CPlusPlus14 ? "201304L" : "200704"); Builder.defineMacro("__cpp_constexpr_in_decltype", "201711L"); Builder.defineMacro("__cpp_range_based_for", LangOpts.CPlusPlus17 ? "201603L" : "200907"); Builder.defineMacro("__cpp_static_assert", LangOpts.CPlusPlus17 ? "201411L" : "200410"); Builder.defineMacro("__cpp_decltype", "200707L"); Builder.defineMacro("__cpp_attributes", "200809L"); Builder.defineMacro("__cpp_rvalue_references", "200610L"); Builder.defineMacro("__cpp_variadic_templates", "200704L"); Builder.defineMacro("__cpp_initializer_lists", "200806L"); Builder.defineMacro("__cpp_delegating_constructors", "200604L"); Builder.defineMacro("__cpp_nsdmi", "200809L"); Builder.defineMacro("__cpp_inheriting_constructors", "201511L"); Builder.defineMacro("__cpp_ref_qualifiers", "200710L"); Builder.defineMacro("__cpp_alias_templates", "200704L"); } if (LangOpts.ThreadsafeStatics) Builder.defineMacro("__cpp_threadsafe_static_init", "200806L"); // C++14 features. if (LangOpts.CPlusPlus14) { Builder.defineMacro("__cpp_binary_literals", "201304L"); Builder.defineMacro("__cpp_digit_separators", "201309L"); Builder.defineMacro("__cpp_init_captures", LangOpts.CPlusPlus20 ? "201803L" : "201304L"); Builder.defineMacro("__cpp_generic_lambdas", LangOpts.CPlusPlus20 ? "201707L" : "201304L"); Builder.defineMacro("__cpp_decltype_auto", "201304L"); Builder.defineMacro("__cpp_return_type_deduction", "201304L"); Builder.defineMacro("__cpp_aggregate_nsdmi", "201304L"); Builder.defineMacro("__cpp_variable_templates", "201304L"); } if (LangOpts.SizedDeallocation) Builder.defineMacro("__cpp_sized_deallocation", "201309L"); // C++17 features. if (LangOpts.CPlusPlus17) { Builder.defineMacro("__cpp_hex_float", "201603L"); Builder.defineMacro("__cpp_inline_variables", "201606L"); Builder.defineMacro("__cpp_noexcept_function_type", "201510L"); Builder.defineMacro("__cpp_capture_star_this", "201603L"); Builder.defineMacro("__cpp_if_constexpr", "201606L"); Builder.defineMacro("__cpp_deduction_guides", "201703L"); // (not latest) Builder.defineMacro("__cpp_template_auto", "201606L"); // (old name) Builder.defineMacro("__cpp_namespace_attributes", "201411L"); Builder.defineMacro("__cpp_enumerator_attributes", "201411L"); Builder.defineMacro("__cpp_nested_namespace_definitions", "201411L"); Builder.defineMacro("__cpp_variadic_using", "201611L"); Builder.defineMacro("__cpp_aggregate_bases", "201603L"); Builder.defineMacro("__cpp_structured_bindings", "201606L"); Builder.defineMacro("__cpp_nontype_template_args", "201411L"); // (not latest) Builder.defineMacro("__cpp_fold_expressions", "201603L"); Builder.defineMacro("__cpp_guaranteed_copy_elision", "201606L"); Builder.defineMacro("__cpp_nontype_template_parameter_auto", "201606L"); } if (LangOpts.AlignedAllocation && !LangOpts.AlignedAllocationUnavailable) Builder.defineMacro("__cpp_aligned_new", "201606L"); if (LangOpts.RelaxedTemplateTemplateArgs) Builder.defineMacro("__cpp_template_template_args", "201611L"); // C++20 features. if (LangOpts.CPlusPlus20) { Builder.defineMacro("__cpp_aggregate_paren_init", "201902L"); // P0848 is implemented, but we're still waiting for other concepts // issues to be addressed before bumping __cpp_concepts up to 202002L. // Refer to the discussion of this at https://reviews.llvm.org/D128619. Builder.defineMacro("__cpp_concepts", "201907L"); Builder.defineMacro("__cpp_conditional_explicit", "201806L"); //Builder.defineMacro("__cpp_consteval", "201811L"); Builder.defineMacro("__cpp_constexpr_dynamic_alloc", "201907L"); Builder.defineMacro("__cpp_constinit", "201907L"); Builder.defineMacro("__cpp_impl_coroutine", "201902L"); Builder.defineMacro("__cpp_designated_initializers", "201707L"); Builder.defineMacro("__cpp_impl_three_way_comparison", "201907L"); //Builder.defineMacro("__cpp_modules", "201907L"); Builder.defineMacro("__cpp_using_enum", "201907L"); } // C++2b