//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #include "TargetInfo.h" #include "ABIInfo.h" #include "CGBlocks.h" #include "CGCXXABI.h" #include "CGValue.h" #include "CodeGenFunction.h" #include "clang/AST/Attr.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/Basic/DiagnosticFrontend.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/CodeGen/SwiftCallingConv.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/IntrinsicsS390.h" #include "llvm/IR/Type.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include // std::sort using namespace clang; using namespace CodeGen; // Helper for coercing an aggregate argument or return value into an integer // array of the same size (including padding) and alignment. This alternate // coercion happens only for the RenderScript ABI and can be removed after // runtimes that rely on it are no longer supported. // // RenderScript assumes that the size of the argument / return value in the IR // is the same as the size of the corresponding qualified type. This helper // coerces the aggregate type into an array of the same size (including // padding). This coercion is used in lieu of expansion of struct members or // other canonical coercions that return a coerced-type of larger size. // // Ty - The argument / return value type // Context - The associated ASTContext // LLVMContext - The associated LLVMContext static ABIArgInfo coerceToIntArray(QualType Ty, ASTContext &Context, llvm::LLVMContext &LLVMContext) { // Alignment and Size are measured in bits. const uint64_t Size = Context.getTypeSize(Ty); const uint64_t Alignment = Context.getTypeAlign(Ty); llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); const uint64_t NumElements = (Size + Alignment - 1) / Alignment; return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); } static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array, llvm::Value *Value, unsigned FirstIndex, unsigned LastIndex) { // Alternatively, we could emit this as a loop in the source. for (unsigned I = FirstIndex; I <= LastIndex; ++I) { llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); } } static bool isAggregateTypeForABI(QualType T) { return !CodeGenFunction::hasScalarEvaluationKind(T) || T->isMemberFunctionPointerType(); } ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, bool Realign, llvm::Type *Padding) const { return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, Realign, Padding); } ABIArgInfo ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), /*ByVal*/ false, Realign); } Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { return Address::invalid(); } bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { if (Ty->isPromotableIntegerType()) return true; if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) return true; return false; } ABIInfo::~ABIInfo() {} /// Does the given lowering require more than the given number of /// registers when expanded? /// /// This is intended to be the basis of a reasonable basic implementation /// of should{Pass,Return}IndirectlyForSwift. /// /// For most targets, a limit of four total registers is reasonable; this /// limits the amount of code required in order to move around the value /// in case it wasn't produced immediately prior to the call by the caller /// (or wasn't produced in exactly the right registers) or isn't used /// immediately within the callee. But some targets may need to further /// limit the register count due to an inability to support that many /// return registers. static bool occupiesMoreThan(CodeGenTypes &cgt, ArrayRef scalarTypes, unsigned maxAllRegisters) { unsigned intCount = 0, fpCount = 0; for (llvm::Type *type : scalarTypes) { if (type->isPointerTy()) { intCount++; } else if (auto intTy = dyn_cast(type)) { auto ptrWidth = cgt.getTarget().getPointerWidth(0); intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; } else { assert(type->isVectorTy() || type->isFloatingPointTy()); fpCount++; } } return (intCount + fpCount > maxAllRegisters); } bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, llvm::Type *eltTy, unsigned numElts) const { // The default implementation of this assumes that the target guarantees // 128-bit SIMD support but nothing more. return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); } static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI) { const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) { if (!RT->getDecl()->canPassInRegisters()) return CGCXXABI::RAA_Indirect; return CGCXXABI::RAA_Default; } return CXXABI.getRecordArgABI(RD); } static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, CGCXXABI &CXXABI) { const RecordType *RT = T->getAs(); if (!RT) return CGCXXABI::RAA_Default; return getRecordArgABI(RT, CXXABI); } static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, const ABIInfo &Info) { QualType Ty = FI.getReturnType(); if (const auto *RT = Ty->getAs()) if (!isa(RT->getDecl()) && !RT->getDecl()->canPassInRegisters()) { FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); return true; } return CXXABI.classifyReturnType(FI); } /// Pass transparent unions as if they were the type of the first element. Sema /// should ensure that all elements of the union have the same "machine type". static QualType useFirstFieldIfTransparentUnion(QualType Ty) { if (const RecordType *UT = Ty->getAsUnionType()) { const RecordDecl *UD = UT->getDecl(); if (UD->hasAttr()) { assert(!UD->field_empty() && "sema created an empty transparent union"); return UD->field_begin()->getType(); } } return Ty; } CGCXXABI &ABIInfo::getCXXABI() const { return CGT.getCXXABI(); } ASTContext &ABIInfo::getContext() const { return CGT.getContext(); } llvm::LLVMContext &ABIInfo::getVMContext() const { return CGT.getLLVMContext(); } const llvm::DataLayout &ABIInfo::getDataLayout() const { return CGT.getDataLayout(); } const TargetInfo &ABIInfo::getTarget() const { return CGT.getTarget(); } const CodeGenOptions &ABIInfo::getCodeGenOpts() const { return CGT.getCodeGenOpts(); } bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { return false; } bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, uint64_t Members) const { return false; } LLVM_DUMP_METHOD void ABIArgInfo::dump() const { raw_ostream &OS = llvm::errs(); OS << "(ABIArgInfo Kind="; switch (TheKind) { case Direct: OS << "Direct Type="; if (llvm::Type *Ty = getCoerceToType()) Ty->print(OS); else OS << "null"; break; case Extend: OS << "Extend"; break; case Ignore: OS << "Ignore"; break; case InAlloca: OS << "InAlloca Offset=" << getInAllocaFieldIndex(); break; case Indirect: OS << "Indirect Align=" << getIndirectAlign().getQuantity() << " ByVal=" << getIndirectByVal() << " Realign=" << getIndirectRealign(); break; case IndirectAliased: OS << "Indirect Align=" << getIndirectAlign().getQuantity() << " AadrSpace=" << getIndirectAddrSpace() << " Realign=" << getIndirectRealign(); break; case Expand: OS << "Expand"; break; case CoerceAndExpand: OS << "CoerceAndExpand Type="; getCoerceAndExpandType()->print(OS); break; } OS << ")\n"; } // Dynamically round a pointer up to a multiple of the given alignment. static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, llvm::Value *Ptr, CharUnits Align) { llvm::Value *PtrAsInt = Ptr; // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, Ptr->getType(), Ptr->getName() + ".aligned"); return PtrAsInt; } /// Emit va_arg for a platform using the common void* representation, /// where arguments are simply emitted in an array of slots on the stack. /// /// This version implements the core direct-value passing rules. /// /// \param SlotSize - The size and alignment of a stack slot. /// Each argument will be allocated to a multiple of this number of /// slots, and all the slots will be aligned to this value. /// \param AllowHigherAlign - The slot alignment is not a cap; /// an argument type with an alignment greater than the slot size /// will be emitted on a higher-alignment address, potentially /// leaving one or more empty slots behind as padding. If this /// is false, the returned address might be less-aligned than /// DirectAlign. static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, Address VAListAddr, llvm::Type *DirectTy, CharUnits DirectSize, CharUnits DirectAlign, CharUnits SlotSize, bool AllowHigherAlign) { // Cast the element type to i8* if necessary. Some platforms define // va_list as a struct containing an i8* instead of just an i8*. if (VAListAddr.getElementType() != CGF.Int8PtrTy) VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); // If the CC aligns values higher than the slot size, do so if needed. Address Addr = Address::invalid(); if (AllowHigherAlign && DirectAlign > SlotSize) { Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), DirectAlign); } else { Addr = Address(Ptr, SlotSize); } // Advance the pointer past the argument, then store that back. CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); Address NextPtr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); // If the argument is smaller than a slot, and this is a big-endian // target, the argument will be right-adjusted in its slot. if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && !DirectTy->isStructTy()) { Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); } Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); return Addr; } /// Emit va_arg for a platform using the common void* representation, /// where arguments are simply emitted in an array of slots on the stack. /// /// \param IsIndirect - Values of this type are passed indirectly. /// \param ValueInfo - The size and alignment of this type, generally /// computed with getContext().getTypeInfoInChars(ValueTy). /// \param SlotSizeAndAlign - The size and alignment of a stack slot. /// Each argument will be allocated to a multiple of this number of /// slots, and all the slots will be aligned to this value. /// \param AllowHigherAlign - The slot alignment is not a cap; /// an argument type with an alignment greater than the slot size /// will be emitted on a higher-alignment address, potentially /// leaving one or more empty slots behind as padding. static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType ValueTy, bool IsIndirect, TypeInfoChars ValueInfo, CharUnits SlotSizeAndAlign, bool AllowHigherAlign) { // The size and alignment of the value that was passed directly. CharUnits DirectSize, DirectAlign; if (IsIndirect) { DirectSize = CGF.getPointerSize(); DirectAlign = CGF.getPointerAlign(); } else { DirectSize = ValueInfo.Width; DirectAlign = ValueInfo.Align; } // Cast the address we've calculated to the right type. llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); if (IsIndirect) DirectTy = DirectTy->getPointerTo(0); Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign, SlotSizeAndAlign, AllowHigherAlign); if (IsIndirect) { Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); } return Addr; } static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, CharUnits SlotSize, CharUnits EltSize, const ComplexType *CTy) { Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, SlotSize, SlotSize, /*AllowHigher*/ true); Address RealAddr = Addr; Address ImagAddr = RealAddr; if (CGF.CGM.getDataLayout().isBigEndian()) { RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 2 * SlotSize - EltSize); } else { ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); } llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), /*init*/ true); return Temp; } static Address emitMergePHI(CodeGenFunction &CGF, Address Addr1, llvm::BasicBlock *Block1, Address Addr2, llvm::BasicBlock *Block2, const llvm::Twine &Name = "") { assert(Addr1.getType() == Addr2.getType()); llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); PHI->addIncoming(Addr1.getPointer(), Block1); PHI->addIncoming(Addr2.getPointer(), Block2); CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); return Address(PHI, Addr1.getElementType(), Align); } TargetCodeGenInfo::~TargetCodeGenInfo() = default; // If someone can figure out a general rule for this, that would be great. // It's probably just doomed to be platform-dependent, though. unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { // Verified for: // x86-64 FreeBSD, Linux, Darwin // x86-32 FreeBSD, Linux, Darwin // PowerPC Linux, Darwin // ARM Darwin (*not* EABI) // AArch64 Linux return 32; } bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const { // The following conventions are known to require this to be false: // x86_stdcall // MIPS // For everything else, we just prefer false unless we opt out. return false; } void TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const { // This assumes the user is passing a library name like "rt" instead of a // filename like "librt.a/so", and that they don't care whether it's static or // dynamic. Opt = "-l"; Opt += Lib; } unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { // OpenCL kernels are called via an explicit runtime API with arguments // set with clSetKernelArg(), not as normal sub-functions. // Return SPIR_KERNEL by default as the kernel calling convention to // ensure the fingerprint is fixed such way that each OpenCL argument // gets one matching argument in the produced kernel function argument // list to enable feasible implementation of clSetKernelArg() with // aggregates etc. In case we would use the default C calling conv here, // clSetKernelArg() might break depending on the target-specific // conventions; different targets might split structs passed as values // to multiple function arguments etc. return llvm::CallingConv::SPIR_KERNEL; } llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, llvm::PointerType *T, QualType QT) const { return llvm::ConstantPointerNull::get(T); } LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, const VarDecl *D) const { assert(!