//===-- XCOFFDumper.cpp - XCOFF dumping utility -----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements an XCOFF specific dumper for llvm-readobj. // //===----------------------------------------------------------------------===// #include "ObjDumper.h" #include "llvm-readobj.h" #include "llvm/Object/XCOFFObjectFile.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/ScopedPrinter.h" #include #include using namespace llvm; using namespace object; namespace { class XCOFFDumper : public ObjDumper { public: XCOFFDumper(const XCOFFObjectFile &Obj, ScopedPrinter &Writer) : ObjDumper(Writer, Obj.getFileName()), Obj(Obj) {} void printFileHeaders() override; void printAuxiliaryHeader() override; void printSectionHeaders() override; void printRelocations() override; void printSymbols() override; void printDynamicSymbols() override; void printUnwindInfo() override; void printStackMap() const override; void printNeededLibraries() override; void printStringTable() override; private: template void printSectionHeaders(ArrayRef Sections); template void printGenericSectionHeader(T &Sec) const; template void printOverflowSectionHeader(T &Sec) const; template const T *getAuxEntPtr(uintptr_t AuxAddress); void printFileAuxEnt(const XCOFFFileAuxEnt *AuxEntPtr); void printCsectAuxEnt(XCOFFCsectAuxRef AuxEntRef); void printSectAuxEntForStat(const XCOFFSectAuxEntForStat *AuxEntPtr); void printExceptionAuxEnt(const XCOFFExceptionAuxEnt *AuxEntPtr); void printFunctionAuxEnt(const XCOFFFunctionAuxEnt32 *AuxEntPtr); void printFunctionAuxEnt(const XCOFFFunctionAuxEnt64 *AuxEntPtr); void printBlockAuxEnt(const XCOFFBlockAuxEnt32 *AuxEntPtr); void printBlockAuxEnt(const XCOFFBlockAuxEnt64 *AuxEntPtr); template void printSectAuxEntForDWARF(const T *AuxEntPtr); void printSymbol(const SymbolRef &); template void printRelocation(RelTy Reloc); template void printRelocations(ArrayRef Sections); void printAuxiliaryHeader(const XCOFFAuxiliaryHeader32 *AuxHeader); void printAuxiliaryHeader(const XCOFFAuxiliaryHeader64 *AuxHeader); const XCOFFObjectFile &Obj; }; } // anonymous namespace void XCOFFDumper::printFileHeaders() { DictScope DS(W, "FileHeader"); W.printHex("Magic", Obj.getMagic()); W.printNumber("NumberOfSections", Obj.getNumberOfSections()); // Negative timestamp values are reserved for future use. int32_t TimeStamp = Obj.getTimeStamp(); if (TimeStamp > 0) { // This handling of the time stamp assumes that the host system's time_t is // compatible with AIX time_t. If a platform is not compatible, the lit // tests will let us know. time_t TimeDate = TimeStamp; char FormattedTime[21] = {}; size_t BytesWritten = strftime(FormattedTime, 21, "%Y-%m-%dT%H:%M:%SZ", gmtime(&TimeDate)); if (BytesWritten) W.printHex("TimeStamp", FormattedTime, TimeStamp); else W.printHex("Timestamp", TimeStamp); } else { W.printHex("TimeStamp", TimeStamp == 0 ? "None" : "Reserved Value", TimeStamp); } // The number of symbol table entries is an unsigned value in 64-bit objects // and a signed value (with negative values being 'reserved') in 32-bit // objects. if (Obj.is64Bit()) { W.printHex("SymbolTableOffset", Obj.getSymbolTableOffset64()); W.printNumber("SymbolTableEntries", Obj.getNumberOfSymbolTableEntries64()); } else { W.printHex("SymbolTableOffset", Obj.getSymbolTableOffset32()); int32_t SymTabEntries = Obj.getRawNumberOfSymbolTableEntries32(); if (SymTabEntries >= 0) W.printNumber("SymbolTableEntries", SymTabEntries); else W.printHex("SymbolTableEntries", "Reserved Value", SymTabEntries); } W.printHex("OptionalHeaderSize", Obj.getOptionalHeaderSize()); W.printHex("Flags", Obj.getFlags()); // TODO FIXME Add support for the auxiliary header (if any) once // XCOFFObjectFile has the necessary support. } void XCOFFDumper::printAuxiliaryHeader() { if (Obj.is64Bit()) printAuxiliaryHeader(Obj.auxiliaryHeader64()); else printAuxiliaryHeader(Obj.auxiliaryHeader32()); } void XCOFFDumper::printSectionHeaders() { if (Obj.is64Bit()) printSectionHeaders(Obj.sections64()); else printSectionHeaders(Obj.sections32()); } void XCOFFDumper::printRelocations() { if (Obj.is64Bit()) printRelocations(Obj.sections64()); else printRelocations(Obj.sections32()); } const EnumEntry RelocationTypeNameclass[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(R_POS), ECase(R_RL), ECase(R_RLA), ECase(R_NEG), ECase(R_REL), ECase(R_TOC), ECase(R_TRL), ECase(R_TRLA), ECase(R_GL), ECase(R_TCL), ECase(R_REF), ECase(R_BA), ECase(R_BR), ECase(R_RBA), ECase(R_RBR), ECase(R_TLS), ECase(R_TLS_IE), ECase(R_TLS_LD), ECase(R_TLS_LE), ECase(R_TLSM), ECase(R_TLSML), ECase(R_TOCU), ECase(R_TOCL) #undef ECase }; template void XCOFFDumper::printRelocation(RelTy Reloc) { Expected ErrOrSymbolName = Obj.getSymbolNameByIndex(Reloc.SymbolIndex); if (Error E = ErrOrSymbolName.takeError()) { reportUniqueWarning(std::move(E)); return; } StringRef SymbolName = *ErrOrSymbolName; StringRef RelocName = XCOFF::getRelocationTypeString(Reloc.Type); if (opts::ExpandRelocs) { DictScope Group(W, "Relocation"); W.printHex("Virtual Address", Reloc.VirtualAddress); W.printNumber("Symbol", SymbolName, Reloc.SymbolIndex); W.printString("IsSigned", Reloc.isRelocationSigned() ? "Yes" : "No"); W.printNumber("FixupBitValue", Reloc.isFixupIndicated() ? 1 : 0); W.printNumber("Length", Reloc.getRelocatedLength()); W.printEnum("Type", (uint8_t)Reloc.Type, makeArrayRef(RelocationTypeNameclass)); } else { raw_ostream &OS = W.startLine(); OS << W.hex(Reloc.VirtualAddress) << " " << RelocName << " " << SymbolName << "(" << Reloc.SymbolIndex << ") " << W.hex(Reloc.Info) << "\n"; } } template void XCOFFDumper::printRelocations(ArrayRef Sections) { ListScope LS(W, "Relocations"); uint16_t Index = 0; for (const Shdr &Sec : Sections) { ++Index; // Only the .text, .data, .tdata, and STYP_DWARF sections have relocation. if (Sec.Flags != XCOFF::STYP_TEXT && Sec.Flags != XCOFF::STYP_DATA && Sec.Flags != XCOFF::STYP_TDATA && Sec.Flags != XCOFF::STYP_DWARF) continue; Expected> ErrOrRelocations = Obj.relocations(Sec); if (Error E = ErrOrRelocations.takeError()) { reportUniqueWarning(std::move(E)); continue; } const ArrayRef Relocations = *ErrOrRelocations; if (Relocations.empty()) continue; W.startLine() << "Section (index: " << Index << ") " << Sec.getName() << " {\n"; W.indent(); for (const RelTy Reloc : Relocations) printRelocation(Reloc); W.unindent(); W.startLine() << "}\n"; } } const EnumEntry FileStringType[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(XFT_FN), ECase(XFT_CT), ECase(XFT_CV), ECase(XFT_CD) #undef ECase }; const EnumEntry SymAuxType[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(AUX_EXCEPT), ECase(AUX_FCN), ECase(AUX_SYM), ECase(AUX_FILE), ECase(AUX_CSECT), ECase(AUX_SECT) #undef ECase }; void XCOFFDumper::printFileAuxEnt(const XCOFFFileAuxEnt *AuxEntPtr) { assert((!Obj.is64Bit() || AuxEntPtr->AuxType == XCOFF::AUX_FILE) && "Mismatched auxiliary type!"); StringRef FileName = unwrapOrError(Obj.getFileName(), Obj.getCFileName(AuxEntPtr)); DictScope SymDs(W, "File Auxiliary Entry"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printString("Name", FileName); W.printEnum("Type", static_cast(AuxEntPtr->Type), makeArrayRef(FileStringType)); if (Obj.is64Bit()) { W.printEnum("Auxiliary Type", static_cast(AuxEntPtr->AuxType), makeArrayRef(SymAuxType)); } } static const EnumEntry CsectStorageMappingClass[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(XMC_PR), ECase(XMC_RO), ECase(XMC_DB), ECase(XMC_GL), ECase(XMC_XO), ECase(XMC_SV), ECase(XMC_SV64), ECase(XMC_SV3264), ECase(XMC_TI), ECase(XMC_TB), ECase(XMC_RW), ECase(XMC_TC0), ECase(XMC_TC), ECase(XMC_TD), ECase(XMC_DS), ECase(XMC_UA), ECase(XMC_BS), ECase(XMC_UC), ECase(XMC_TL), ECase(XMC_UL), ECase(XMC_TE) #undef ECase }; const EnumEntry CsectSymbolTypeClass[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(XTY_ER), ECase(XTY_SD), ECase(XTY_LD), ECase(XTY_CM) #undef