features. if (LangOpts.CPlusPlus2b) { Builder.defineMacro("__cpp_implicit_move", "202011L"); Builder.defineMacro("__cpp_size_t_suffix", "202011L"); Builder.defineMacro("__cpp_if_consteval", "202106L"); Builder.defineMacro("__cpp_multidimensional_subscript", "202211L"); } // We provide those C++2b features as extensions in earlier language modes, so // we also define their feature test macros. if (LangOpts.CPlusPlus11) Builder.defineMacro("__cpp_static_call_operator", "202207L"); Builder.defineMacro("__cpp_named_character_escapes", "202207L"); if (LangOpts.Char8) Builder.defineMacro("__cpp_char8_t", "202207L"); Builder.defineMacro("__cpp_impl_destroying_delete", "201806L"); // TS features. if (LangOpts.Coroutines) Builder.defineMacro("__cpp_coroutines", "201703L"); } /// InitializeOpenCLFeatureTestMacros - Define OpenCL macros based on target /// settings and language version void InitializeOpenCLFeatureTestMacros(const TargetInfo &TI, const LangOptions &Opts, MacroBuilder &Builder) { const llvm::StringMap &OpenCLFeaturesMap = TI.getSupportedOpenCLOpts(); // FIXME: OpenCL options which affect language semantics/syntax // should be moved into LangOptions. auto defineOpenCLExtMacro = [&](llvm::StringRef Name, auto... OptArgs) { // Check if extension is supported by target and is available in this // OpenCL version if (TI.hasFeatureEnabled(OpenCLFeaturesMap, Name) && OpenCLOptions::isOpenCLOptionAvailableIn(Opts, OptArgs...)) Builder.defineMacro(Name); }; #define OPENCL_GENERIC_EXTENSION(Ext, ...) \ defineOpenCLExtMacro(#Ext, __VA_ARGS__); #include "clang/Basic/OpenCLExtensions.def" // Assume compiling for FULL profile Builder.defineMacro("__opencl_c_int64"); } static void InitializePredefinedMacros(const TargetInfo &TI, const LangOptions &LangOpts, const FrontendOptions &FEOpts, const PreprocessorOptions &PPOpts, MacroBuilder &Builder) { // Compiler version introspection macros. Builder.defineMacro("__llvm__"); // LLVM Backend Builder.defineMacro("__clang__"); // Clang Frontend #define TOSTR2(X) #X #define TOSTR(X) TOSTR2(X) Builder.defineMacro("__clang_major__", TOSTR(CLANG_VERSION_MAJOR)); Builder.defineMacro("__clang_minor__", TOSTR(CLANG_VERSION_MINOR)); Builder.defineMacro("__clang_patchlevel__", TOSTR(CLANG_VERSION_PATCHLEVEL)); #undef TOSTR #undef TOSTR2 Builder.defineMacro("__clang_version__", "\"" CLANG_VERSION_STRING " " + getClangFullRepositoryVersion() + "\""); if (LangOpts.GNUCVersion != 0) { // Major, minor, patch, are given two decimal places each, so 4.2.1 becomes // 40201. unsigned GNUCMajor = LangOpts.GNUCVersion / 100 / 100; unsigned GNUCMinor = LangOpts.GNUCVersion / 100 % 100; unsigned GNUCPatch = LangOpts.GNUCVersion % 100; Builder.defineMacro("__GNUC__", Twine(GNUCMajor)); Builder.defineMacro("__GNUC_MINOR__", Twine(GNUCMinor)); Builder.defineMacro("__GNUC_PATCHLEVEL__", Twine(GNUCPatch)); Builder.defineMacro("__GXX_ABI_VERSION", "1002"); if (LangOpts.CPlusPlus) { Builder.defineMacro("__GNUG__", Twine(GNUCMajor)); Builder.defineMacro("__GXX_WEAK__"); } } // Define macros for the C11 / C++11 memory orderings Builder.defineMacro("__ATOMIC_RELAXED", "0"); Builder.defineMacro("__ATOMIC_CONSUME", "1"); Builder.defineMacro("__ATOMIC_ACQUIRE", "2"); Builder.defineMacro("__ATOMIC_RELEASE", "3"); Builder.defineMacro("__ATOMIC_ACQ_REL", "4"); Builder.defineMacro("__ATOMIC_SEQ_CST", "5"); // Define macros for the OpenCL memory scope. // The values should match AtomicScopeOpenCLModel::ID enum. static_assert( static_cast(AtomicScopeOpenCLModel::WorkGroup) == 1 && static_cast(AtomicScopeOpenCLModel::Device) == 2 && static_cast(AtomicScopeOpenCLModel::AllSVMDevices) == 3 && static_cast(AtomicScopeOpenCLModel::SubGroup) == 4, "Invalid OpenCL memory scope enum