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only"); return D ? D->getType().getAddressSpace() : LangAS::Default; } llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { // Since target may map different address spaces in AST to the same address // space, an address space conversion may end up as a bitcast. if (auto *C = dyn_cast(Src)) return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); // Try to preserve the source's name to make IR more readable. return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); } llvm::Constant * TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy) const { // Since target may map different address spaces in AST to the same address // space, an address space conversion may end up as a bitcast. return llvm::ConstantExpr::getPointerCast(Src, DestTy); } llvm::SyncScope::ID TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, SyncScope Scope, llvm::AtomicOrdering Ordering, llvm::LLVMContext &Ctx) const { return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ } static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); /// isEmptyField - Return true iff a the field is "empty", that is it /// is an unnamed bit-field or an (array of) empty record(s). static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, bool AllowArrays) { if (FD->isUnnamedBitfield()) return true; QualType FT = FD->getType(); // Constant arrays of empty records count as empty, strip them off. // Constant arrays of zero length always count as empty. bool WasArray = false; if (AllowArrays) while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { if (AT->getSize() == 0) return true; FT = AT->getElementType(); // The [[no_unique_address]] special case below does not apply to // arrays of C++ empty records, so we need to remember this fact. WasArray = true; } const RecordType *RT = FT->getAs(); if (!RT) return false; // C++ record fields are never empty, at least in the Itanium ABI. // // FIXME: We should use a predicate for whether this behavior is true in the // current ABI. // // The exception to the above rule are fields marked with the // [[no_unique_address]] attribute (since C++20). Those do count as empty // according to the Itanium ABI. The exception applies only to records, // not arrays of records, so we must also check whether we stripped off an // array type above. if (isa(RT->getDecl()) && (WasArray || !FD->hasAttr())) return false; return isEmptyRecord(Context, FT, AllowArrays); } /// isEmptyRecord - Return true iff a structure contains only empty /// fields. Note that a structure with a flexible array member is not /// considered empty. static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { const RecordType *RT = T->getAs(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (const auto &I : CXXRD->bases()) if (!isEmptyRecord(Context, I.getType(), true)) return false; for (const auto *I : RD->fields()) if (!isEmptyField(Context, I, AllowArrays)) return false; return true; } /// isSingleElementStruct - Determine if a structure is a "single /// element struct", i.e. it has exactly one non-empty field or /// exactly one field which is itself a single element /// struct. Structures with flexible array members are never /// considered single element structs. /// /// \return The field declaration for the single non-empty field, if /// it exists. static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { const RecordType *RT = T->getAs(); if (!RT) return nullptr; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return nullptr; const Type *Found = nullptr; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { // Ignore empty records. if (isEmptyRecord(Context, I.getType(), true)) continue; // If we already found an element then this isn't a single-element struct. if (Found) return nullptr; // If this is non-empty and not a single element struct, the composite // cannot be a single element struct. Found = isSingleElementStruct(I.getType(), Context); if (!Found) return nullptr; } } // Check for single element. for (const auto *FD : RD->fields()) { QualType FT = FD->getType(); // Ignore empty fields. if (isEmptyField(Context, FD, true)) continue; // If we already found an element then this isn't a single-element // struct. if (Found) return nullptr; // Treat single element arrays as the element. while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { if (AT->getSize().getZExtValue() != 1) break; FT = AT->getElementType(); } if (!isAggregateTypeForABI(FT)) { Found = FT.getTypePtr(); } else { Found = isSingleElementStruct(FT, Context); if (!Found) return nullptr; } } // We don't consider a struct a single-element struct if it has // padding beyond the element type. if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) return nullptr; return Found; } namespace { Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, const ABIArgInfo &AI) { // This default implementation defers to the llvm backend's va_arg // instruction. It can handle only passing arguments directly // (typically only handled in the backend for primitive types), or // aggregates passed indirectly by pointer (NOTE: if the "byval" // flag has ABI impact in the callee, this implementation cannot // work.) // Only a few cases are covered here at the moment -- those needed // by the default abi. llvm::Value *Val; if (AI.isIndirect()) { assert(!AI.getPaddingType() && "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); assert( !AI.getIndirectRealign() && "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); CharUnits TyAlignForABI = TyInfo.Align; llvm::Type *BaseTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); llvm::Value *Addr = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); return Address(Addr, TyAlignForABI); } else { assert((AI.isDirect() || AI.isExtend()) && "Unexpected ArgInfo Kind in generic VAArg emitter!"); assert(!AI.getInReg() && "Unexpected InReg seen in arginfo in generic VAArg emitter!"); assert(!AI.getPaddingType() && "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); assert(!AI.getDirectOffset() && "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); assert(!AI.getCoerceToType() && "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); Address Temp = CGF.CreateMemTemp(Ty, "varet"); Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); CGF.Builder.CreateStore(Val, Temp); return Temp; } } /// DefaultABIInfo - The default implementation for ABI specific /// details. This implementation provides information which results in /// self-consistent and sensible LLVM IR generation, but does not /// conform to any particular ABI. class DefaultABIInfo : public ABIInfo { public: DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override { return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); } }; class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { public: DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} }; ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { Ty = useFirstFieldIfTransparentUnion(Ty); if (isAggregateTypeForABI(Ty)) { // Records with non-trivial destructors/copy-constructors should not be // passed by value. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); return getNaturalAlignIndirect(Ty); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); ASTContext &Context = getContext(); if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() > Context.getTypeSize(Context.getTargetInfo().hasInt128Type() ? Context.Int128Ty : Context.LongLongTy)) return getNaturalAlignIndirect(Ty); return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return getNaturalAlignIndirect(RetTy); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (const auto *EIT = RetTy->getAs()) if (EIT->getNumBits() > getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() ? getContext().Int128Ty : getContext().LongLongTy)) return getNaturalAlignIndirect(RetTy); return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } //===----------------------------------------------------------------------===// // WebAssembly ABI Implementation // // This is a very simple ABI that relies a lot on DefaultABIInfo. //===----------------------------------------------------------------------===// class WebAssemblyABIInfo final : public SwiftABIInfo { public: enum ABIKind { MVP = 0, ExperimentalMV = 1, }; private: DefaultABIInfo defaultInfo; ABIKind Kind; public: explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} private: ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; // DefaultABIInfo's classifyReturnType and classifyArgumentType are // non-virtual, but computeInfo and EmitVAArg are virtual, so we // overload them. void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &Arg : FI.arguments()) Arg.info = classifyArgumentType(Arg.type); } Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { return occupiesMoreThan(CGT, scalars, /*total*/ 4); } bool isSwiftErrorInRegister() const override { return false; } }; class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { public: explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, WebAssemblyABIInfo::ABIKind K) : TargetCodeGenInfo(std::make_unique(CGT, K)) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); if (const auto *FD = dyn_cast_or_null(D)) { if (const auto *Attr = FD->getAttr()) { llvm::Function *Fn = cast(GV); llvm::AttrBuilder B(GV->getContext()); B.addAttribute("wasm-import-module", Attr->getImportModule()); Fn->addFnAttrs(B); } if (const auto *Attr = FD->getAttr()) { llvm::Function *Fn = cast(GV); llvm::AttrBuilder B(GV->getContext()); B.addAttribute("wasm-import-name", Attr->getImportName()); Fn->addFnAttrs(B); } if (const auto *Attr = FD->getAttr()) { llvm::Function *Fn = cast(GV); llvm::AttrBuilder B(GV->getContext()); B.addAttribute("wasm-export-name", Attr->getExportName()); Fn->addFnAttrs(B); } } if (auto *FD = dyn_cast_or_null(D)) { llvm::Function *Fn = cast(GV); if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) Fn->addFnAttr("no-prototype"); } } }; /// Classify argument of given type \p Ty. ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { Ty = useFirstFieldIfTransparentUnion(Ty); if (isAggregateTypeForABI(Ty)) { // Records with non-trivial destructors/copy-constructors should not be // passed by value. if (auto RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); // Lower single-element structs to just pass a regular value. TODO: We // could do reasonable-size multiple-element structs too, using getExpand(), // though watch out for things like bitfields. if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); // For the experimental multivalue ABI, fully expand all other aggregates if (Kind == ABIKind::ExperimentalMV) { const RecordType *RT = Ty->getAs(); assert(RT); bool HasBitField = false; for (auto *Field : RT->getDecl()->fields()) { if (Field->isBitField()) { HasBitField = true; break; } } if (!HasBitField) return ABIArgInfo::getExpand(); } } // Otherwise just do the default thing. return defaultInfo.classifyArgumentType(Ty); } ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { if (isAggregateTypeForABI(RetTy)) { // Records with non-trivial destructors/copy-constructors should not be // returned by value. if (!getRecordArgABI(RetTy, getCXXABI())) { // Ignore empty structs/unions. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Lower single-element structs to just return a regular value. TODO: We // could do reasonable-size multiple-element structs too, using // ABIArgInfo::getDirect(). if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); // For the experimental multivalue ABI, return all other aggregates if (Kind == ABIKind::ExperimentalMV) return ABIArgInfo::getDirect(); } } // Otherwise just do the default thing. return defaultInfo.classifyReturnType(RetTy); } Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { bool IsIndirect = isAggregateTypeForABI(Ty) && !isEmptyRecord(getContext(), Ty, true) && !isSingleElementStruct(Ty, getContext()); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, getContext().getTypeInfoInChars(Ty), CharUnits::fromQuantity(4), /*AllowHigherAlign=*/true); } //===----------------------------------------------------------------------===// // le32/PNaCl bitcode ABI Implementation // // This is a simplified version of the x86_32 ABI. Arguments and return values // are always passed on the stack. //===----------------------------------------------------------------------===// class PNaClABIInfo : public ABIInfo { public: PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; }; class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { public: PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} }; void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // The PNaCL ABI is a bit odd, in that varargs don't use normal // function classification. Structs get passed directly for varargs // functions, through a rewriting transform in // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows // this target to actually support a va_arg instructions with an // aggregate type, unlike other targets. return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); } /// Classify argument of given type \p Ty. ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); return getNaturalAlignIndirect(Ty); } else if (const EnumType *EnumTy = Ty->getAs()) { // Treat an enum type as its underlying type. Ty = EnumTy->getDecl()->getIntegerType(); } else if (Ty->isFloatingType()) { // Floating-point types don't go inreg. return ABIArgInfo::getDirect(); } else if (const auto *EIT = Ty->getAs()) { // Treat bit-precise integers as integers if <= 64, otherwise pass // indirectly. if (EIT->getNumBits() > 64) return getNaturalAlignIndirect(Ty); return ABIArgInfo::getDirect(); } return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // In the PNaCl ABI we always return records/structures on the stack. if (isAggregateTypeForABI(RetTy)) return getNaturalAlignIndirect(RetTy); // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. if (const auto *EIT = RetTy->getAs()) { if (EIT->getNumBits() > 64) return getNaturalAlignIndirect(RetTy); return ABIArgInfo::getDirect(); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } /// IsX86_MMXType - Return true if this is an MMX type. bool IsX86_MMXType(llvm::Type *IRType) { // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && cast(IRType)->getElementType()->isIntegerTy() && IRType->getScalarSizeInBits() != 64; } static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) { bool IsMMXCons = llvm::StringSwitch(Constraint) .Cases("y", "&y", "^Ym", true) .Default(false); if (IsMMXCons && Ty->isVectorTy()) { if (cast(Ty)->getPrimitiveSizeInBits().getFixedSize() != 64) { // Invalid MMX constraint return nullptr; } return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); } // No operation needed return Ty; } /// Returns true if this type can be passed in SSE registers with the /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { if (const BuiltinType *BT = Ty->getAs()) { if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { if (BT->getKind() == BuiltinType::LongDouble) { if (&Context.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) return false; } return true; } } else if (const VectorType *VT = Ty->getAs()) { // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX // registers specially. unsigned VecSize = Context.getTypeSize(VT); if (VecSize == 128 || VecSize == 256 || VecSize == 512) return true; } return false; } /// Returns true if this aggregate is small enough to be passed in SSE registers /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { return NumMembers <= 4; } /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { auto AI = ABIArgInfo::getDirect(T); AI.setInReg(true); AI.setCanBeFlattened(false); return AI; } //===----------------------------------------------------------------------===// // X86-32 ABI Implementation //===----------------------------------------------------------------------===// /// Similar to llvm::CCState, but for Clang. struct CCState { CCState(CGFunctionInfo &FI) : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} llvm::SmallBitVector IsPreassigned; unsigned CC = CallingConv::CC_C; unsigned FreeRegs = 0; unsigned FreeSSERegs = 0; }; /// X86_32ABIInfo - The X86-32 ABI information. class X86_32ABIInfo : public SwiftABIInfo { enum Class { Integer, Float }; static const unsigned MinABIStackAlignInBytes = 4; bool IsDarwinVectorABI; bool IsRetSmallStructInRegABI; bool IsWin32StructABI; bool IsSoftFloatABI; bool IsMCUABI; bool IsLinuxABI; unsigned DefaultNumRegisterParameters; static bool isRegisterSize(unsigned Size) { return (Size == 8 || Size == 16 || Size == 32 || Size == 64); } bool isHomogeneousAggregateBaseType(QualType Ty) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorTypeForVectorCall(getContext(), Ty); } bool isHomogeneousAggregateSmallEnough(const Type *Ty, uint64_t NumMembers) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorCallAggregateSmallEnough(NumMembers); } bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; /// Return the alignment to use for the given type on the stack. unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; Class classify(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; /// Updates the number of available free registers, returns /// true if any registers were allocated. bool updateFreeRegs(QualType Ty, CCState &State) const; bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, bool &NeedsPadding) const; bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; bool canExpandIndirectArgument(QualType Ty) const; /// Rewrite the function info so that all memory arguments use /// inalloca. void rewriteWithInAlloca(CGFunctionInfo &FI) const; void addFieldToArgStruct(SmallVector &FrameFields, CharUnits &StackOffset, ABIArgInfo &Info, QualType Type) const; void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; public: void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI) : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), IsRetSmallStructInRegABI(RetSmallStructInRegABI), IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || CGT.getTarget().getTriple().isOSCygMing()), DefaultNumRegisterParameters(NumRegisterParameters) {} bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { // LLVM's x86-32 lowering currently only assigns up to three // integer registers and three fp registers. Oddly, it'll use up to // four vector registers for vectors, but those can overlap with the // scalar registers. return occupiesMoreThan(CGT, scalars, /*total*/ 3); } bool isSwiftErrorInRegister() const override { // x86-32 lowering does not support passing swifterror in a register. return false; } }; class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI) : TargetCodeGenInfo(std::make_unique( CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, NumRegisterParameters, SoftFloatABI)) {} static bool isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts); void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { // Darwin uses different dwarf register numbers for EH. if (CGM.getTarget().getTriple().isOSDarwin()) return 5; return 4; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const override { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, std::string &Constraints, std::vector &ResultRegTypes, std::vector &ResultTruncRegTypes, std::vector &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const override; llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { unsigned Sig = (0xeb << 0) | // jmp rel8 (0x06 << 8) | // .