ECase }; void XCOFFDumper::printCsectAuxEnt(XCOFFCsectAuxRef AuxEntRef) { assert((!Obj.is64Bit() || AuxEntRef.getAuxType64() == XCOFF::AUX_CSECT) && "Mismatched auxiliary type!"); DictScope SymDs(W, "CSECT Auxiliary Entry"); W.printNumber("Index", Obj.getSymbolIndex(AuxEntRef.getEntryAddress())); W.printNumber(AuxEntRef.isLabel() ? "ContainingCsectSymbolIndex" : "SectionLen", AuxEntRef.getSectionOrLength()); W.printHex("ParameterHashIndex", AuxEntRef.getParameterHashIndex()); W.printHex("TypeChkSectNum", AuxEntRef.getTypeChkSectNum()); // Print out symbol alignment and type. W.printNumber("SymbolAlignmentLog2", AuxEntRef.getAlignmentLog2()); W.printEnum("SymbolType", AuxEntRef.getSymbolType(), makeArrayRef(CsectSymbolTypeClass)); W.printEnum("StorageMappingClass", static_cast(AuxEntRef.getStorageMappingClass()), makeArrayRef(CsectStorageMappingClass)); if (Obj.is64Bit()) { W.printEnum("Auxiliary Type", static_cast(XCOFF::AUX_CSECT), makeArrayRef(SymAuxType)); } else { W.printHex("StabInfoIndex", AuxEntRef.getStabInfoIndex32()); W.printHex("StabSectNum", AuxEntRef.getStabSectNum32()); } } void XCOFFDumper::printSectAuxEntForStat( const XCOFFSectAuxEntForStat *AuxEntPtr) { assert(!Obj.is64Bit() && "32-bit interface called on 64-bit object file."); DictScope SymDs(W, "Sect Auxiliary Entry For Stat"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printNumber("SectionLength", AuxEntPtr->SectionLength); // Unlike the corresponding fields in the section header, NumberOfRelocEnt // and NumberOfLineNum do not handle values greater than 65535. W.printNumber("NumberOfRelocEnt", AuxEntPtr->NumberOfRelocEnt); W.printNumber("NumberOfLineNum", AuxEntPtr->NumberOfLineNum); } void XCOFFDumper::printExceptionAuxEnt(const XCOFFExceptionAuxEnt *AuxEntPtr) { assert(Obj.is64Bit() && "64-bit interface called on 32-bit object file."); DictScope SymDs(W, "Exception Auxiliary Entry"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printHex("OffsetToExceptionTable", AuxEntPtr->OffsetToExceptionTbl); W.printHex("SizeOfFunction", AuxEntPtr->SizeOfFunction); W.printNumber("SymbolIndexOfNextBeyond", AuxEntPtr->SymIdxOfNextBeyond); W.printEnum("Auxiliary Type", static_cast(AuxEntPtr->AuxType), makeArrayRef(SymAuxType)); } void XCOFFDumper::printFunctionAuxEnt(const XCOFFFunctionAuxEnt32 *AuxEntPtr) { assert(!Obj.is64Bit() && "32-bit interface called on 64-bit object file."); DictScope SymDs(W, "Function Auxiliary Entry"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printHex("OffsetToExceptionTable", AuxEntPtr->OffsetToExceptionTbl); W.printHex("SizeOfFunction", AuxEntPtr->SizeOfFunction); W.printHex("PointerToLineNum", AuxEntPtr->PtrToLineNum); W.printNumber("SymbolIndexOfNextBeyond", AuxEntPtr->SymIdxOfNextBeyond); } void XCOFFDumper::printFunctionAuxEnt(const XCOFFFunctionAuxEnt64 *AuxEntPtr) { assert(Obj.is64Bit() && "64-bit interface called on 32-bit object file."); DictScope SymDs(W, "Function Auxiliary Entry"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printHex("SizeOfFunction", AuxEntPtr->SizeOfFunction); W.printHex("PointerToLineNum", AuxEntPtr->PtrToLineNum); W.printNumber("SymbolIndexOfNextBeyond", AuxEntPtr->SymIdxOfNextBeyond); W.printEnum("Auxiliary Type", static_cast(AuxEntPtr->AuxType), makeArrayRef(SymAuxType)); } void XCOFFDumper::printBlockAuxEnt(const XCOFFBlockAuxEnt32 *AuxEntPtr) { assert(!Obj.is64Bit() && "32-bit interface called on 64-bit object file."); DictScope SymDs(W, "Block Auxiliary Entry"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printHex("LineNumber (High 2 Bytes)", AuxEntPtr->LineNumHi); W.printHex("LineNumber (Low 2 Bytes)", AuxEntPtr->LineNumLo); } void XCOFFDumper::printBlockAuxEnt(const XCOFFBlockAuxEnt64 *AuxEntPtr) { assert(Obj.is64Bit() && "64-bit interface called on 32-bit object file."); DictScope SymDs(W, "Block Auxiliary Entry"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printHex("LineNumber", AuxEntPtr->LineNum); W.printEnum("Auxiliary