definition"); Builder.defineMacro("__OPENCL_MEMORY_SCOPE_WORK_ITEM", "0"); Builder.defineMacro("__OPENCL_MEMORY_SCOPE_WORK_GROUP", "1"); Builder.defineMacro("__OPENCL_MEMORY_SCOPE_DEVICE", "2"); Builder.defineMacro("__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES", "3"); Builder.defineMacro("__OPENCL_MEMORY_SCOPE_SUB_GROUP", "4"); // Support for #pragma redefine_extname (Sun compatibility) Builder.defineMacro("__PRAGMA_REDEFINE_EXTNAME", "1"); // Previously this macro was set to a string aiming to achieve compatibility // with GCC 4.2.1. Now, just return the full Clang version Builder.defineMacro("__VERSION__", "\"" + Twine(getClangFullCPPVersion()) + "\""); // Initialize language-specific preprocessor defines. // Standard conforming mode? if (!LangOpts.GNUMode && !LangOpts.MSVCCompat) Builder.defineMacro("__STRICT_ANSI__"); if (LangOpts.GNUCVersion && LangOpts.CPlusPlus11) Builder.defineMacro("__GXX_EXPERIMENTAL_CXX0X__"); if (LangOpts.ObjC) { if (LangOpts.ObjCRuntime.isNonFragile()) { Builder.defineMacro("__OBJC2__"); if (LangOpts.ObjCExceptions) Builder.defineMacro("OBJC_ZEROCOST_EXCEPTIONS"); } if (LangOpts.getGC() != LangOptions::NonGC) Builder.defineMacro("__OBJC_GC__"); if (LangOpts.ObjCRuntime.isNeXTFamily()) Builder.defineMacro("__NEXT_RUNTIME__"); if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::GNUstep) { auto version = LangOpts.ObjCRuntime.getVersion(); std::string versionString = "1"; // Don't rely on the tuple argument, because we can be asked to target // later ABIs than we actually support, so clamp these values to those // currently supported if (version >= VersionTuple(2, 0)) Builder.defineMacro("__OBJC_GNUSTEP_RUNTIME_ABI__", "20"); else Builder.defineMacro( "__OBJC_GNUSTEP_RUNTIME_ABI__", "1" + Twine(std::min(8U, version.getMinor().value_or(0)))); } if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::ObjFW) { VersionTuple tuple = LangOpts.ObjCRuntime.getVersion(); unsigned minor = tuple.getMinor().value_or(0); unsigned subminor = tuple.getSubminor().value_or(0); Builder.defineMacro("__OBJFW_RUNTIME_ABI__", Twine(tuple.getMajor() * 10000 + minor * 100 + subminor)); } Builder.defineMacro("IBOutlet", "__attribute__((iboutlet))"); Builder.defineMacro("IBOutletCollection(ClassName)", "__attribute__((iboutletcollection(ClassName)))"); Builder.defineMacro("IBAction", "void)__attribute__((ibaction)"); Builder.defineMacro("IBInspectable", ""); Builder.defineMacro("IB_DESIGNABLE", ""); } // Define a macro that describes the Objective-C boolean type even for C // and C++ since BOOL can be used from non Objective-C code. Builder.defineMacro("__OBJC_BOOL_IS_BOOL", Twine(TI.useSignedCharForObjCBool() ? "0" : "1")); if (LangOpts.CPlusPlus) InitializeCPlusPlusFeatureTestMacros(LangOpts, Builder); // darwin_constant_cfstrings controls this. This is also dependent // on other things like the runtime I believe. This is set even for C code. if (!LangOpts.NoConstantCFStrings) Builder.defineMacro("__CONSTANT_CFSTRINGS__"); if (LangOpts.ObjC) Builder.defineMacro("OBJC_NEW_PROPERTIES"); if (LangOpts.PascalStrings) Builder.defineMacro("__PASCAL_STRINGS__"); if (LangOpts.Blocks) { Builder.defineMacro("__block", "__attribute__((__blocks__(byref)))"); Builder.defineMacro("__BLOCKS__"); } if (!LangOpts.MSVCCompat && LangOpts.Exceptions) Builder.defineMacro("__EXCEPTIONS"); if (LangOpts.GNUCVersion && LangOpts.RTTI) Builder.defineMacro("__GXX_RTTI"); if (LangOpts.hasSjLjExceptions()) Builder.defineMacro("__USING_SJLJ_EXCEPTIONS__"); else if (LangOpts.hasSEHExceptions()) Builder.defineMacro("__SEH__"); else if (LangOpts.hasDWARFExceptions() && (TI.getTriple().isThumb() || TI.getTriple().isARM())) Builder.defineMacro("__ARM_DWARF_EH__"); if (LangOpts.Deprecated) Builder.defineMacro("__DEPRECATED"); if (!LangOpts.MSVCCompat && LangOpts.CPlusPlus) Builder.defineMacro("__private_extern__", "extern"); if (LangOpts.MicrosoftExt) { if (LangOpts.WChar) { // wchar_t supported as a keyword. Builder.defineMacro("_WCHAR_T_DEFINED"); Builder.defineMacro("_NATIVE_WCHAR_T_DEFINED"); } } // Macros to help identify the narrow and wide character sets // FIXME: clang currently ignores -fexec-charset=. If this changes, // then this may need to be updated. Builder.defineMacro("__clang_literal_encoding__", "\"UTF-8\""); if (TI.getTypeWidth(TI.getWCharType()) >= 32) { // FIXME: 32-bit wchar_t signals UTF-32. This may change // if -fwide-exec-charset= is ever supported. Builder.defineMacro("__clang_wide_literal_encoding__", "\"UTF-32\""); } else { // FIXME: Less-than 32-bit wchar_t generally means UTF-16 // (e.g., Windows, 32-bit IBM). This may need to be // updated if -fwide-exec-charset= is ever supported. Builder.defineMacro("__clang_wide_literal_encoding__", "\"UTF-16\""); } if (LangOpts.Optimize) Builder.defineMacro("__OPTIMIZE__"); if (LangOpts.OptimizeSize) Builder.defineMacro("__OPTIMIZE_SIZE__"); if (LangOpts.FastMath) Builder.defineMacro("__FAST_MATH__"); // Initialize target-specific preprocessor defines. // __BYTE_ORDER__ was added in GCC 4.6. It's analogous // to the macro __BYTE_ORDER (no trailing underscores) // from glibc's header. // We don't support the PDP-11 as a target, but include // the define so it can still be compared against. Builder.defineMacro("__ORDER_LITTLE_ENDIAN__", "1234"); Builder.defineMacro("__ORDER_BIG_ENDIAN__", "4321"); Builder.defineMacro("__ORDER_PDP_ENDIAN__", "3412"); if (TI.isBigEndian()) { Builder.defineMacro("__BYTE_ORDER__", "__ORDER_BIG_ENDIAN__"); Builder.defineMacro("__BIG_ENDIAN__"); } else { Builder.defineMacro("__BYTE_ORDER__", "__ORDER_LITTLE_ENDIAN__"); Builder.defineMacro("__LITTLE_ENDIAN__"); } if (TI.getPointerWidth(LangAS::Default) == 64 && TI.getLongWidth() == 64 && TI.getIntWidth() == 32) { Builder.defineMacro("_LP64"); Builder.defineMacro("__LP64__"); } if (TI.getPointerWidth(LangAS::Default) == 32 && TI.getLongWidth() == 32 && TI.getIntWidth() == 32) { Builder.defineMacro("_ILP32"); Builder.defineMacro("__ILP32__"); } // Define type sizing macros based on the target properties. assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far"); Builder.defineMacro("__CHAR_BIT__", Twine(TI.getCharWidth())); Builder.defineMacro("__BOOL_WIDTH__", Twine(TI.getBoolWidth())); Builder.defineMacro("__SHRT_WIDTH__", Twine(TI.getShortWidth())); Builder.defineMacro("__INT_WIDTH__", Twine(TI.getIntWidth())); Builder.defineMacro("__LONG_WIDTH__", Twine(TI.getLongWidth())); Builder.defineMacro("__LLONG_WIDTH__", Twine(TI.getLongLongWidth())); size_t BitIntMaxWidth = TI.getMaxBitIntWidth(); assert(BitIntMaxWidth <= llvm::IntegerType::MAX_INT_BITS && "Target defined a max bit width larger than LLVM can support!"); assert(BitIntMaxWidth >= TI.getLongLongWidth() && "Target defined a max bit width smaller than the C standard allows!"); Builder.defineMacro("__BITINT_MAXWIDTH__", Twine(BitIntMaxWidth)); DefineTypeSize("__SCHAR_MAX__", TargetInfo::SignedChar, TI, Builder); DefineTypeSize("__SHRT_MAX__", TargetInfo::SignedShort, TI, Builder); DefineTypeSize("__INT_MAX__", TargetInfo::SignedInt, TI, Builder); DefineTypeSize("__LONG_MAX__", TargetInfo::SignedLong, TI, Builder); DefineTypeSize("__LONG_LONG_MAX__", TargetInfo::SignedLongLong, TI, Builder); DefineTypeSizeAndWidth("__WCHAR", TI.getWCharType(), TI, Builder); DefineTypeSizeAndWidth("__WINT", TI.getWIntType(), TI, Builder); DefineTypeSizeAndWidth("__INTMAX", TI.getIntMaxType(), TI, Builder); DefineTypeSizeAndWidth("__SIZE", TI.getSizeType(), TI, Builder); DefineTypeSizeAndWidth("__UINTMAX", TI.getUIntMaxType(), TI, Builder); DefineTypeSizeAndWidth("__PTRDIFF", TI.getPtrDiffType(LangAS::Default), TI, Builder); DefineTypeSizeAndWidth("__INTPTR", TI.getIntPtrType(), TI, Builder); DefineTypeSizeAndWidth("__UINTPTR", TI.getUIntPtrType(), TI, Builder); DefineTypeSizeof("__SIZEOF_DOUBLE__", TI.getDoubleWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_FLOAT__", TI.getFloatWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_INT__", TI.getIntWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_LONG__", TI.getLongWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_LONG_DOUBLE__",TI.getLongDoubleWidth(),TI,Builder); DefineTypeSizeof("__SIZEOF_LONG_LONG__", TI.getLongLongWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_POINTER__", TI.getPointerWidth(LangAS::Default), TI, Builder); DefineTypeSizeof("__SIZEOF_SHORT__", TI.getShortWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_PTRDIFF_T__", TI.getTypeWidth(TI.getPtrDiffType(LangAS::Default)), TI, Builder); DefineTypeSizeof("__SIZEOF_SIZE_T__", TI.getTypeWidth(TI.getSizeType()), TI, Builder); DefineTypeSizeof("__SIZEOF_WCHAR_T__", TI.getTypeWidth(TI.getWCharType()), TI, Builder); DefineTypeSizeof("__SIZEOF_WINT_T__", TI.getTypeWidth(TI.getWIntType()), TI, Builder); if (TI.hasInt128Type()) DefineTypeSizeof("__SIZEOF_INT128__", 128, TI, Builder); DefineType("__INTMAX_TYPE__", TI.getIntMaxType(), Builder); DefineFmt("__INTMAX", TI.getIntMaxType(), TI, Builder); Builder.defineMacro("__INTMAX_C_SUFFIX__", TI.getTypeConstantSuffix(TI.getIntMaxType())); DefineType("__UINTMAX_TYPE__", TI.getUIntMaxType(), Builder); DefineFmt("__UINTMAX", TI.getUIntMaxType(), TI, Builder); Builder.defineMacro("__UINTMAX_C_SUFFIX__", TI.getTypeConstantSuffix(TI.getUIntMaxType())); DefineType("__PTRDIFF_TYPE__", TI.getPtrDiffType(LangAS::Default), Builder); DefineFmt("__PTRDIFF", TI.getPtrDiffType(LangAS::Default), TI, Builder); DefineType("__INTPTR_TYPE__", TI.getIntPtrType(), Builder); DefineFmt("__INTPTR", TI.getIntPtrType(), TI, Builder); DefineType("__SIZE_TYPE__", TI.getSizeType(), Builder); DefineFmt("__SIZE", TI.getSizeType(), TI, Builder); DefineType("__WCHAR_TYPE__", TI.getWCharType(), Builder); DefineType("__WINT_TYPE__", TI.getWIntType(), Builder); DefineTypeSizeAndWidth("__SIG_ATOMIC", TI.getSigAtomicType(), TI, Builder); DefineType("__CHAR16_TYPE__", TI.getChar16Type(), Builder); DefineType("__CHAR32_TYPE__", TI.getChar32Type(), Builder); DefineType("__UINTPTR_TYPE__", TI.getUIntPtrType(), Builder); DefineFmt("__UINTPTR", TI.getUIntPtrType(), TI, Builder); // The C standard requires the width of uintptr_t and intptr_t to be the same, // per 7.20.2.4p1. Same for intmax_t and uintmax_t, per 7.20.2.5p1. assert(TI.getTypeWidth(TI.getUIntPtrType()) == TI.getTypeWidth(TI.getIntPtrType()) && "uintptr_t and intptr_t have different widths?"); assert(TI.getTypeWidth(TI.getUIntMaxType()) == TI.getTypeWidth(TI.getIntMaxType()) && "uintmax_t and intmax_t have different widths?"); if (TI.hasFloat16Type()) DefineFloatMacros(Builder, "FLT16", &TI.getHalfFormat(), "F16"); DefineFloatMacros(Builder, "FLT", &TI.getFloatFormat(), "F"); DefineFloatMacros(Builder, "DBL", &TI.getDoubleFormat(), ""); DefineFloatMacros(Builder, "LDBL", &TI.getLongDoubleFormat(), "L"); // Define a __POINTER_WIDTH__ macro for stdint.h. Builder.defineMacro("__POINTER_WIDTH__", Twine((int)TI.getPointerWidth(LangAS::Default))); // Define __BIGGEST_ALIGNMENT__ to be compatible with gcc. Builder.defineMacro("__BIGGEST_ALIGNMENT__", Twine(TI.getSuitableAlign() / TI.getCharWidth()) ); if (!LangOpts.CharIsSigned) Builder.defineMacro("__CHAR_UNSIGNED__"); if (!TargetInfo::isTypeSigned(TI.getWCharType())) Builder.defineMacro("__WCHAR_UNSIGNED__"); if (!TargetInfo::isTypeSigned(TI.getWIntType())) Builder.defineMacro("__WINT_UNSIGNED__"); // Define exact-width integer types for stdint.h DefineExactWidthIntType(TargetInfo::SignedChar, TI, Builder); if (TI.getShortWidth() > TI.getCharWidth()) DefineExactWidthIntType(TargetInfo::SignedShort, TI, Builder); if (TI.getIntWidth() > TI.getShortWidth()) DefineExactWidthIntType(TargetInfo::SignedInt, TI, Builder); if (TI.getLongWidth() > TI.getIntWidth()) DefineExactWidthIntType(TargetInfo::SignedLong, TI, Builder); if (TI.getLongLongWidth() > TI.getLongWidth()) DefineExactWidthIntType(TargetInfo::SignedLongLong, TI, Builder); DefineExactWidthIntType(TargetInfo::UnsignedChar, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::UnsignedChar, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::SignedChar, TI, Builder); if (TI.getShortWidth() > TI.getCharWidth()) { DefineExactWidthIntType(TargetInfo::UnsignedShort, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::UnsignedShort, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::SignedShort, TI, Builder); } if (TI.getIntWidth() > TI.getShortWidth()) { DefineExactWidthIntType(TargetInfo::UnsignedInt, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::UnsignedInt, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::SignedInt, TI, Builder); } if (TI.getLongWidth() > TI.getIntWidth()) { DefineExactWidthIntType(TargetInfo::UnsignedLong, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::UnsignedLong, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::SignedLong, TI, Builder); } if (TI.getLongLongWidth() > TI.getLongWidth()) { DefineExactWidthIntType(TargetInfo::UnsignedLongLong, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::UnsignedLongLong, TI, Builder); DefineExactWidthIntTypeSize(TargetInfo::SignedLongLong, TI, Builder); } DefineLeastWidthIntType(8, true, TI, Builder); DefineLeastWidthIntType(8, false, TI, Builder); DefineLeastWidthIntType(16, true, TI, Builder); DefineLeastWidthIntType(16, false, TI, Builder); DefineLeastWidthIntType(32, true, TI, Builder); DefineLeastWidthIntType(32, false, TI, Builder); DefineLeastWidthIntType(64, true, TI, Builder); DefineLeastWidthIntType(64, false, TI, Builder); DefineFastIntType(8, true, TI, Builder); DefineFastIntType(8, false, TI, Builder); DefineFastIntType(16, true, TI, Builder); DefineFastIntType(16, false, TI, Builder); DefineFastIntType(32, true, TI, Builder); DefineFastIntType(32, false, TI, Builder); DefineFastIntType(64, true, TI, Builder); DefineFastIntType(64, false, TI, Builder); Builder.defineMacro("__USER_LABEL_PREFIX__", TI.getUserLabelPrefix()); if (!LangOpts.MathErrno) Builder.defineMacro("__NO_MATH_ERRNO__"); if (LangOpts.FastMath || LangOpts.FiniteMathOnly) Builder.defineMacro("__FINITE_MATH_ONLY__", "1"); else Builder.defineMacro("__FINITE_MATH_ONLY__", "0"); if (LangOpts.GNUCVersion) { if (LangOpts.GNUInline || LangOpts.CPlusPlus) Builder.defineMacro("__GNUC_GNU_INLINE__"); else Builder.defineMacro("__GNUC_STDC_INLINE__"); // The value written by __atomic_test_and_set. // FIXME: This is target-dependent. Builder.defineMacro("__GCC_ATOMIC_TEST_AND_SET_TRUEVAL", "1"); } auto addLockFreeMacros = [&](const llvm::Twine &Prefix) { // Used by libc++ and libstdc++ to implement ATOMIC__LOCK_FREE. #define DEFINE_LOCK_FREE_MACRO(TYPE, Type) \ Builder.defineMacro(Prefix + #TYPE "_LOCK_FREE", \ getLockFreeValue(TI.get##Type##Width(), TI)); DEFINE_LOCK_FREE_MACRO(BOOL, Bool); DEFINE_LOCK_FREE_MACRO(CHAR, Char); if (LangOpts.Char8) DEFINE_LOCK_FREE_MACRO(CHAR8_T, Char); // Treat char8_t like char. DEFINE_LOCK_FREE_MACRO(CHAR16_T, Char16); DEFINE_LOCK_FREE_MACRO(CHAR32_T, Char32); DEFINE_LOCK_FREE_MACRO(WCHAR_T, WChar); DEFINE_LOCK_FREE_MACRO(SHORT, Short); DEFINE_LOCK_FREE_MACRO(INT, Int); DEFINE_LOCK_FREE_MACRO(LONG, Long); DEFINE_LOCK_FREE_MACRO(LLONG, LongLong); Builder.defineMacro( Prefix + "POINTER_LOCK_FREE", getLockFreeValue(TI.getPointerWidth(LangAS::Default), TI)); #undef DEFINE_LOCK_FREE_MACRO }; addLockFreeMacros("__CLANG_ATOMIC_"); if (LangOpts.GNUCVersion) addLockFreeMacros("__GCC_ATOMIC_"); if (LangOpts.NoInlineDefine) Builder.defineMacro("__NO_INLINE__"); if (unsigned PICLevel = LangOpts.PICLevel) { Builder.defineMacro("__PIC__", Twine(PICLevel)); Builder.defineMacro("__pic__", Twine(PICLevel)); if (LangOpts.PIE) { Builder.defineMacro("__PIE__", Twine(PICLevel)); Builder.defineMacro("__pie__", Twine(PICLevel)); } } // Macros to control C99 numerics and Builder.defineMacro("__FLT_RADIX__", "2"); Builder.defineMacro("__DECIMAL_DIG__", "__LDBL_DECIMAL_DIG__"); if (LangOpts.getStackProtector() == LangOptions::SSPOn) Builder.defineMacro("__SSP__"); else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) Builder.defineMacro("__SSP_STRONG__", "2"); else if (LangOpts.getStackProtector() == LangOptions::SSPReq) Builder.defineMacro("__SSP_ALL__", "3"); if (PPOpts.SetUpStaticAnalyzer) Builder.defineMacro("__clang_analyzer__"); if (LangOpts.FastRelaxedMath) Builder.defineMacro("__FAST_RELAXED_MATH__"); if (FEOpts.ProgramAction == frontend::RewriteObjC || LangOpts.getGC() != LangOptions::NonGC) { Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))"); Builder.defineMacro("__strong", "__attribute__((objc_gc(strong)))"); Builder.defineMacro("__autoreleasing", ""); Builder.defineMacro("__unsafe_unretained", ""); } else if (LangOpts.ObjC) { Builder.defineMacro("__weak", "__attribute__((objc_ownership(weak)))"); Builder.defineMacro("__strong", "__attribute__((objc_ownership(strong)))"); Builder.defineMacro("__autoreleasing", "__attribute__((objc_ownership(autoreleasing)))"); Builder.defineMacro("__unsafe_unretained", "__attribute__((objc_ownership(none)))"); } // On Darwin, there are __double_underscored variants of the type // nullability qualifiers. if (TI.getTriple().isOSDarwin()) { Builder.defineMacro("__nonnull", "_Nonnull"); Builder.defineMacro("__null_unspecified", "_Null_unspecified"); Builder.defineMacro("__nullable", "_Nullable"); } // Add a macro to differentiate between regular iOS/tvOS/watchOS targets and // the corresponding simulator targets. if (TI.getTriple().isOSDarwin() && TI.getTriple().isSimulatorEnvironment()) Builder.defineMacro("__APPLE_EMBEDDED_SIMULATOR__", "1"); // OpenMP definition // OpenMP 2.2: // In implementations that support a preprocessor, the _OPENMP // macro name is defined to have the decimal value yyyymm where // yyyy and mm are the year and the month designations of the // version of the OpenMP API that the implementation support. if (!LangOpts.OpenMPSimd) { switch (LangOpts.OpenMP) { case 0: break; case 31: Builder.defineMacro("_OPENMP", "201107"); break; case 40: Builder.defineMacro("_OPENMP", "201307"); break; case 45: Builder.defineMacro("_OPENMP", "201511"); break; case 51: Builder.defineMacro("_OPENMP", "202011"); break; case 52: Builder.defineMacro("_OPENMP", "202111"); break; case 50: default: // Default version is OpenMP 5.0 Builder.defineMacro("_OPENMP", "201811"); break; } } // CUDA device path compilaton if (LangOpts.CUDAIsDevice && !LangOpts.HIP) { // The CUDA_ARCH value is set for the GPU target specified in the NVPTX // backend's target defines. Builder.defineMacro("__CUDA_ARCH__"); } // We need to communicate this to our CUDA header wrapper, which in turn // informs the proper CUDA headers of this choice. if (LangOpts.CUDADeviceApproxTranscendentals || LangOpts.FastMath) { Builder.defineMacro("__CLANG_CUDA_APPROX_TRANSCENDENTALS__"); } // Define a macro indicating that the source file is being compiled with a // SYCL device compiler which doesn't produce host binary. if (LangOpts.SYCLIsDevice) { Builder.defineMacro("__SYCL_DEVICE_ONLY__", "1"); } // OpenCL definitions. if (LangOpts.OpenCL) { InitializeOpenCLFeatureTestMacros(TI, LangOpts, Builder); if (TI.getTriple().isSPIR() || TI.getTriple().isSPIRV()) Builder.defineMacro("__IMAGE_SUPPORT__"); } if (TI.hasInt128Type() && LangOpts.CPlusPlus && LangOpts.GNUMode) { // For each extended integer type, g++ defines a macro mapping the // index of the type (0 in this case) in some list of extended types // to the type. Builder.defineMacro("__GLIBCXX_TYPE_INT_N_0", "__int128"); Builder.defineMacro("__GLIBCXX_BITSIZE_INT_N_0", "128"); } // Get other target #defines. TI.getTargetDefines(LangOpts, Builder); } /// InitializePreprocessor - Initialize the preprocessor getting it and the /// environment ready to process a single file. void clang::InitializePreprocessor( Preprocessor &PP, const PreprocessorOptions &InitOpts, const PCHContainerReader &PCHContainerRdr, const FrontendOptions &FEOpts) { const LangOptions &LangOpts = PP.getLangOpts(); std::string PredefineBuffer; PredefineBuffer.reserve(4080); llvm::raw_string_ostream Predefines(PredefineBuffer); MacroBuilder Builder(Predefines); // Emit line markers for various builtin sections of the file. We don't do // this in asm preprocessor mode, because "# 4" is not a line marker directive // in this mode. if (!PP.getLangOpts().AsmPreprocessor) Builder.append("# 1 \"\" 3"); // Install things like __POWERPC__, __GNUC__, etc into the macro table. if (InitOpts.UsePredefines) { // FIXME: This will create multiple definitions for most of the predefined // macros. This is not the right way to handle this. if ((LangOpts.CUDA || LangOpts.OpenMPIsDevice || LangOpts.SYCLIsDevice) && PP.getAuxTargetInfo()) InitializePredefinedMacros(*PP.getAuxTargetInfo(), LangOpts, FEOpts, PP.getPreprocessorOpts(), Builder); InitializePredefinedMacros(PP.getTargetInfo(), LangOpts, FEOpts, PP.getPreprocessorOpts(), Builder); // Install definitions to make Objective-C++ ARC work well with various // C++ Standard Library implementations. if (LangOpts.ObjC && LangOpts.CPlusPlus && (LangOpts.ObjCAutoRefCount || LangOpts.ObjCWeak)) { switch (InitOpts.ObjCXXARCStandardLibrary) { case ARCXX_nolib: case ARCXX_libcxx: break; case ARCXX_libstdcxx: AddObjCXXARCLibstdcxxDefines(LangOpts, Builder); break; } } } // Even with predefines off, some macros are still predefined. // These should all be defined in the preprocessor according to the // current language configuration. InitializeStandardPredefinedMacros(PP.getTargetInfo(), PP.getLangOpts(), FEOpts, Builder); // Add on the predefines from the driver. Wrap in a #line directive to report // that they come from the command line. if (!PP.getLangOpts().AsmPreprocessor) Builder.append("# 1 \"\" 1"); // Process #define's and #undef's in the order they are given. for (unsigned i = 0, e = InitOpts.Macros.size(); i != e; ++i) { if (InitOpts.Macros[i].second) // isUndef Builder.undefineMacro(InitOpts.Macros[i].first); else DefineBuiltinMacro(Builder, InitOpts.Macros[i].first, PP.getDiagnostics()); } // Exit the command line and go back to (2 is LC_LEAVE). if (!PP.getLangOpts().AsmPreprocessor) Builder.append("# 1 \"\" 2"); // If -imacros are specified, include them now. These are processed before // any -include directives. for (unsigned i = 0, e = InitOpts.MacroIncludes.size(); i != e; ++i) AddImplicitIncludeMacros(Builder, InitOpts.MacroIncludes[i]); // Process -include-pch/-include-pth directives. if (!InitOpts.ImplicitPCHInclude.empty()) AddImplicitIncludePCH(Builder, PP, PCHContainerRdr, InitOpts.ImplicitPCHInclude); // Process -include directives. for (unsigned i = 0, e = InitOpts.Includes.size(); i != e; ++i) { const std::string &Path = InitOpts.Includes[i]; AddImplicitInclude(Builder, Path); } // Instruct the preprocessor to skip the preamble. PP.setSkipMainFilePreamble(InitOpts.PrecompiledPreambleBytes.first, InitOpts.PrecompiledPreambleBytes.second); // Copy PredefinedBuffer into the Preprocessor. PP.setPredefines(std::move(PredefineBuffer)); }