+0x08 ('v' << 16) | ('2' << 24); return llvm::ConstantInt::get(CGM.Int32Ty, Sig); } StringRef getARCRetainAutoreleasedReturnValueMarker() const override { return "movl\t%ebp, %ebp" "\t\t// marker for objc_retainAutoreleaseReturnValue"; } }; } /// Rewrite input constraint references after adding some output constraints. /// In the case where there is one output and one input and we add one output, /// we need to replace all operand references greater than or equal to 1: /// mov $0, $1 /// mov eax, $1 /// The result will be: /// mov $0, $2 /// mov eax, $2 static void rewriteInputConstraintReferences(unsigned FirstIn, unsigned NumNewOuts, std::string &AsmString) { std::string Buf; llvm::raw_string_ostream OS(Buf); size_t Pos = 0; while (Pos < AsmString.size()) { size_t DollarStart = AsmString.find('$', Pos); if (DollarStart == std::string::npos) DollarStart = AsmString.size(); size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); if (DollarEnd == std::string::npos) DollarEnd = AsmString.size(); OS << StringRef(&AsmString[Pos], DollarEnd - Pos); Pos = DollarEnd; size_t NumDollars = DollarEnd - DollarStart; if (NumDollars % 2 != 0 && Pos < AsmString.size()) { // We have an operand reference. size_t DigitStart = Pos; if (AsmString[DigitStart] == '{') { OS << '{'; ++DigitStart; } size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); if (DigitEnd == std::string::npos) DigitEnd = AsmString.size(); StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); unsigned OperandIndex; if (!OperandStr.getAsInteger(10, OperandIndex)) { if (OperandIndex >= FirstIn) OperandIndex += NumNewOuts; OS << OperandIndex; } else { OS << OperandStr; } Pos = DigitEnd; } } AsmString = std::move(OS.str()); } /// Add output constraints for EAX:EDX because they are return registers. void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, std::vector &ResultRegTypes, std::vector &ResultTruncRegTypes, std::vector &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const { uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is // larger. if (!Constraints.empty()) Constraints += ','; if (RetWidth <= 32) { Constraints += "={eax}"; ResultRegTypes.push_back(CGF.Int32Ty); } else { // Use the 'A' constraint for EAX:EDX. Constraints += "=A"; ResultRegTypes.push_back(CGF.Int64Ty); } // Truncate EAX or EAX:EDX to an integer of the appropriate size. llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); ResultTruncRegTypes.push_back(CoerceTy); // Coerce the integer by bitcasting the return slot pointer. ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), CoerceTy->getPointerTo())); ResultRegDests.push_back(ReturnSlot); rewriteInputConstraintReferences(NumOutputs, 1, AsmString); } /// shouldReturnTypeInRegister - Determine if the given type should be /// returned in a register (for the Darwin and MCU ABI). bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const { uint64_t Size = Context.getTypeSize(Ty); // For i386, type must be register sized. // For the MCU ABI, it only needs to be <= 8-byte if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) return false; if (Ty->isVectorType()) { // 64- and 128- bit vectors inside structures are not returned in // registers. if (Size == 64 || Size == 128) return false; return true; } // If this is a builtin, pointer, enum, complex type, member pointer, or // member function pointer it is ok. if (Ty->getAs() || Ty->hasPointerRepresentation() || Ty->isAnyComplexType() || Ty->isEnumeralType() || Ty->isBlockPointerType() || Ty->isMemberPointerType()) return true; // Arrays are treated like records. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) return shouldReturnTypeInRegister(AT->getElementType(), Context); // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // FIXME: Traverse bases here too. // Structure types are passed in register if all fields would be // passed in a register. for (const auto *FD : RT->getDecl()->fields()) { // Empty fields are ignored. if (isEmptyField(Context, FD, true)) continue; // Check fields recursively. if (!shouldReturnTypeInRegister(FD->getType(), Context)) return false; } return true; } static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { // Treat complex types as the element type. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); // Check for a type which we know has a simple scalar argument-passing // convention without any padding. (We're specifically looking for 32 // and 64-bit integer and integer-equivalents, float, and double.) if (!Ty->getAs() && !Ty->hasPointerRepresentation() && !Ty->isEnumeralType() && !Ty->isBlockPointerType()) return false; uint64_t Size = Context.getTypeSize(Ty); return Size == 32 || Size == 64; } static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, uint64_t &Size) { for (const auto *FD : RD->fields()) { // Scalar arguments on the stack get 4 byte alignment on x86. If the // argument is smaller than 32-bits, expanding the struct will create // alignment padding. if (!is32Or64BitBasicType(FD->getType(), Context)) return false; // FIXME: Reject bit-fields wholesale; there are two problems, we don't know // how to expand them yet, and the predicate for telling if a bitfield still // counts as "basic" is more complicated than what we were doing previously. if (FD->isBitField()) return false; Size += Context.getTypeSize(FD->getType()); } return true; } static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, uint64_t &Size) { // Don't do this if there are any non-empty bases. for (const CXXBaseSpecifier &Base : RD->bases()) { if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), Size)) return false; } if (!addFieldSizes(Context, RD, Size)) return false; return true; } /// Test whether an argument type which is to be passed indirectly (on the /// stack) would have the equivalent layout if it was expanded into separate /// arguments. If so, we prefer to do the latter to avoid inhibiting /// optimizations. bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { // We can only expand structure types. const RecordType *RT = Ty->getAs(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); uint64_t Size = 0; if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { if (!IsWin32StructABI) { // On non-Windows, we have to conservatively match our old bitcode // prototypes in order to be ABI-compatible at the bitcode level. if (!CXXRD->isCLike()) return false; } else { // Don't do this for dynamic classes. if (CXXRD->isDynamicClass()) return false; } if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) return false; } else { if (!addFieldSizes(getContext(), RD, Size)) return false; } // We can do this if there was no alignment padding. return Size == getContext().getTypeSize(Ty); } ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { // If the return value is indirect, then the hidden argument is consuming one // integer register. if (State.FreeRegs) { --State.FreeRegs; if (!IsMCUABI) return getNaturalAlignIndirectInReg(RetTy); } return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); } ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); const Type *Base = nullptr; uint64_t NumElts = 0; if ((State.CC == llvm::CallingConv::X86_VectorCall || State.CC == llvm::CallingConv::X86_RegCall) && isHomogeneousAggregate(RetTy, Base, NumElts)) { // The LLVM struct type for such an aggregate should lower properly. return ABIArgInfo::getDirect(); } if (const VectorType *VT = RetTy->getAs()) { // On Darwin, some vectors are returned in registers. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(RetTy); // 128-bit vectors are a special case; they are returned in // registers and we need to make sure to pick a type the LLVM // backend will like. if (Size == 128) return ABIArgInfo::getDirect(llvm::FixedVectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2)); // Always return in register if it fits in a general purpose // register, or if it is 64 bits and has a single element. if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); return getIndirectReturnResult(RetTy, State); } return ABIArgInfo::getDirect(); } if (isAggregateTypeForABI(RetTy)) { if (const RecordType *RT = RetTy->getAs()) { // Structures with flexible arrays are always indirect. if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectReturnResult(RetTy, State); } // If specified, structs and unions are always indirect. if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) return getIndirectReturnResult(RetTy, State); // Ignore empty structs/unions. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Return complex of _Float16 as <2 x half> so the backend will use xmm0. if (const ComplexType *CT = RetTy->getAs()) { QualType ET = getContext().getCanonicalType(CT->getElementType()); if (ET->isFloat16Type()) return ABIArgInfo::getDirect(llvm::FixedVectorType::get( llvm::Type::getHalfTy(getVMContext()), 2)); } // Small structures which are register sized are generally returned // in a register. if (shouldReturnTypeInRegister(RetTy, getContext())) { uint64_t Size = getContext().getTypeSize(RetTy); // As a special-case, if the struct is a "single-element" struct, and // the field is of type "float" or "double", return it in a // floating-point register. (MSVC does not apply this special case.) // We apply a similar transformation for pointer types to improve the // quality of the generated IR. if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) || SeltTy->hasPointerRepresentation()) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); // FIXME: We should be able to narrow this integer in cases with dead // padding. return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); } return getIndirectReturnResult(RetTy, State); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (const auto *EIT = RetTy->getAs()) if (EIT->getNumBits() > 64) return getIndirectReturnResult(RetTy, State); return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { return Ty->getAs() && Context.getTypeSize(Ty) == 128; } static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { const RecordType *RT = Ty->getAs(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (const auto &I : CXXRD->bases()) if (!isRecordWithSIMDVectorType(Context, I.getType())) return false; for (const auto *i : RD->fields()) { QualType FT = i->getType(); if (isSIMDVectorType(Context, FT)) return true; if (isRecordWithSIMDVectorType(Context, FT)) return true; } return false; } unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, unsigned Align) const { // Otherwise, if the alignment is less than or equal to the minimum ABI // alignment, just use the default; the backend will handle this. if (Align <= MinABIStackAlignInBytes) return 0; // Use default alignment. if (IsLinuxABI) { // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't // want to spend any effort dealing with the ramifications of ABI breaks. // // If the vector type is __m128/__m256/__m512, return the default alignment. if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) return Align; } // On non-Darwin, the stack type alignment is always 4. if (!IsDarwinVectorABI) { // Set explicit alignment, since we may need to realign the top. return MinABIStackAlignInBytes; } // Otherwise, if the type contains an SSE vector type, the alignment is 16. if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || isRecordWithSIMDVectorType(getContext(), Ty))) return 16; return MinABIStackAlignInBytes; } ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, CCState &State) const { if (!ByVal) { if (State.FreeRegs) { --State.FreeRegs; // Non-byval indirects just use one pointer. if (!IsMCUABI) return getNaturalAlignIndirectInReg(Ty); } return getNaturalAlignIndirect(Ty, false); } // Compute the byval alignment. unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); if (StackAlign == 0) return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); // If the stack alignment is less than the type alignment, realign the // argument. bool Realign = TypeAlign > StackAlign; return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), /*ByVal=*/true, Realign); } X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { const Type *T = isSingleElementStruct(Ty, getContext()); if (!T) T = Ty.getTypePtr(); if (const BuiltinType *BT = T->getAs()) { BuiltinType::Kind K = BT->getKind(); if (K == BuiltinType::Float || K == BuiltinType::Double) return Float; } return Integer; } bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { if (!IsSoftFloatABI) { Class C = classify(Ty); if (C == Float) return false; } unsigned Size = getContext().getTypeSize(Ty); unsigned SizeInRegs = (Size + 31) / 32; if (SizeInRegs == 0) return false; if (!IsMCUABI) { if (SizeInRegs > State.FreeRegs) { State.FreeRegs = 0; return false; } } else { // The MCU psABI allows passing parameters in-reg even if there are // earlier parameters that are passed on the stack. Also, // it does not allow passing >8-byte structs in-register, // even if there are 3 free registers available. if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) return false; } State.FreeRegs -= SizeInRegs; return true; } bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, bool &NeedsPadding) const { // On Windows, aggregates other than HFAs are never passed in registers, and // they do not consume register slots. Homogenous floating-point aggregates // (HFAs) have already been dealt with at this point. if (IsWin32StructABI && isAggregateTypeForABI(Ty)) return false; NeedsPadding = false; InReg = !IsMCUABI; if (!updateFreeRegs(Ty, State)) return false; if (IsMCUABI) return true; if (State.CC == llvm::CallingConv::X86_FastCall || State.CC == llvm::CallingConv::X86_VectorCall || State.CC == llvm::CallingConv::X86_RegCall) { if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) NeedsPadding = true; return false; } return true; } bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { if (!updateFreeRegs(Ty, State)) return false; if (IsMCUABI) return false; if (State.CC == llvm::CallingConv::X86_FastCall || State.CC == llvm::CallingConv::X86_VectorCall || State.CC == llvm::CallingConv::X86_RegCall) { if (getContext().getTypeSize(Ty) > 32) return false; return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || Ty->isReferenceType()); } return