Type", static_cast(AuxEntPtr->AuxType), makeArrayRef(SymAuxType)); } template void XCOFFDumper::printSectAuxEntForDWARF(const T *AuxEntPtr) { DictScope SymDs(W, "Sect Auxiliary Entry For DWARF"); W.printNumber("Index", Obj.getSymbolIndex(reinterpret_cast(AuxEntPtr))); W.printHex("LengthOfSectionPortion", AuxEntPtr->LengthOfSectionPortion); W.printNumber("NumberOfRelocEntries", AuxEntPtr->NumberOfRelocEnt); if (Obj.is64Bit()) W.printEnum("Auxiliary Type", static_cast(XCOFF::AUX_SECT), makeArrayRef(SymAuxType)); } const EnumEntry SymStorageClass[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(C_NULL), ECase(C_AUTO), ECase(C_EXT), ECase(C_STAT), ECase(C_REG), ECase(C_EXTDEF), ECase(C_LABEL), ECase(C_ULABEL), ECase(C_MOS), ECase(C_ARG), ECase(C_STRTAG), ECase(C_MOU), ECase(C_UNTAG), ECase(C_TPDEF), ECase(C_USTATIC), ECase(C_ENTAG), ECase(C_MOE), ECase(C_REGPARM), ECase(C_FIELD), ECase(C_BLOCK), ECase(C_FCN), ECase(C_EOS), ECase(C_FILE), ECase(C_LINE), ECase(C_ALIAS), ECase(C_HIDDEN), ECase(C_HIDEXT), ECase(C_BINCL), ECase(C_EINCL), ECase(C_INFO), ECase(C_WEAKEXT), ECase(C_DWARF), ECase(C_GSYM), ECase(C_LSYM), ECase(C_PSYM), ECase(C_RSYM), ECase(C_RPSYM), ECase(C_STSYM), ECase(C_TCSYM), ECase(C_BCOMM), ECase(C_ECOML), ECase(C_ECOMM), ECase(C_DECL), ECase(C_ENTRY), ECase(C_FUN), ECase(C_BSTAT), ECase(C_ESTAT), ECase(C_GTLS), ECase(C_STTLS), ECase(C_EFCN) #undef ECase }; static StringRef GetSymbolValueName(XCOFF::StorageClass SC) { switch (SC) { case XCOFF::C_EXT: case XCOFF::C_WEAKEXT: case XCOFF::C_HIDEXT: case XCOFF::C_STAT: case XCOFF::C_FCN: case XCOFF::C_BLOCK: return "Value (RelocatableAddress)"; case XCOFF::C_FILE: return "Value (SymbolTableIndex)"; case XCOFF::C_DWARF: return "Value (OffsetInDWARF)"; case XCOFF::C_FUN: case XCOFF::C_STSYM: case XCOFF::C_BINCL: case XCOFF::C_EINCL: case XCOFF::C_INFO: case XCOFF::C_BSTAT: case XCOFF::C_LSYM: case XCOFF::C_PSYM: case XCOFF::C_RPSYM: case XCOFF::C_RSYM: case XCOFF::C_ECOML: assert(false && "This StorageClass for the symbol is not yet implemented."); return ""; default: return "Value"; } } const EnumEntry CFileLangIdClass[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(TB_C), ECase(TB_CPLUSPLUS) #undef ECase }; const EnumEntry CFileCpuIdClass[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(TCPU_PPC64), ECase(TCPU_COM), ECase(TCPU_970) #undef ECase }; template const T *XCOFFDumper::getAuxEntPtr(uintptr_t AuxAddress) { const T *AuxEntPtr = reinterpret_cast(AuxAddress); Obj.checkSymbolEntryPointer(reinterpret_cast(AuxEntPtr)); return AuxEntPtr; } static void printUnexpectedRawAuxEnt(ScopedPrinter &W, uintptr_t AuxAddress) { W.startLine() << "!Unexpected raw auxiliary entry data:\n"; W.startLine() << format_bytes( ArrayRef( reinterpret_cast(AuxAddress), XCOFF::SymbolTableEntrySize), None, XCOFF::SymbolTableEntrySize) << "\n"; } void XCOFFDumper::printSymbol(const SymbolRef &S) { DataRefImpl SymbolDRI = S.getRawDataRefImpl(); XCOFFSymbolRef SymbolEntRef = Obj.toSymbolRef(SymbolDRI); uint8_t NumberOfAuxEntries = SymbolEntRef.getNumberOfAuxEntries(); DictScope SymDs(W, "Symbol"); StringRef SymbolName = unwrapOrError(Obj.getFileName(), SymbolEntRef.getName()); uint32_t SymbolIdx = Obj.getSymbolIndex(SymbolEntRef.getEntryAddress()); XCOFF::StorageClass SymbolClass = SymbolEntRef.getStorageClass(); W.printNumber("Index", SymbolIdx); W.printString("Name", SymbolName); W.printHex(GetSymbolValueName(SymbolClass), SymbolEntRef.getValue()); StringRef SectionName = unwrapOrError(Obj.getFileName(), Obj.getSymbolSectionName(SymbolEntRef)); W.printString("Section", SectionName); if (SymbolClass == XCOFF::C_FILE) { W.printEnum("Source Language ID", SymbolEntRef.getLanguageIdForCFile(), makeArrayRef(CFileLangIdClass)); W.printEnum("CPU Version ID", SymbolEntRef.getCPUTypeIddForCFile(), makeArrayRef(CFileCpuIdClass)); } else