true; } void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { // Vectorcall x86 works subtly different than in x64, so the format is // a bit different than the x64 version. First, all vector types (not HVAs) // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. // This differs from the x64 implementation, where the first 6 by INDEX get // registers. // In the second pass over the arguments, HVAs are passed in the remaining // vector registers if possible, or indirectly by address. The address will be // passed in ECX/EDX if available. Any other arguments are passed according to // the usual fastcall rules. MutableArrayRef Args = FI.arguments(); for (int I = 0, E = Args.size(); I < E; ++I) { const Type *Base = nullptr; uint64_t NumElts = 0; const QualType &Ty = Args[I].type; if ((Ty->isVectorType() || Ty->isBuiltinType()) && isHomogeneousAggregate(Ty, Base, NumElts)) { if (State.FreeSSERegs >= NumElts) { State.FreeSSERegs -= NumElts; Args[I].info = ABIArgInfo::getDirectInReg(); State.IsPreassigned.set(I); } } } } ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State) const { // FIXME: Set alignment on indirect arguments. bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; Ty = useFirstFieldIfTransparentUnion(Ty); TypeInfo TI = getContext().getTypeInfo(Ty); // Check with the C++ ABI first. const RecordType *RT = Ty->getAs(); if (RT) { CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); if (RAA == CGCXXABI::RAA_Indirect) { return getIndirectResult(Ty, false, State); } else if (RAA == CGCXXABI::RAA_DirectInMemory) { // The field index doesn't matter, we'll fix it up later. return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); } } // Regcall uses the concept of a homogenous vector aggregate, similar // to other targets. const Type *Base = nullptr; uint64_t NumElts = 0; if ((IsRegCall || IsVectorCall) && isHomogeneousAggregate(Ty, Base, NumElts)) { if (State.FreeSSERegs >= NumElts) { State.FreeSSERegs -= NumElts; // Vectorcall passes HVAs directly and does not flatten them, but regcall // does. if (IsVectorCall) return getDirectX86Hva(); if (Ty->isBuiltinType() || Ty->isVectorType()) return ABIArgInfo::getDirect(); return ABIArgInfo::getExpand(); } return getIndirectResult(Ty, /*ByVal=*/false, State); } if (isAggregateTypeForABI(Ty)) { // Structures with flexible arrays are always indirect. // FIXME: This should not be byval! if (RT && RT->getDecl()->hasFlexibleArrayMember()) return getIndirectResult(Ty, true, State); // Ignore empty structs/unions on non-Windows. if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); llvm::LLVMContext &LLVMContext = getVMContext(); llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); bool NeedsPadding = false; bool InReg; if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { unsigned SizeInRegs = (TI.Width + 31) / 32; SmallVector Elements(SizeInRegs, Int32); llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); if (InReg) return ABIArgInfo::getDirectInReg(Result); else return ABIArgInfo::getDirect(Result); } llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; // Pass over-aligned aggregates on Windows indirectly. This behavior was // added in MSVC 2015. if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) return getIndirectResult(Ty, /*ByVal=*/false, State); // Expand small (<= 128-bit) record types when we know that the stack layout // of those arguments will match the struct. This is important because the // LLVM backend isn't smart enough to remove byval, which inhibits many // optimizations. // Don't do this for the MCU if there are still free integer registers // (see X86_64 ABI for full explanation). if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) return ABIArgInfo::getExpandWithPadding( IsFastCall || IsVectorCall || IsRegCall, PaddingType); return getIndirectResult(Ty, true, State); } if (const VectorType *VT = Ty->getAs()) { // On Windows, vectors are passed directly if registers are available, or // indirectly if not. This avoids the need to align argument memory. Pass // user-defined vector types larger than 512 bits indirectly for simplicity. if (IsWin32StructABI) { if (TI.Width <= 512 && State.FreeSSERegs > 0) { --State.FreeSSERegs; return ABIArgInfo::getDirectInReg(); } return getIndirectResult(Ty, /*ByVal=*/false, State); } // On Darwin, some vectors are passed in memory, we handle this by passing // it as an i8/i16/i32/i64. if (IsDarwinVectorABI) { if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || (TI.Width == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), TI.Width)); } if (IsX86_MMXType(CGT.ConvertType(Ty))) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); return ABIArgInfo::getDirect(); } if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); bool InReg = shouldPrimitiveUseInReg(Ty, State); if (isPromotableIntegerTypeForABI(Ty)) { if (InReg) return ABIArgInfo::getExtendInReg(Ty); return ABIArgInfo::getExtend(Ty); } if (const auto *EIT = Ty->getAs()) { if (EIT->getNumBits() <= 64) { if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getDirect(); } return getIndirectResult(Ty, /*ByVal=*/false, State); } if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getDirect(); } void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { CCState State(FI); if (IsMCUABI) State.FreeRegs = 3; else if (State.CC == llvm::CallingConv::X86_FastCall) { State.FreeRegs = 2; State.FreeSSERegs = 3; } else if (State.CC == llvm::CallingConv::X86_VectorCall) { State.FreeRegs = 2; State.FreeSSERegs = 6; } else if (FI.getHasRegParm()) State.FreeRegs = FI.getRegParm(); else if (State.CC == llvm::CallingConv::X86_RegCall) { State.FreeRegs = 5; State.FreeSSERegs = 8; } else if (IsWin32StructABI) { // Since MSVC 2015, the first three SSE vectors have been passed in // registers. The rest are passed indirectly. State.FreeRegs = DefaultNumRegisterParameters; State.FreeSSERegs = 3; } else State.FreeRegs = DefaultNumRegisterParameters; if (!::classifyReturnType(getCXXABI(), FI, *this)) { FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); } else if (FI.getReturnInfo().isIndirect()) { // The C++ ABI is not aware of register usage, so we have to check if the // return value was sret and put it in a register ourselves if appropriate. if (State.FreeRegs) { --State.FreeRegs; // The sret parameter consumes a register. if (!IsMCUABI) FI.getReturnInfo().setInReg(true); } } // The chain argument effectively gives us another free register. if (FI.isChainCall()) ++State.FreeRegs; // For vectorcall, do a first pass over the arguments, assigning FP and vector // arguments to XMM registers as available. if (State.CC == llvm::CallingConv::X86_VectorCall) runVectorCallFirstPass(FI, State); bool UsedInAlloca = false; MutableArrayRef Args = FI.arguments(); for (int I = 0, E = Args.size(); I < E; ++I) { // Skip arguments that have already been assigned. if (State.IsPreassigned.test(I)) continue; Args[I].info = classifyArgumentType(Args[I].type, State); UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); } // If we needed to use inalloca for any argument, do a second pass and rewrite // all the memory arguments to use inalloca. if (UsedInAlloca) rewriteWithInAlloca(FI); } void X86_32ABIInfo::addFieldToArgStruct(SmallVector &FrameFields, CharUnits &StackOffset, ABIArgInfo &Info, QualType Type) const { // Arguments are always 4-byte-aligned. CharUnits WordSize = CharUnits::fromQuantity(4); assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); // sret pointers and indirect things will require an extra pointer // indirection, unless they are byval. Most things are byval, and will not // require this indirection. bool IsIndirect = false; if (Info.isIndirect() && !Info.getIndirectByVal()) IsIndirect = true; Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); if (IsIndirect) LLTy = LLTy->getPointerTo(0); FrameFields.push_back(LLTy); StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); // Insert padding bytes to respect alignment. CharUnits FieldEnd = StackOffset; StackOffset = FieldEnd.alignTo(WordSize); if (StackOffset != FieldEnd) { CharUnits NumBytes = StackOffset - FieldEnd; llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); FrameFields.push_back(Ty); } } static bool isArgInAlloca(const ABIArgInfo &Info) { // Leave ignored and inreg arguments alone. switch (Info.getKind()) { case ABIArgInfo::InAlloca: return true; case ABIArgInfo::Ignore: case ABIArgInfo::IndirectAliased: return false; case ABIArgInfo::Indirect: case ABIArgInfo::Direct: case ABIArgInfo::Extend: return !Info.getInReg(); case ABIArgInfo::Expand: case ABIArgInfo::CoerceAndExpand: // These are aggregate types which are never passed in registers when // inalloca is involved. return true; } llvm_unreachable("invalid enum"); } void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { assert(IsWin32StructABI && "inalloca only supported on win32"); // Build a packed struct type for all of the arguments in memory. SmallVector FrameFields; // The stack alignment is always 4. CharUnits StackAlign = CharUnits::fromQuantity(4); CharUnits StackOffset; CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); // Put 'this' into the struct before 'sret', if necessary. bool IsThisCall = FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; ABIArgInfo &Ret = FI.getReturnInfo(); if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && isArgInAlloca(I->info)) { addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); ++I; } // Put the sret parameter into the inalloca struct if it's in memory. if (Ret.isIndirect() && !Ret.getInReg()) { addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); // On Windows, the hidden sret parameter is always returned in eax. Ret.setInAllocaSRet(IsWin32StructABI); } // Skip the 'this' parameter in ecx. if (IsThisCall) ++I; // Put arguments passed in memory into the struct. for (; I != E; ++I) { if (isArgInAlloca(I->info)) addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); } FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, /*isPacked=*/true), StackAlign); } Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { auto TypeInfo = getContext().getTypeInfoInChars(Ty); // x86-32 changes the alignment of certain arguments on the stack. // // Just messing with TypeInfo like this works because we never pass // anything indirectly. TypeInfo.Align = CharUnits::fromQuantity( getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, CharUnits::fromQuantity(4), /*AllowHigherAlign*/ true); } bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts) { assert(Triple.getArch() == llvm::Triple::x86); switch (Opts.getStructReturnConvention()) { case CodeGenOptions::SRCK_Default: break; case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return return false; case CodeGenOptions::SRCK_InRegs: // -freg-struct-return return true; } if (Triple.isOSDarwin() || Triple.isOSIAMCU()) return true; switch (Triple.getOS()) { case llvm::Triple::DragonFly: case llvm::Triple::FreeBSD: case llvm::Triple::OpenBSD: case llvm::Triple::Win32: return true; default: return false; } } static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) { if (!FD->hasAttr()) return; llvm::Function *Fn = cast(GV); Fn->setCallingConv(llvm::CallingConv::X86_INTR); if (FD->getNumParams() == 0) return; auto PtrTy = cast(FD->getParamDecl(0)->getType()); llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( Fn->getContext(), ByValTy); Fn->addParamAttr(0, NewAttr); } void X86_32TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { if (GV->isDeclaration()) return; if (const FunctionDecl *FD = dyn_cast_or_null(D)) { if (FD->hasAttr()) { llvm::Function *Fn = cast(GV); Fn->addFnAttr("stackrealign"); } addX86InterruptAttrs(FD, GV, CGM); } } bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-7 are the eight integer registers; the order is different // on Darwin (for EH), but the range is the same. // 8 is %eip. AssignToArrayRange(Builder, Address, Four8, 0, 8); if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { // 12-16 are st(0..4). Not sure why we stop at 4. // These have size 16, which is sizeof(long double) on // platforms with 8-byte alignment for that type. llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); } else { // 9 is %eflags, which doesn't get a size on Darwin for some // reason. Builder.CreateAlignedStore( Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), CharUnits::One()); // 11-16 are st(0..5). Not sure why we stop at 5. // These have size 12, which is sizeof(long double) on // platforms with 4-byte alignment for that type. llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); AssignToArrayRange(Builder, Address, Twelve8, 11, 16); } return false; } //===----------------------------------------------------------------------===// // X86-64 ABI Implementation //===----------------------------------------------------------------------===// namespace { /// The AVX ABI level for X86 targets. enum class X86AVXABILevel { None, AVX, AVX512 }; /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { switch (AVXLevel) { case X86AVXABILevel::AVX512: return 512; case X86AVXABILevel::AVX: return 256; case X86AVXABILevel::None: return 128; } llvm_unreachable("Unknown AVXLevel"); } /// X86_64ABIInfo - The X86_64 ABI information. class X86_64ABIInfo : public SwiftABIInfo { enum Class { Integer = 0, SSE, SSEUp, X87, X87Up, ComplexX87, NoClass, Memory }; /// merge - Implement the X86_64 ABI merging algorithm. /// /// Merge an accumulating classification \arg Accum with a field /// classification \arg Field. /// /// \param Accum - The accumulating classification. This should /// always be either NoClass or the result of a previous merge /// call. In addition, this should never be Memory (the caller /// should just return Memory for the aggregate). static Class merge(Class Accum, Class Field); /// postMerge - Implement the X86_64 ABI post merging algorithm. /// /// Post merger cleanup, reduces a malformed Hi and Lo pair to /// final MEMORY or SSE classes when necessary. /// /// \param AggregateSize - The size of the current aggregate in /// the classification process. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the higher words of the containing object. /// void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; /// classify - Determine the x86_64 register classes in which the /// given type T should be passed. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the high word of the containing object. /// /// \param OffsetBase - The bit offset of this type in the /// containing object. Some parameters are classified different /// depending on whether they straddle an eightbyte boundary. /// /// \param isNamedArg - Whether the argument in question is a "named" /// argument, as used in AMD64-ABI 3.5.7. /// /// If a word is unused its result will be NoClass; if a type should /// be passed in Memory then at least the classification of \arg Lo /// will be Memory. /// /// The \arg Lo class will be NoClass iff the argument is ignored. /// /// If the \arg Lo class is ComplexX87, then the \arg Hi class will /// also be ComplexX87. void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg) const; llvm::Type *GetByteVectorType(QualType Ty) const; llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be returned in memory. ABIArgInfo getIndirectReturnResult(QualType Ty) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. /// /// \param freeIntRegs - The number of free integer registers remaining /// available. ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg) const; ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE) const; ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE) const; bool IsIllegalVectorType(QualType Ty) const; /// The 0.98 ABI revision clarified a lot of ambiguities, /// unfortunately in ways that were not always consistent with /// certain previous compilers. In particular, platforms which /// required strict binary compatibility with older versions of GCC /// may need to exempt themselves. bool honorsRevision0_98() const { return !getTarget().getTriple().isOSDarwin(); } /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to /// classify it as INTEGER (for compatibility with older clang compilers). bool classifyIntegerMMXAsSSE() const { // Clang <= 3.8 did not do this. if (getContext().getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver3_8) return false; const llvm::Triple &Triple = getTarget().getTriple(); if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) return false; if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) return false; return true; } // GCC classifies vectors of __int128 as memory. bool passInt128VectorsInMem() const { // Clang <= 9.0 did not do this. if (getContext().getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver9) return false; const llvm::Triple &T = getTarget().getTriple(); return T.isOSLinux() || T.isOSNetBSD(); } X86AVXABILevel AVXLevel; // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on // 64-bit hardware. bool Has64BitPointers; public: X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : SwiftABIInfo(CGT), AVXLevel(AVXLevel), Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { } bool isPassedUsingAVXType(QualType type) const { unsigned neededInt, neededSSE; // The freeIntRegs argument doesn't matter here. ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, /*isNamedArg*/true); if (info.isDirect()) { llvm::Type *ty = info.getCoerceToType(); if (llvm::VectorType *vectorTy = dyn_cast_or_null(ty)) return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; } return false; } void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool has64BitPointers() const { return Has64BitPointers; } bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { return occupiesMoreThan(CGT, scalars, /*total*/ 4); } bool isSwiftErrorInRegister() const override { return true; } }; /// WinX86_64ABIInfo - The Windows X86_64 ABI information. class WinX86_64ABIInfo : public SwiftABIInfo { public: WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : SwiftABIInfo(CGT), AVXLevel(AVXLevel), IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool isHomogeneousAggregateBaseType(QualType Ty) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorTypeForVectorCall(getContext(), Ty); } bool isHomogeneousAggregateSmallEnough(const Type *Ty, uint64_t NumMembers) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorCallAggregateSmallEnough(NumMembers); } bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { return occupiesMoreThan(CGT, scalars, /*total*/ 4); } bool isSwiftErrorInRegister() const override { return true; } private: ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, bool IsVectorCall, bool IsRegCall) const; ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const; X86AVXABILevel AVXLevel; bool IsMingw64; }; class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : TargetCodeGenInfo(std::make_unique(CGT, AVXLevel)) {} const X86_64ABIInfo &getABIInfo() const { return static_cast(TargetCodeGenInfo::getABIInfo()); } /// Disable tail call on x86-64. The epilogue code before the tail jump blocks /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const override { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } bool isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const override { // The default CC on x86-64 sets %al to the number of SSA // registers used, and GCC sets this when calling an unprototyped // function, so we override the default behavior. However, don't do // that when AVX types are involved: the ABI explicitly states it is // undefined, and it doesn't work in practice because of how the ABI // defines varargs anyway. if (fnType->getCallConv() == CC_C) { bool HasAVXType = false; for (CallArgList::const_iterator it = args.begin(), ie = args.end(); it != ie; ++it) { if (getABIInfo().isPassedUsingAVXType(it->Ty)) { HasAVXType = true; break; } } if (!HasAVXType) return true; } return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); } llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { unsigned Sig = (0xeb << 0) | // jmp rel8 (0x06 << 8) | // .+0x08 ('v' << 16) | ('2' << 24); return llvm::ConstantInt::get(CGM.Int32Ty, Sig); } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { if (GV->isDeclaration()) return; if (const FunctionDecl *FD = dyn_cast_or_null(D)) { if (FD->hasAttr()) { llvm::Function *Fn = cast(GV); Fn->addFnAttr("stackrealign"); } addX86InterruptAttrs(FD, GV, CGM); } } void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, const FunctionDecl *Callee, const CallArgList &Args) const override; }; static void initFeatureMaps(const ASTContext &Ctx, llvm::StringMap &CallerMap, const FunctionDecl *Caller, llvm::StringMap &CalleeMap, const FunctionDecl *Callee) { if (CalleeMap.empty() && CallerMap.empty()) { // The caller is potentially nullptr in the case where the call isn't in a // function. In this case, the getFunctionFeatureMap ensures we just get // the TU level setting (since it cannot be modified by 'target'.. Ctx.getFunctionFeatureMap(CallerMap, Caller); Ctx.getFunctionFeatureMap(CalleeMap, Callee); } } static bool checkAVXParamFeature(DiagnosticsEngine &Diag, SourceLocation CallLoc, const llvm::StringMap &CallerMap, const llvm::StringMap &CalleeMap, QualType Ty, StringRef Feature, bool IsArgument) { bool CallerHasFeat = CallerMap.lookup(Feature); bool CalleeHasFeat = CalleeMap.lookup(Feature); if (!CallerHasFeat && !CalleeHasFeat) return Diag.Report(CallLoc, diag::warn_avx_calling_convention) << IsArgument << Ty << Feature; // Mixing calling conventions here is very clearly an error. if (!CallerHasFeat || !CalleeHasFeat) return Diag.Report(CallLoc, diag::err_avx_calling_convention) << IsArgument << Ty << Feature; // Else, both caller and callee have the required feature, so there is no need // to diagnose. return false; } static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, SourceLocation CallLoc, const llvm::StringMap &CallerMap, const llvm::StringMap &CalleeMap, QualType Ty, bool IsArgument) { uint64_t Size = Ctx.getTypeSize(Ty); if (Size > 256) return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx512f", IsArgument); if (Size > 128) return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", IsArgument); return false; } void X86_64TargetCodeGenInfo::checkFunctionCallABI( CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, const FunctionDecl *Callee, const CallArgList &Args) const { llvm::StringMap CallerMap; llvm::StringMap CalleeMap; unsigned ArgIndex = 0; // We need to loop through the actual call arguments rather than the the // function's parameters, in case this variadic. for (const CallArg &Arg : Args) { // The "avx" feature changes how vectors >128 in size are passed. "avx512f" // additionally changes how vectors >256 in size are passed. Like GCC, we // warn when a function is called with an argument where this will change. // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, // the caller and callee features are mismatched. // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can // change its ABI with attribute-target after this call. if (Arg.getType()->isVectorType() && CGM.getContext().getTypeSize(Arg.getType()) > 128) { initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); QualType Ty = Arg.getType(); // The CallArg seems to have desugared the type already, so for clearer // diagnostics, replace it with the type in the FunctionDecl if possible. if (ArgIndex < Callee->getNumParams()) Ty = Callee->getParamDecl(ArgIndex)->getType(); if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, CalleeMap, Ty, /*IsArgument*/ true)) return; } ++ArgIndex; } // Check return always, as we don't have a good way of knowing in codegen // whether this value is used, tail-called, etc. if (Callee->getReturnType()->isVectorType() && CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, CalleeMap, Callee->getReturnType(), /*IsArgument*/ false); } } static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { // If the argument does not end in .lib, automatically add the suffix. // If the argument contains a space, enclose it in quotes. // This matches the behavior of MSVC. bool Quote = Lib.contains(' '); std::string ArgStr = Quote ? "\"" : ""; ArgStr += Lib; if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) ArgStr += ".lib"; ArgStr += Quote ? "\"" : ""; return ArgStr; } class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { public: WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, unsigned NumRegisterParameters) : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, NumRegisterParameters, false) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) { if (llvm::Function *Fn = dyn_cast_or_null(GV)) { if (CGM.getCodeGenOpts().StackProbeSize != 4096) Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); if (CGM.getCodeGenOpts().NoStackArgProbe) Fn->addFnAttr("no-stack-arg-probe"); } } void WinX86_32TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); if (GV->isDeclaration()) return; addStackProbeTargetAttributes(D, GV, CGM); } class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : TargetCodeGenInfo(std::make_unique(CGT, AVXLevel)) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; void WinX86_64TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); if (GV->isDeclaration()) return; if (const FunctionDecl *FD = dyn_cast_or_null(D)) { if (FD->hasAttr()) { llvm::Function *Fn = cast(GV); Fn->addFnAttr("stackrealign"); } addX86InterruptAttrs(FD, GV, CGM); } addStackProbeTargetAttributes(D, GV, CGM); } } void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const { // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: // // (a) If one of the classes is Memory, the whole argument is passed in // memory. // // (b) If X87UP is not preceded by X87, the whole argument is passed in // memory. // // (c) If the size of the aggregate exceeds two eightbytes and the first // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole // argument is passed in memory. NOTE: This is necessary to keep the // ABI working for processors that don't support the __m256 type. // // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. // // Some of these are enforced by the merging logic. Others can arise // only with unions; for example: // union { _Complex double; unsigned; } // // Note that clauses (b) and (c) were added in 0.98. // if (Hi == Memory) Lo = Memory; if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) Lo = Memory; if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) Lo = Memory; if (Hi == SSEUp && Lo != SSE) Hi = SSE; } X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is // classified recursively so that always two fields are // considered. The resulting class is calculated according to // the classes of the fields in the eightbyte: // // (a) If both classes are equal, this is the resulting class. // // (b) If one of the classes is NO_CLASS, the resulting class is // the other class. // // (c) If one of the classes is MEMORY, the result is the MEMORY // class. // // (d) If one of the classes is INTEGER, the result is the // INTEGER. // // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, // MEMORY is used as class. // // (f) Otherwise class SSE is used. // Accum should never be memory (we should have returned) or // ComplexX87 (because this cannot be passed in a structure). assert((Accum != Memory && Accum != ComplexX87) && "Invalid accumulated classification during merge."); if (Accum == Field || Field == NoClass) return Accum; if (Field == Memory) return Memory; if (Accum == NoClass) return Field; if (Accum == Integer || Field == Integer) return Integer; if (Field == X87 || Field == X87Up || Field == ComplexX87 || Accum == X87 || Accum == X87Up) return Memory; return SSE; } void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg) const { // FIXME: This code can be simplified by introducing a simple value class for // Class pairs with appropriate constructor methods for the various // situations. // FIXME: Some of the split computations are wrong; unaligned vectors // shouldn't be passed in registers for example, so there is no chance they // can straddle an eightbyte. Verify & simplify. Lo = Hi = NoClass; Class &Current = OffsetBase < 64 ? Lo : Hi; Current = Memory; if (const BuiltinType *BT = Ty->getAs()) { BuiltinType::Kind k = BT->getKind(); if (k == BuiltinType::Void) { Current = NoClass; } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { Lo = Integer; Hi = Integer; } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { Current = Integer; } else if (k == BuiltinType::Float || k == BuiltinType::Double || k == BuiltinType::Float16) { Current = SSE; } else if (k == BuiltinType::LongDouble) { const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); if (LDF == &llvm::APFloat::IEEEquad()) { Lo = SSE; Hi = SSEUp; } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { Lo = X87; Hi = X87Up; } else if (LDF == &llvm::APFloat::IEEEdouble()) { Current = SSE; } else llvm_unreachable("unexpected long double representation!"); } // FIXME: _Decimal32 and _Decimal64 are SSE. // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). return; } if (const EnumType *ET = Ty->getAs()) { // Classify the underlying integer type. classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); return; } if (Ty->hasPointerRepresentation()) { Current = Integer; return; } if (Ty->isMemberPointerType()) { if (Ty->isMemberFunctionPointerType()) { if (Has64BitPointers) { // If Has64BitPointers, this is an {i64, i64}, so classify both // Lo and Hi now. Lo = Hi = Integer; } else { // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that // straddles an eightbyte boundary, Hi should be classified as well. uint64_t EB_FuncPtr = (OffsetBase) / 64; uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; if (EB_FuncPtr != EB_ThisAdj) { Lo = Hi = Integer; } else { Current = Integer; } } } else { Current = Integer; } return; } if (const VectorType *VT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VT); if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { // gcc passes the following as integer: // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> // 2 bytes - <2 x char>, <1 x short> // 1 byte - <1 x char> Current = Integer; // If this type crosses an eightbyte boundary, it should be // split. uint64_t EB_Lo = (OffsetBase) / 64; uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; if (EB_Lo != EB_Hi) Hi = Lo; } else if (Size == 64) { QualType ElementType = VT->getElementType(); // gcc passes <1 x double> in memory. :( if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) return; // gcc passes <1 x long long> as SSE but clang used to unconditionally // pass them as integer. For platforms where clang is the de facto // platform compiler, we must continue to use integer. if (!classifyIntegerMMXAsSSE() && (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || ElementType->isSpecificBuiltinType(BuiltinType::Long) || ElementType->isSpecificBuiltinType(BuiltinType::ULong))) Current = Integer; else Current = SSE; // If this type crosses an eightbyte boundary, it should be // split. if (OffsetBase && OffsetBase != 64) Hi = Lo; } else if (Size == 128 || (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { QualType ElementType = VT->getElementType(); // gcc passes 256 and 512 bit vectors in memory. :( if (passInt128VectorsInMem() && Size != 128 && (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) return; // Arguments of 256-bits are split into four eightbyte chunks. The // least significant one belongs to class SSE and all the others to class // SSEUP. The original Lo and Hi design considers that types can't be // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. // This design isn't correct for 256-bits, but since there're no cases // where the upper parts would need to be inspected, avoid adding // complexity and just consider Hi to match the 64-256 part. // // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in // registers if they are "named", i.e. not part of the "..." of a // variadic function. // // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are // split into eight eightbyte chunks, one SSE and seven SSEUP. Lo = SSE; Hi = SSEUp; } return; } if (const ComplexType *CT = Ty->getAs()) { QualType ET = getContext().getCanonicalType(CT->getElementType()); uint64_t Size = getContext().getTypeSize(Ty); if (ET->isIntegralOrEnumerationType()) { if (Size <= 64) Current = Integer; else if (Size <= 128) Lo = Hi = Integer; } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { Current = SSE; } else if (ET == getContext().DoubleTy) { Lo = Hi = SSE; } else if (ET == getContext().LongDoubleTy) { const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); if (LDF == &llvm::APFloat::IEEEquad()) Current = Memory; else if (LDF == &llvm::APFloat::x87DoubleExtended()) Current = ComplexX87; else if (LDF == &llvm::APFloat::IEEEdouble()) Lo = Hi = SSE; else llvm_unreachable("unexpected long double representation!"); } // If this complex type crosses an eightbyte boundary then it // should be split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; if (Hi == NoClass && EB_Real != EB_Imag) Hi = Lo; return; } if (const auto *EITy = Ty->getAs()) { if (EITy->getNumBits() <= 64) Current = Integer; else if (EITy->getNumBits() <= 128) Lo = Hi = Integer; // Larger values need to get passed in memory. return; } if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { // Arrays are treated like structures. uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than eight eightbytes, ..., it has class MEMORY. if (Size > 512) return; // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned // fields, it has class MEMORY. // // Only need to check alignment of array base. if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) return; // Otherwise implement simplified merge. We could be smarter about // this, but it isn't worth it and would be harder to verify. Current = NoClass; uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); uint64_t ArraySize = AT->getSize().getZExtValue(); // The only case a 256-bit wide vector could be used is when the array // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. // if (Size > 128 && (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) return; for (uint64_t i=0, Offset=OffsetBase; igetElementType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); return; } if (const RecordType *RT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than eight eightbytes, ..., it has class MEMORY. if (Size > 512) return; // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial // copy constructor or a non-trivial destructor, it is passed by invisible // reference. if (getRecordArgABI(RT, getCXXABI())) return; const RecordDecl *RD = RT->getDecl(); // Assume variable sized types are passed in memory. if (RD->hasFlexibleArrayMember()) return; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); // Reset Lo class, this will be recomputed. Current = NoClass; // If this is a C++ record, classify the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { assert(!I.isVirtual() && !I.getType()->isDependentType() && "Unexpected base class!"); const auto *Base = cast(I.getType()->castAs()->getDecl()); // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a // single eightbyte, each is classified separately. Each eightbyte gets // initialized to class NO_CLASS. Class FieldLo, FieldHi; uint64_t Offset = OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) { postMerge(Size, Lo, Hi); return; } } } // Classify the fields one at a time, merging the results. unsigned idx = 0; bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver11 || getContext().getTargetInfo().getTriple().isPS4(); bool IsUnion = RT->isUnionType() && !UseClang11Compat; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); bool BitField = i->isBitField(); // Ignore padding bit-fields. if (BitField && i->isUnnamedBitfield()) continue; // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than // eight eightbytes, or it contains unaligned fields, it has class MEMORY. // // The only case a 256-bit or a 512-bit wide vector could be used is when // the struct contains a single 256-bit or 512-bit element. Early check // and fallback to memory. // // FIXME: Extended the Lo and Hi logic properly to work for size wider // than 128. if (Size > 128 && ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || Size > getNativeVectorSizeForAVXABI(AVXLevel))) { Lo = Memory; postMerge(Size, Lo, Hi); return; } // Note, skip this test for bit-fields, see below. if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { Lo = Memory; postMerge(Size, Lo, Hi); return; } // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate // exceeds a single eightbyte, each is classified // separately. Each eightbyte gets initialized to class // NO_CLASS. Class FieldLo, FieldHi; // Bit-fields require special handling, they do not force the // structure to be passed in memory even if unaligned, and // therefore they can straddle an eightbyte. if (BitField) { assert(!i->isUnnamedBitfield()); uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); uint64_t Size = i->getBitWidthValue(getContext()); uint64_t EB_Lo = Offset / 64; uint64_t EB_Hi = (Offset + Size - 1) / 64; if (EB_Lo) { assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); FieldLo = NoClass; FieldHi = Integer; } else { FieldLo = Integer; FieldHi = EB_Hi ? Integer : NoClass; } } else classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); } } ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isBitIntType()) return getNaturalAlignIndirect(Ty); return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } return getNaturalAlignIndirect(Ty); } bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { if (const VectorType *VecTy = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VecTy); unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); if (Size <= 64 || Size > LargestVector) return true; QualType EltTy = VecTy->getElementType(); if (passInt128VectorsInMem() && (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) return true; } return false; } ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, unsigned freeIntRegs) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. // // This assumption is optimistic, as there could be free registers available // when we need to pass this argument in memory, and LLVM could try to pass // the argument in the free register. This does not seem to happen currently, // but this code would be much safer if we could mark the argument with // 'onstack'. See PR12193. if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && !Ty->isBitIntType()) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); // Compute the byval alignment. We specify the alignment of the byval in all // cases so that the mid-level optimizer knows the alignment of the byval. unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); // Attempt to avoid passing indirect results using byval when possible. This // is important for good codegen. // // We do this by coercing the value into a scalar type which the backend can // handle naturally (i.e., without using byval). // // For simplicity, we currently only do this when we have exhausted all of the // free integer registers. Doing this when there are free integer registers // would require more care, as we would have to ensure that the coerced value // did not claim the unused register. That would require either reording the // arguments to the function (so that any subsequent inreg values came first), // or only doing this optimization when there were no following arguments that // might be inreg. // // We currently expect it to be rare (particularly in well written code) for // arguments to be passed on the stack when there are still free integer // registers available (this would typically imply large structs being passed // by value), so this seems like a fair tradeoff for now. // // We can revisit this if the backend grows support for 'onstack' parameter // attributes. See PR12193. if (freeIntRegs == 0) { uint64_t Size = getContext().getTypeSize(Ty); // If this type fits in an eightbyte, coerce it into the matching integral // type, which will end up on the stack (with alignment 8). if (Align == 8 && Size <= 64) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); } /// The ABI specifies that a value should be passed in a full vector XMM/YMM /// register. Pick an LLVM IR type that will be passed as a vector register. llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { // Wrapper structs/arrays that only contain vectors are passed just like // vectors; strip them off if present. if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) Ty = QualType(InnerTy, 0); llvm::Type *IRType = CGT.ConvertType(Ty); if (isa(IRType)) { // Don't pass vXi128 vectors in their native type, the backend can't // legalize them. if (passInt128VectorsInMem() && cast(IRType)->getElementType()->isIntegerTy(128)) { // Use a vXi64 vector. uint64_t Size = getContext().getTypeSize(Ty); return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), Size / 64); } return IRType; } if (IRType->getTypeID() == llvm::Type::FP128TyID) return IRType; // We couldn't find the preferred IR vector type for 'Ty'. uint64_t Size = getContext().getTypeSize(Ty); assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); // Return a LLVM IR vector type based on the size of 'Ty'. return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), Size / 64); } /// BitsContainNoUserData - Return true if the specified [start,end) bit range /// is known to either be off the end of the specified type or being in /// alignment padding. The user type specified is known to be at most 128 bits /// in size, and have passed through X86_64ABIInfo::classify with a successful /// classification that put one of the two halves in the INTEGER class. /// /// It is conservatively correct to return false. static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, unsigned EndBit, ASTContext &Context) { // If the bytes being queried are off the end of the type, there is no user // data hiding here. This handles analysis of builtins, vectors and other // types that don't contain interesting padding. unsigned TySize = (unsigned)Context.getTypeSize(Ty); if (TySize <= StartBit) return true; if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); // Check each element to see if the element overlaps with the queried range. for (unsigned i = 0; i != NumElts; ++i) { // If the element is after the span we care about, then we're done.. unsigned EltOffset = i*EltSize; if (EltOffset >= EndBit) break; unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; if (!BitsContainNoUserData(AT->getElementType(), EltStart, EndBit-EltOffset, Context)) return false; } // If it overlaps no elements, then it is safe to process as padding. return true; } if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { assert(!I.isVirtual() && !I.getType()->isDependentType() && "Unexpected base class!"); const auto *Base = cast(I.getType()->castAs()->getDecl()); // If the base is after the span we care about, ignore it. unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); if (BaseOffset >= EndBit) continue; unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; if (!BitsContainNoUserData(I.getType(), BaseStart, EndBit-BaseOffset, Context)) return false; } } // Verify that no field has data that overlaps the region of interest. Yes // this could be sped up a lot by being smarter about queried fields, // however we're only looking at structs up to 16 bytes, so we don't care // much. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); // If we found a field after the region we care about, then we're done. if (FieldOffset >= EndBit) break; unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, Context)) return false; } // If nothing in this record overlapped the area of interest, then we're // clean. return true; } return false; } /// getFPTypeAtOffset - Return a floating point type at the specified offset. static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, const llvm::DataLayout &TD) { if (IROffset == 0 && IRType->isFloatingPointTy()) return IRType; // If this is a struct, recurse into the field at the specified offset. if (llvm::StructType *STy = dyn_cast(IRType)) { if (!STy->getNumContainedTypes()) return nullptr; const llvm::StructLayout *SL = TD.getStructLayout(STy); unsigned Elt = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(Elt); return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); } // If this is an array, recurse into the field at the specified offset. if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = TD.getTypeAllocSize(EltTy); IROffset -= IROffset / EltSize * EltSize; return getFPTypeAtOffset(EltTy, IROffset, TD); } return nullptr; } /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the /// low 8 bytes of an XMM register, corresponding to the SSE class. llvm::Type *X86_64ABIInfo:: GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { const llvm::DataLayout &TD = getDataLayout(); unsigned SourceSize = (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); if (!T0 || T0->isDoubleTy()) return llvm::Type::getDoubleTy(getVMContext()); // Get the adjacent FP type. llvm::Type *T1 = nullptr; unsigned T0Size = TD.getTypeAllocSize(T0); if (SourceSize > T0Size) T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); if (T1 == nullptr) { // Check if IRType is a half + float. float type will be in IROffset+4 due // to its alignment. if (T0->isHalfTy() && SourceSize > 4) T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); // If we can't get a second FP type, return a simple half or float. // avx512fp16-abi.c:pr51813_2 shows it works to return float for // {float, i8} too. if (T1 == nullptr) return T0; } if (T0->isFloatTy() && T1->isFloatTy()) return llvm::FixedVectorType::get(T0, 2); if (T0->isHalfTy() && T1->isHalfTy()) { llvm::Type *T2 = nullptr; if (SourceSize > 4) T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); if (T2 == nullptr) return llvm::FixedVectorType::get(T0, 2); return llvm::FixedVectorType::get(T0, 4); } if (T0->isHalfTy() || T1->isHalfTy()) return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); return llvm::Type::getDoubleTy(getVMContext()); } /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in /// an 8-byte GPR. This means that we either have a scalar or we are talking /// about the high or low part of an up-to-16-byte struct. This routine picks /// the best LLVM IR type to represent this, which may be i64 or may be anything /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, /// etc). /// /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for /// the source type. IROffset is an offset in bytes into the LLVM IR type that /// the 8-byte value references. PrefType may be null. /// /// SourceTy is the source-level type for the entire argument. SourceOffset is /// an offset into this that we're processing (which is always either 0 or 8). /// llvm::Type *X86_64ABIInfo:: GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // If we're dealing with an un-offset LLVM IR type, then it means that we're // returning an 8-byte unit starting with it. See if we can safely use it. if (IROffset == 0) { // Pointers and int64's always fill the 8-byte unit. if ((isa(IRType) && Has64BitPointers) || IRType->isIntegerTy(64)) return IRType; // If we have a 1/2/4-byte integer, we can use it only if the rest of the // goodness in the source type is just tail padding. This is allowed to // kick in for struct {double,int} on the int, but not on // struct{double,int,int} because we wouldn't return the second int. We // have to do this analysis on the source type because we can't depend on // unions being lowered a specific way etc. if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || IRType->isIntegerTy(32) || (isa(IRType) && !Has64BitPointers)) { unsigned BitWidth = isa(IRType) ? 