W.printHex("Type", SymbolEntRef.getSymbolType()); W.printEnum("StorageClass", static_cast(SymbolClass), makeArrayRef(SymStorageClass)); W.printNumber("NumberOfAuxEntries", NumberOfAuxEntries); if (NumberOfAuxEntries == 0) return; auto checkNumOfAux = [=] { if (NumberOfAuxEntries > 1) reportUniqueWarning("the " + enumToString(static_cast(SymbolClass), makeArrayRef(SymStorageClass)) + " symbol at index " + Twine(SymbolIdx) + " should not have more than 1 " "auxiliary entry"); }; switch (SymbolClass) { case XCOFF::C_FILE: // If the symbol is C_FILE and has auxiliary entries... for (int I = 1; I <= NumberOfAuxEntries; I++) { uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress( SymbolEntRef.getEntryAddress(), I); if (Obj.is64Bit() && *Obj.getSymbolAuxType(AuxAddress) != XCOFF::SymbolAuxType::AUX_FILE) { printUnexpectedRawAuxEnt(W, AuxAddress); continue; } const XCOFFFileAuxEnt *FileAuxEntPtr = getAuxEntPtr(AuxAddress); printFileAuxEnt(FileAuxEntPtr); } break; case XCOFF::C_EXT: case XCOFF::C_WEAKEXT: case XCOFF::C_HIDEXT: { if (!SymbolEntRef.isFunction() && NumberOfAuxEntries > 1) reportUniqueWarning("the non-function " + enumToString(static_cast(SymbolClass), makeArrayRef(SymStorageClass)) + " symbol at index " + Twine(SymbolIdx) + " should have only 1 auxiliary entry, i.e. the CSECT " "auxiliary entry"); // For 32-bit objects, print the function auxiliary symbol table entry. The // last one must be a CSECT auxiliary entry. // For 64-bit objects, both a function auxiliary entry and an exception // auxiliary entry may appear, print them in the loop and skip printing the // CSECT auxiliary entry, which will be printed outside the loop. for (int I = 1; I <= NumberOfAuxEntries; I++) { if ((I == NumberOfAuxEntries && !Obj.is64Bit()) || !SymbolEntRef.isFunction()) break; uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress( SymbolEntRef.getEntryAddress(), I); if (Obj.is64Bit()) { XCOFF::SymbolAuxType Type = *Obj.getSymbolAuxType(AuxAddress); if (Type == XCOFF::SymbolAuxType::AUX_CSECT) continue; if (Type == XCOFF::SymbolAuxType::AUX_FCN) { const XCOFFFunctionAuxEnt64 *AuxEntPtr = getAuxEntPtr(AuxAddress); printFunctionAuxEnt(AuxEntPtr); } else if (Type == XCOFF::SymbolAuxType::AUX_EXCEPT) { const XCOFFExceptionAuxEnt *AuxEntPtr = getAuxEntPtr(AuxAddress); printExceptionAuxEnt(AuxEntPtr); } else { printUnexpectedRawAuxEnt(W, AuxAddress); } } else { const XCOFFFunctionAuxEnt32 *AuxEntPtr = getAuxEntPtr(AuxAddress); printFunctionAuxEnt(AuxEntPtr); } } // Print the CSECT auxiliary entry. auto ErrOrCsectAuxRef = SymbolEntRef.getXCOFFCsectAuxRef(); if (!ErrOrCsectAuxRef) reportUniqueWarning(ErrOrCsectAuxRef.takeError()); else printCsectAuxEnt(*ErrOrCsectAuxRef); break; } case XCOFF::C_STAT: { checkNumOfAux(); const XCOFFSectAuxEntForStat *StatAuxEntPtr = getAuxEntPtr( XCOFFObjectFile::getAdvancedSymbolEntryAddress( SymbolEntRef.getEntryAddress(), 1)); printSectAuxEntForStat(StatAuxEntPtr); break; } case XCOFF::C_DWARF: { checkNumOfAux(); uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress( SymbolEntRef.getEntryAddress(), 1); if (Obj.is64Bit()) { const XCOFFSectAuxEntForDWARF64 *AuxEntPtr = getAuxEntPtr(AuxAddress); printSectAuxEntForDWARF(AuxEntPtr); } else { const XCOFFSectAuxEntForDWARF32 *AuxEntPtr = getAuxEntPtr(AuxAddress); printSectAuxEntForDWARF(AuxEntPtr); } break; } case XCOFF::C_BLOCK: case XCOFF::C_FCN: { checkNumOfAux(); uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress( SymbolEntRef.getEntryAddress(), 1); if (Obj.is64Bit()) { const XCOFFBlockAuxEnt64 *AuxEntPtr = getAuxEntPtr(AuxAddress); printBlockAuxEnt(AuxEntPtr); } else { const XCOFFBlockAuxEnt32 *AuxEntPtr = getAuxEntPtr(AuxAddress); printBlockAuxEnt(AuxEntPtr); } break; } default: for (int i = 1; i <= NumberOfAuxEntries; i++) { printUnexpectedRawAuxEnt(W, XCOFFObjectFile::getAdvancedSymbolEntryAddress( SymbolEntRef.getEntryAddress(), i)); } break; } } void XCOFFDumper::printSymbols() { ListScope Group(W, "Symbols"); for (const SymbolRef &S : Obj.symbols()) printSymbol(S); } void XCOFFDumper::printStringTable() { DictScope DS(W, "StringTable"); StringRef StrTable = Obj.getStringTable(); uint32_t StrTabSize = StrTable.size(); W.printNumber("Length", StrTabSize); // Print strings from the fifth byte, since the first four bytes contain the // length (in bytes) of the string table (including the length field). if (StrTabSize > 4) printAsStringList(StrTable, 4); } void XCOFFDumper::printDynamicSymbols() { llvm_unreachable("Unimplemented functionality for XCOFFDumper"); } void XCOFFDumper::printUnwindInfo() { llvm_unreachable("Unimplemented functionality for XCOFFDumper"); } void XCOFFDumper::printStackMap() const { llvm_unreachable("Unimplemented functionality for XCOFFDumper"); } void XCOFFDumper::printNeededLibraries() { ListScope D(W, "NeededLibraries"); auto ImportFilesOrError = Obj.getImportFileTable(); if (!ImportFilesOrError) { reportUniqueWarning(ImportFilesOrError.takeError()); return; } StringRef ImportFileTable = ImportFilesOrError.get(); const char *CurrentStr = ImportFileTable.data(); const char *TableEnd = ImportFileTable.end(); // Default column width for names is 13 even if no names are that long. size_t BaseWidth = 13; // Get the max width of BASE columns. for (size_t StrIndex = 0; CurrentStr < TableEnd; ++StrIndex) { size_t CurrentLen = strlen(CurrentStr); CurrentStr += strlen(CurrentStr) + 1; if (StrIndex % 3 == 1) BaseWidth = std::max(BaseWidth, CurrentLen); } auto &OS = static_cast(W.startLine()); // Each entry consists of 3 strings: the path_name, base_name and // archive_member_name. The first entry is a default LIBPATH value and other // entries have no path_name. We just dump the base_name and // archive_member_name here. OS << left_justify("BASE", BaseWidth) << " MEMBER\n"; CurrentStr = ImportFileTable.data(); for (size_t StrIndex = 0; CurrentStr < TableEnd; ++StrIndex, CurrentStr += strlen(CurrentStr) + 1) { if (StrIndex >= 3 && StrIndex % 3 != 0) { if (StrIndex % 3 == 1) OS << " " << left_justify(CurrentStr, BaseWidth) << " "; else OS << CurrentStr << "\n"; } } } const EnumEntry SectionTypeFlagsNames[] = { #define ECase(X) \ { #X, XCOFF::X } ECase(STYP_PAD), ECase(STYP_DWARF), ECase(STYP_TEXT), ECase(STYP_DATA), ECase(STYP_BSS), ECase(STYP_EXCEPT), ECase(STYP_INFO), ECase(STYP_TDATA), ECase(STYP_TBSS), ECase(STYP_LOADER), ECase(STYP_DEBUG), ECase(STYP_TYPCHK), ECase(STYP_OVRFLO) #undef ECase }; template void XCOFFDumper::printOverflowSectionHeader(T &Sec) const { if (Obj.is64Bit()) { reportWarning(make_error("An 64-bit XCOFF object file may not " "contain an overflow section header.", object_error::parse_failed), Obj.getFileName()); } W.printString("Name", Sec.getName()); W.printNumber("NumberOfRelocations", Sec.PhysicalAddress); W.printNumber("NumberOfLineNumbers", Sec.VirtualAddress); W.printHex("Size", Sec.SectionSize); W.printHex("RawDataOffset", Sec.FileOffsetToRawData); W.printHex("RelocationPointer", Sec.FileOffsetToRelocationInfo); W.printHex("LineNumberPointer", Sec.FileOffsetToLineNumberInfo); W.printNumber("IndexOfSectionOverflowed", Sec.NumberOfRelocations); W.printNumber("IndexOfSectionOverflowed", Sec.NumberOfLineNumbers); } template void XCOFFDumper::printGenericSectionHeader(T &Sec) const { W.printString("Name", Sec.getName()); W.printHex("PhysicalAddress", Sec.PhysicalAddress); W.printHex("VirtualAddress", Sec.VirtualAddress); W.printHex("Size", Sec.SectionSize); W.printHex("RawDataOffset", Sec.FileOffsetToRawData); W.printHex("RelocationPointer", Sec.FileOffsetToRelocationInfo); W.printHex("LineNumberPointer", Sec.FileOffsetToLineNumberInfo); W.printNumber("NumberOfRelocations", Sec.NumberOfRelocations); W.printNumber("NumberOfLineNumbers", Sec.NumberOfLineNumbers); } void XCOFFDumper::printAuxiliaryHeader( const XCOFFAuxiliaryHeader32 *AuxHeader) { if (AuxHeader == nullptr) return; uint16_t AuxSize = Obj.getOptionalHeaderSize(); uint16_t PartialFieldOffset = AuxSize; const char *PartialFieldName = nullptr; DictScope DS(W, "AuxiliaryHeader"); #define PrintAuxMember32(H, S, T) \ if (offsetof(XCOFFAuxiliaryHeader32, T) + \ sizeof(XCOFFAuxiliaryHeader32::T) <= \ AuxSize) \ W.print##H(S, AuxHeader->T); \ else if (offsetof(XCOFFAuxiliaryHeader32, T) < AuxSize) { \ PartialFieldOffset = offsetof(XCOFFAuxiliaryHeader32, T); \ PartialFieldName = S; \ } PrintAuxMember32(Hex, "Magic", AuxMagic); PrintAuxMember32(Hex, "Version", Version); PrintAuxMember32(Hex, "Size of .text section", TextSize); PrintAuxMember32(Hex, "Size of .data section", InitDataSize); PrintAuxMember32(Hex, "Size of .bss section", BssDataSize); PrintAuxMember32(Hex, "Entry point address", EntryPointAddr); PrintAuxMember32(Hex, ".text section start address", TextStartAddr); PrintAuxMember32(Hex, ".data section start address", DataStartAddr); PrintAuxMember32(Hex, "TOC anchor address", TOCAnchorAddr); PrintAuxMember32(Number, "Section number of entryPoint", SecNumOfEntryPoint); PrintAuxMember32(Number, "Section number of .text", SecNumOfText); PrintAuxMember32(Number, "Section number of .data", SecNumOfData); PrintAuxMember32(Number, "Section number of TOC", SecNumOfTOC); PrintAuxMember32(Number, "Section number of loader data", SecNumOfLoader); PrintAuxMember32(Number, "Section number of .bss", SecNumOfBSS); PrintAuxMember32(Hex, "Maxium alignment of .text", MaxAlignOfText); PrintAuxMember32(Hex, "Maxium alignment of .data", MaxAlignOfData); PrintAuxMember32(Hex, "Module type", ModuleType); PrintAuxMember32(Hex, "CPU type of objects", CpuFlag); PrintAuxMember32(Hex, "(Reserved)", CpuType); PrintAuxMember32(Hex, "Maximum stack size", MaxStackSize); PrintAuxMember32(Hex, "Maximum data size", MaxDataSize); PrintAuxMember32(Hex, "Reserved for debugger", ReservedForDebugger); PrintAuxMember32(Hex, "Text page size", TextPageSize); PrintAuxMember32(Hex, "Data page size", DataPageSize); PrintAuxMember32(Hex, "Stack page size", StackPageSize); if (offsetof(XCOFFAuxiliaryHeader32, FlagAndTDataAlignment) + sizeof(XCOFFAuxiliaryHeader32::FlagAndTDataAlignment) <= AuxSize) { W.printHex("Flag", AuxHeader->getFlag()); W.printHex("Alignment of thread-local storage", AuxHeader->getTDataAlignment()); } PrintAuxMember32(Number, "Section number for .tdata", SecNumOfTData); PrintAuxMember32(Number, "Section number for .tbss", SecNumOfTBSS); // Deal with error. if (PartialFieldOffset < AuxSize) { std::string ErrInfo; llvm::raw_string_ostream StringOS(ErrInfo); StringOS << "Only partial field for " << PartialFieldName << " at offset (" << PartialFieldOffset << ")."; StringOS.flush(); reportWarning( make_error(ErrInfo, object_error::parse_failed), "-"); W.printBinary( "Raw data", "", ArrayRef((const uint8_t *)(AuxHeader) + PartialFieldOffset, AuxSize - PartialFieldOffset)); } else if (sizeof(XCOFFAuxiliaryHeader32) < AuxSize) { reportWarning(make_error( "There are extra data beyond auxiliary header", object_error::parse_failed), "-"); W.printBinary("Extra raw data", "", ArrayRef((const uint8_t *)(AuxHeader) + sizeof(XCOFFAuxiliaryHeader32), AuxSize - sizeof(XCOFFAuxiliaryHeader32))); } #undef PrintAuxMember32 } void XCOFFDumper::printAuxiliaryHeader( const XCOFFAuxiliaryHeader64 *AuxHeader) { if (AuxHeader == nullptr) return; uint16_t AuxSize = Obj.getOptionalHeaderSize(); uint16_t PartialFieldOffset = AuxSize; const char *PartialFieldName = nullptr; DictScope DS(W, "AuxiliaryHeader"); #define PrintAuxMember64(H, S, T) \ if (offsetof(XCOFFAuxiliaryHeader64, T) + \ sizeof(XCOFFAuxiliaryHeader64::T) <= \ AuxSize) \ W.print##H(S, AuxHeader->T); \ else if (offsetof(XCOFFAuxiliaryHeader64, T) < AuxSize) { \ PartialFieldOffset = offsetof(XCOFFAuxiliaryHeader64, T); \ PartialFieldName = S; \ } PrintAuxMember64(Hex, "Magic", AuxMagic); PrintAuxMember64(Hex, "Version", Version); PrintAuxMember64(Hex, "Reserved for debugger", ReservedForDebugger); PrintAuxMember64(Hex, ".text section start address", TextStartAddr); PrintAuxMember64(Hex, ".data section start address", DataStartAddr); PrintAuxMember64(Hex, "TOC anchor address", TOCAnchorAddr); PrintAuxMember64(Number, "Section number of entryPoint", SecNumOfEntryPoint); PrintAuxMember64(Number, "Section number of .text", SecNumOfText); PrintAuxMember64(Number, "Section number of .data", SecNumOfData); PrintAuxMember64(Number, "Section number of TOC", SecNumOfTOC); PrintAuxMember64(Number, "Section number of loader data", SecNumOfLoader); PrintAuxMember64(Number, "Section number of .bss", SecNumOfBSS); PrintAuxMember64(Hex, "Maxium alignment of .text", MaxAlignOfText); PrintAuxMember64(Hex, "Maxium alignment of .data", MaxAlignOfData); PrintAuxMember64(Hex, "Module type", ModuleType); PrintAuxMember64(Hex, "CPU type of objects", CpuFlag); PrintAuxMember64(Hex, "(Reserved)", CpuType); PrintAuxMember64(Hex, "Text page size", TextPageSize); PrintAuxMember64(Hex, "Data page size", DataPageSize); PrintAuxMember64(Hex, "Stack page size", StackPageSize); if (offsetof(XCOFFAuxiliaryHeader64, FlagAndTDataAlignment) + sizeof(XCOFFAuxiliaryHeader64::FlagAndTDataAlignment) <= AuxSize) { W.printHex("Flag", AuxHeader->getFlag()); W.printHex("Alignment of thread-local storage", AuxHeader->getTDataAlignment()); } PrintAuxMember64(Hex, "Size of .text section", TextSize); PrintAuxMember64(Hex, "Size of .data section", InitDataSize); PrintAuxMember64(Hex, "Size of .bss section", BssDataSize); PrintAuxMember64(Hex, "Entry point address", EntryPointAddr); PrintAuxMember64(Hex, "Maximum stack size", MaxStackSize); PrintAuxMember64(Hex, "Maximum data size", MaxDataSize); PrintAuxMember64(Number, "Section number for .tdata", SecNumOfTData); PrintAuxMember64(Number, "Section number for .tbss", SecNumOfTBSS); PrintAuxMember64(Hex, "Additional flags 64-bit XCOFF", XCOFF64Flag); if (PartialFieldOffset < AuxSize) { std::string ErrInfo; llvm::raw_string_ostream StringOS(ErrInfo); StringOS << "Only partial field for " << PartialFieldName << " at offset (" << PartialFieldOffset << ")."; StringOS.flush(); reportWarning( make_error(ErrInfo, object_error::parse_failed), "-"); ; W.printBinary( "Raw data", "", ArrayRef((const uint8_t *)(AuxHeader) + PartialFieldOffset, AuxSize - PartialFieldOffset)); } else if (sizeof(XCOFFAuxiliaryHeader64) < AuxSize) { reportWarning(make_error( "There are extra data beyond auxiliary header", object_error::parse_failed), "-"); W.printBinary("Extra raw data", "", ArrayRef((const uint8_t *)(AuxHeader) + sizeof(XCOFFAuxiliaryHeader64), AuxSize - sizeof(XCOFFAuxiliaryHeader64))); } #undef PrintAuxMember64 } template void XCOFFDumper::printSectionHeaders(ArrayRef Sections) { ListScope Group(W, "Sections"); uint16_t Index = 1; for (const T &Sec : Sections) { DictScope SecDS(W, "Section"); W.printNumber("Index", Index++); uint16_t SectionType = Sec.getSectionType(); switch (SectionType) { case XCOFF::STYP_OVRFLO: printOverflowSectionHeader(Sec); break; case XCOFF::STYP_LOADER: case XCOFF::STYP_EXCEPT: case XCOFF::STYP_TYPCHK: // TODO The interpretation of loader, exception and type check section // headers are different from that of generic section headers. We will // implement them later. We interpret them as generic section headers for // now. default: printGenericSectionHeader(Sec); break; } if (Sec.isReservedSectionType()) W.printHex("Flags", "Reserved", SectionType); else W.printEnum("Type", SectionType, makeArrayRef(SectionTypeFlagsNames)); } if (opts::SectionRelocations) report_fatal_error("Dumping section relocations is unimplemented"); if (opts::SectionSymbols) report_fatal_error("Dumping symbols is unimplemented"); if (opts::SectionData) report_fatal_error("Dumping section data is unimplemented"); } namespace llvm { std::unique_ptr createXCOFFDumper(const object::XCOFFObjectFile &XObj, ScopedPrinter &Writer) { return std::make_unique(XObj, Writer); } } // namespace llvm