32 : cast(IRType)->getBitWidth(); if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, SourceOffset*8+64, getContext())) return IRType; } } if (llvm::StructType *STy = dyn_cast(IRType)) { // If this is a struct, recurse into the field at the specified offset. const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); if (IROffset < SL->getSizeInBytes()) { unsigned FieldIdx = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(FieldIdx); return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, SourceTy, SourceOffset); } } if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); unsigned EltOffset = IROffset/EltSize*EltSize; return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, SourceOffset); } // Okay, we don't have any better idea of what to pass, so we pass this in an // integer register that isn't too big to fit the rest of the struct. unsigned TySizeInBytes = (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); assert(TySizeInBytes != SourceOffset && "Empty field?"); // It is always safe to classify this as an integer type up to i64 that // isn't larger than the structure. return llvm::IntegerType::get(getVMContext(), std::min(TySizeInBytes-SourceOffset, 8U)*8); } /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally /// be used as elements of a two register pair to pass or return, return a /// first class aggregate to represent them. For example, if the low part of /// a by-value argument should be passed as i32* and the high part as float, /// return {i32*, float}. static llvm::Type * GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, const llvm::DataLayout &TD) { // In order to correctly satisfy the ABI, we need to the high part to start // at offset 8. If the high and low parts we inferred are both 4-byte types // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have // the second element at offset 8. Check for this: unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); unsigned HiAlign = TD.getABITypeAlignment(Hi); unsigned HiStart = llvm::alignTo(LoSize, HiAlign); assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); // To handle this, we have to increase the size of the low part so that the // second element will start at an 8 byte offset. We can't increase the size // of the second element because it might make us access off the end of the // struct. if (HiStart != 8) { // There are usually two sorts of types the ABI generation code can produce // for the low part of a pair that aren't 8 bytes in size: half, float or // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and // NaCl). // Promote these to a larger type. if (Lo->isHalfTy() || Lo->isFloatTy()) Lo = llvm::Type::getDoubleTy(Lo->getContext()); else { assert((Lo->isIntegerTy() || Lo->isPointerTy()) && "Invalid/unknown lo type"); Lo = llvm::Type::getInt64Ty(Lo->getContext()); } } llvm::StructType *Result = llvm::StructType::get(Lo, Hi); // Verify that the second element is at an 8-byte offset. assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && "Invalid x86-64 argument pair!"); return Result; } ABIArgInfo X86_64ABIInfo:: classifyReturnType(QualType RetTy) const { // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the // classification algorithm. X86_64ABIInfo::Class Lo, Hi; classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); // Check some invariants. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); llvm::Type *ResType = nullptr; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via // hidden argument. case Memory: return getIndirectReturnResult(RetTy); // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next // available register of the sequence %rax, %rdx is used. case Integer: ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (RetTy->isIntegralOrEnumerationType() && isPromotableIntegerTypeForABI(RetTy)) return ABIArgInfo::getExtend(RetTy); } break; // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next // available SSE register of the sequence %xmm0, %xmm1 is used. case SSE: ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); break; // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is // returned on the X87 stack in %st0 as 80-bit x87 number. case X87: ResType = llvm::Type::getX86_FP80Ty(getVMContext()); break; // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real // part of the value is returned in %st0 and the imaginary part in // %st1. case ComplexX87: assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), llvm::Type::getX86_FP80Ty(getVMContext())); break; } llvm::Type *HighPart = nullptr; switch (Hi) { // Memory was handled previously and X87 should // never occur as a hi class. case Memory: case X87: llvm_unreachable("Invalid classification for hi word."); case ComplexX87: // Previously handled. case NoClass: break; case Integer: HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte // is passed in the next available eightbyte chunk if the last used // vector register. // // SSEUP should always be preceded by SSE, just widen. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification."); ResType = GetByteVectorType(RetTy); break; // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is // returned together with the previous X87 value in %st0. case X87Up: // If X87Up is preceded by X87, we don't need to do // anything. However, in some cases with unions it may not be // preceded by X87. In such situations we follow gcc and pass the // extra bits in an SSE reg. if (Lo != X87) { HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); } break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } ABIArgInfo X86_64ABIInfo::classifyArgumentType( QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg) const { Ty = useFirstFieldIfTransparentUnion(Ty); X86_64ABIInfo::Class Lo, Hi; classify(Ty, 0, Lo, Hi, isNamedArg); // Check some invariants. // FIXME: Enforce these by construction. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); neededInt = 0; neededSSE = 0; llvm::Type *ResType = nullptr; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument // on the stack. case Memory: // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or // COMPLEX_X87, it is passed in memory. case X87: case ComplexX87: if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) ++neededInt; return getIndirectResult(Ty, freeIntRegs); case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 // and %r9 is used. case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isIntegralOrEnumerationType() && isPromotableIntegerTypeForABI(Ty)) return ABIArgInfo::getExtend(Ty); } break; // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next // available SSE register is used, the registers are taken in the // order from %xmm0 to %xmm7. case SSE: { llvm::Type *IRType = CGT.ConvertType(Ty); ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); ++neededSSE; break; } } llvm::Type *HighPart = nullptr; switch (Hi) { // Memory was handled previously, ComplexX87 and X87 should // never occur as hi classes, and X87Up must be preceded by X87, // which is passed in memory. case Memory: case X87: case ComplexX87: llvm_unreachable("Invalid classification for hi word."); case NoClass: break; case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // X87Up generally doesn't occur here (long double is passed in // memory), except in situations involving unions. case X87Up: case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); ++neededSSE; break; // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the // eightbyte is passed in the upper half of the last used SSE // register. This only happens when 128-bit vectors are passed. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification"); ResType = GetByteVectorType(Ty); break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } ABIArgInfo X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE) const { auto RT = Ty->getAs(); assert(RT && "classifyRegCallStructType only valid with struct types"); if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectReturnResult(Ty); // Sum up bases if (auto CXXRD = dyn_cast(RT->getDecl())) { if (CXXRD->isDynamicClass()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } for (const auto &I : CXXRD->bases()) if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) .isIndirect()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } } // Sum up members for (const auto *FD : RT->getDecl()->fields()) { if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) .isIndirect()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } } else { unsigned LocalNeededInt, LocalNeededSSE; if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, LocalNeededSSE, true) .isIndirect()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } NeededInt += LocalNeededInt; NeededSSE += LocalNeededSSE; } } return ABIArgInfo::getDirect(); } ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE) const { NeededInt = 0; NeededSSE = 0; return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); } void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { const unsigned CallingConv = FI.getCallingConvention(); // It is possible to force Win64 calling convention on any x86_64 target by // using __attribute__((ms_abi)). In such case to correctly emit Win64 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. if (CallingConv == llvm::CallingConv::Win64) { WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); Win64ABIInfo.computeInfo(FI); return; } bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; // Keep track of the number of assigned registers. unsigned FreeIntRegs = IsRegCall ? 11 : 6; unsigned FreeSSERegs = IsRegCall ? 16 : 8; unsigned NeededInt, NeededSSE; if (!::classifyReturnType(getCXXABI(), FI, *this)) { if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && !FI.getReturnType()->getTypePtr()->isUnionType()) { FI.getReturnInfo() = classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { FreeIntRegs -= NeededInt; FreeSSERegs -= NeededSSE; } else { FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); } } else if (IsRegCall && FI.getReturnType()->getAs() && getContext().getCanonicalType(FI.getReturnType() ->getAs() ->getElementType()) == getContext().LongDoubleTy) // Complex Long Double Type is passed in Memory when Regcall // calling convention is used. FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); else FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); } // If the return value is indirect, then the hidden argument is consuming one // integer register. if (FI.getReturnInfo().isIndirect()) --FreeIntRegs; // The chain argument effectively gives us another free register. if (FI.isChainCall()) ++FreeIntRegs; unsigned NumRequiredArgs = FI.getNumRequiredArgs(); // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers // get assigned (in left-to-right order) for passing as follows... unsigned ArgNo = 0; for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it, ++ArgNo) { bool IsNamedArg = ArgNo < NumRequiredArgs; if (IsRegCall && it->type->isStructureOrClassType()) it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); else it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, NeededSSE, IsNamedArg); // AMD64-ABI 3.2.3p3: If there are no registers available for any // eightbyte of an argument, the whole argument is passed on the // stack. If registers have already been assigned for some // eightbytes of such an argument, the assignments get reverted. if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { FreeIntRegs -= NeededInt; FreeSSERegs -= NeededSSE; } else { it->info = getIndirectResult(it->type, FreeIntRegs); } } } static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) { Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); llvm::Value *overflow_arg_area = CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 // byte boundary if alignment needed by type exceeds 8 byte boundary. // It isn't stated explicitly in the standard, but in practice we use // alignment greater than 16 where necessary. CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); if (Align > CharUnits::fromQuantity(8)) { overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, Align); } // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *Res = CGF.Builder.CreateBitCast(overflow_arg_area, llvm::PointerType::getUnqual(LTy)); // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: // l->overflow_arg_area + sizeof(type). // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to // an 8 byte boundary. uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, Offset, "overflow_arg_area.next"); CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. return Address(Res, LTy, Align); } Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i32 gp_offset; // i32 fp_offset; // i8* overflow_arg_area; // i8* reg_save_area; // }; unsigned neededInt, neededSSE; Ty = getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, /*isNamedArg*/false); // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed // in the registers. If not go to step 7. if (!neededInt && !neededSSE) return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of // general purpose registers needed to pass type and num_fp to hold // the number of floating point registers needed. // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into // registers. In the case: l->gp_offset > 48 - num_gp * 8 or // l->fp_offset > 304 - num_fp * 16 go to step 7. // // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of // register save space). llvm::Value *InRegs = nullptr; Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; if (neededInt) { gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); } if (neededSSE) { fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); llvm::Value *FitsInFP = llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; } llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with // an offset of l->gp_offset and/or l->fp_offset. This may require // copying to a temporary location in case the parameter is passed // in different register classes or requires an alignment greater // than 8 for general purpose registers and 16 for XMM registers. // // FIXME: This really results in shameful code when we end up needing to // collect arguments from different places; often what should result in a // simple assembling of a structure from scattered addresses has many more // loads than necessary. Can we clean this up? llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); Address RegAddr = Address::invalid(); if (neededInt && neededSSE) { // FIXME: Cleanup. assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); llvm::StructType *ST = cast(AI.getCoerceToType()); Address Tmp = CGF.CreateMemTemp(Ty); Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); llvm::Type *TyLo = ST->getElementType(0); llvm::Type *TyHi = ST->getElementType(1); assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && "Unexpected ABI info for mixed regs"); llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); llvm::Value *GPAddr = CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); llvm::Value *FPAddr = CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; // Copy the first element. // FIXME: Our choice of alignment here and below is probably pessimistic. llvm::Value *V = CGF.Builder.CreateAlignedLoad( TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); // Copy the second element. V = CGF.Builder.CreateAlignedLoad( TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); } else if (neededInt) { RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), CGF.Int8Ty, CharUnits::fromQuantity(8)); RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); // Copy to a temporary if necessary to ensure the appropriate alignment. auto TInfo = getContext().getTypeInfoInChars(Ty); uint64_t TySize = TInfo.Width.getQuantity(); CharUnits TyAlign = TInfo.Align; // Copy into a temporary if the type is more aligned than the // register save area. if (TyAlign.getQuantity() > 8) { Address Tmp = CGF.CreateMemTemp(Ty); CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); RegAddr = Tmp; } } else if (neededSSE == 1) { RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), CGF.Int8Ty, CharUnits::fromQuantity(16)); RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); } else { assert(neededSSE == 2 && "Invalid number of needed registers!"); // SSE registers are spaced 16 bytes apart in the register save // area, we need to collect the two eightbytes together. // The ABI isn't explicit about this, but it seems reasonable // to assume that the slots are 16-byte aligned, since the stack is // naturally 16-byte aligned and the prologue is expected to store // all the SSE registers to the RSA. Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), CGF.Int8Ty, CharUnits::fromQuantity(16)); Address RegAddrHi = CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, CharUnits::fromQuantity(16)); llvm::Type *ST = AI.canHaveCoerceToType() ? AI.getCoerceToType() : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); llvm::Value *V; Address Tmp = CGF.CreateMemTemp(Ty); Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( RegAddrLo, ST->getStructElementType(0))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( RegAddrHi, ST->getStructElementType(1))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); } // AMD64-ABI 3.5.7p5: Step 5. Set: // l->gp_offset = l->gp_offset + num_gp * 8 // l->fp_offset = l->fp_offset + num_fp * 16. if (neededInt) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), gp_offset_p); } if (neededSSE) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), fp_offset_p); } CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); // Return the appropriate result. CGF.EmitBlock(ContBlock); Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, "vaarg.addr"); return ResAddr; } Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." uint64_t Width = getContext().getTypeSize(Ty); bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, CGF.getContext().getTypeInfoInChars(Ty), CharUnits::fromQuantity(8), /*allowHigherAlign*/ false); } ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { const Type *Base = nullptr; uint64_t NumElts = 0; if (!Ty->isBuiltinType() && !Ty->isVectorType() && isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { FreeSSERegs -= NumElts; return getDirectX86Hva(); } return current; } ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, bool IsVectorCall, bool IsRegCall) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); TypeInfo Info = getContext().getTypeInfo(Ty); uint64_t Width = Info.Width; CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); const RecordType *RT = Ty->getAs(); if (RT) { if (!IsReturnType) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); } if (RT->getDecl()->hasFlexibleArrayMember()) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } const Type *Base = nullptr; uint64_t NumElts = 0; // vectorcall adds the concept of a homogenous vector aggregate, similar to // other targets. if ((IsVectorCall || IsRegCall) && isHomogeneousAggregate(Ty, Base, NumElts)) { if (IsRegCall) { if (FreeSSERegs >= NumElts) { FreeSSERegs -= NumElts; if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) return ABIArgInfo::getDirect(); return ABIArgInfo::getExpand(); } return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } else if (IsVectorCall) { if (FreeSSERegs >= NumElts && (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { FreeSSERegs -= NumElts; return ABIArgInfo::getDirect(); } else if (IsReturnType) { return ABIArgInfo::getExpand(); } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { // HVAs are delayed and reclassified in the 2nd step. return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } } } if (Ty->isMemberPointerType()) { // If the member pointer is represented by an LLVM int or ptr, pass it // directly. llvm::Type *LLTy = CGT.ConvertType(Ty); if (LLTy->isPointerTy() || LLTy->isIntegerTy()) return ABIArgInfo::getDirect(); } if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." if (Width > 64 || !llvm::isPowerOf2_64(Width)) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); // Otherwise, coerce it to a small integer. return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); } if (const BuiltinType *BT = Ty->getAs()) { switch (BT->getKind()) { case BuiltinType::Bool: // Bool type is always extended to the ABI, other builtin types are not // extended. return ABIArgInfo::getExtend(Ty); case BuiltinType::LongDouble: // Mingw64 GCC uses the old 80 bit extended precision floating point // unit. It passes them indirectly through memory. if (IsMingw64) { const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); if (LDF == &llvm::APFloat::x87DoubleExtended()) return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } break; case BuiltinType::Int128: case BuiltinType::UInt128: // If it's a parameter type, the normal ABI rule is that arguments larger // than 8 bytes are passed indirectly. GCC follows it. We follow it too, // even though it isn't particularly efficient. if (!IsReturnType) return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. // Clang matches them for compatibility. return ABIArgInfo::getDirect(llvm::FixedVectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2)); default: break; } } if (Ty->isBitIntType()) { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, // or 8 bytes anyway as long is it fits in them, so we don't have to check // the power of 2. if (Width <= 64) return ABIArgInfo::getDirect(); return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } return ABIArgInfo::getDirect(); } void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { const unsigned CC = FI.getCallingConvention(); bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; // If __attribute__((sysv_abi)) is in use, use the SysV argument // classification rules. if (CC == llvm::CallingConv::X86_64_SysV) { X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); SysVABIInfo.computeInfo(FI); return; } unsigned FreeSSERegs = 0; if (IsVectorCall) { // We can use up to 4 SSE return registers with vectorcall. FreeSSERegs = 4; } else if (IsRegCall) { // RegCall gives us 16 SSE registers. FreeSSERegs = 16; } if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, IsVectorCall, IsRegCall); if (IsVectorCall) { // We can use up to 6 SSE register parameters with vectorcall. FreeSSERegs = 6; } else if (IsRegCall) { // RegCall gives us 16 SSE registers, we can reuse the return registers. FreeSSERegs = 16; } unsigned ArgNum = 0; unsigned ZeroSSERegs = 0; for (auto &I : FI.arguments()) { // Vectorcall in x64 only permits the first 6 arguments to be passed as // XMM/YMM registers. After the sixth argument, pretend no vector // registers are left. unsigned *MaybeFreeSSERegs = (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; I.info = classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); ++ArgNum; } if (IsVectorCall) { // For vectorcall, assign aggregate HVAs to any free vector registers in a // second pass. for (auto &I : FI.arguments()) I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); } } Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." uint64_t Width = getContext().getTypeSize(Ty); bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, CGF.getContext().getTypeInfoInChars(Ty), CharUnits::fromQuantity(8), /*allowHigherAlign*/ false); } static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address, bool Is64Bit, bool IsAIX) { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all PPC ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *i8 = CGF.Int8Ty; llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); // 32-63: fp0-31, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 32, 63); // 64-67 are various 4-byte or 8-byte special-purpose registers: // 64: mq // 65: lr // 66: ctr // 67: ap AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); // 68-76 are various 4-byte special-purpose registers: // 68-75 cr0-7 // 76: xer AssignToArrayRange(Builder, Address, Four8, 68, 76); // 77-108: v0-31, the 16-byte vector registers AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); // 109: vrsave // 110: vscr AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); // AIX does not utilize the rest of the registers. if (IsAIX) return false; // 111: spe_acc // 112: spefscr // 113: sfp AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); if (!Is64Bit) return false; // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 // or above CPU. // 64-bit only registers: // 114: tfhar // 115: tfiar // 116: texasr AssignToArrayRange(Builder, Address, Eight8, 114, 116); return false; } // AIX namespace { /// AIXABIInfo - The AIX XCOFF ABI information. class AIXABIInfo : public ABIInfo { const bool Is64Bit; const unsigned PtrByteSize; CharUnits getParamTypeAlignment(QualType Ty) const; public: AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} bool isPromotableTypeForABI(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; }; class AIXTargetCodeGenInfo : public TargetCodeGenInfo { const bool Is64Bit; public: AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) : TargetCodeGenInfo(std::make_unique(CGT, Is64Bit)), Is64Bit(Is64Bit) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; } // namespace // Return true if the ABI requires Ty to be passed sign- or zero- // extended to 32/64 bits. bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Promotable integer types are required to be promoted by the ABI. if (Ty->isPromotableIntegerType()) return true; if (!Is64Bit) return false; // For 64 bit mode, in addition to the usual promotable integer types, we also // need to extend all 32-bit types, since the ABI requires promotion to 64 // bits. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Int: case BuiltinType::UInt: return true; default: break; } return false; } ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); if (RetTy->isVectorType()) return ABIArgInfo::getDirect(); if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return getNaturalAlignIndirect(RetTy); return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { Ty = useFirstFieldIfTransparentUnion(Ty); if (Ty->isAnyComplexType()) return ABIArgInfo::getDirect(); if (Ty->isVectorType()) return ABIArgInfo::getDirect(); if (isAggregateTypeForABI(Ty)) { // Records with non-trivial destructors/copy-constructors should not be // passed by value. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); CharUnits CCAlign = getParamTypeAlignment(Ty); CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, /*Realign*/ TyAlign > CCAlign); } return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { // Complex types are passed just like their elements. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); if (Ty->isVectorType()) return CharUnits::fromQuantity(16); // If the structure contains a vector type, the alignment is 16. if (isRecordWithSIMDVectorType(getContext(), Ty)) return CharUnits::fromQuantity(16); return CharUnits::fromQuantity(PtrByteSize); } Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { auto TypeInfo = getContext().getTypeInfoInChars(Ty); TypeInfo.Align = getParamTypeAlignment(Ty); CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); // If we have a complex type and the base type is smaller than the register // size, the ABI calls for the real and imaginary parts to be right-adjusted // in separate words in 32bit mode or doublewords in 64bit mode. However, // Clang expects us to produce a pointer to a structure with the two parts // packed tightly. So generate loads of the real and imaginary parts relative // to the va_list pointer, and store them to a temporary structure. We do the // same as the PPC64ABI here. if (const ComplexType *CTy = Ty->getAs()) { CharUnits EltSize = TypeInfo.Width / 2; if (EltSize < SlotSize) return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); } return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, SlotSize, /*AllowHigher*/ true); } bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); } // PowerPC-32 namespace { /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. class PPC32_SVR4_ABIInfo : public DefaultABIInfo { bool IsSoftFloatABI; bool IsRetSmallStructInRegABI; CharUnits getParamTypeAlignment(QualType Ty) const; public: PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, bool RetSmallStructInRegABI) : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} ABIArgInfo classifyReturnType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; }; class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { public: PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, bool RetSmallStructInRegABI) : TargetCodeGenInfo(std::make_unique( CGT, SoftFloatABI, RetSmallStructInRegABI)) {} static bool isStructReturnInRegABI(const llvm::Triple &Triple, const CodeGenOptions &Opts); int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; } CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { // Complex types are passed just like their elements. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); if (Ty->isVectorType()) return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 4); // For single-element float/vector structs, we consider the whole type // to have the same alignment requirements as its single element. const Type *AlignTy = nullptr; if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { const BuiltinType *BT = EltType->getAs(); if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || (BT && BT->isFloatingPoint())) AlignTy = EltType; } if (AlignTy) return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); return CharUnits::fromQuantity(4); } ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { uint64_t Size; // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && (Size = getContext().getTypeSize(RetTy)) <= 64) { // System V ABI (1995), page 3-22, specified: // > A structure or union whose size is less than or equal to 8 bytes // > shall be returned in r3 and r4, as if it were first stored in the // > 8-byte aligned memory area and then the low addressed word were // > loaded into r3 and the high-addressed word into r4. Bits beyond // > the last member of the structure or union are not defined. // // GCC for big-endian PPC32 inserts the pad before the first member, // not "beyond the last member" of the struct. To stay compatible // with GCC, we coerce the struct to an integer of the same size. // LLVM will extend it and return i32 in r3, or i64 in r3:r4. if (Size == 0) return ABIArgInfo::getIgnore(); else { llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); return ABIArgInfo::getDirect(CoerceTy); } } return DefaultABIInfo::classifyReturnType(RetTy); } // TODO: this implementation is now likely redundant with // DefaultABIInfo::EmitVAArg. Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, QualType Ty) const { if (getTarget().getTriple().isOSDarwin()) { auto TI = getContext().getTypeInfoInChars(Ty); TI.Align = getParamTypeAlignment(Ty); CharUnits SlotSize = CharUnits::fromQuantity(4); return emitVoidPtrVAArg(CGF, VAList, Ty, classifyArgumentType(Ty).isIndirect(), TI, SlotSize, /*AllowHigherAlign=*/true); } const unsigned OverflowLimit = 8; if (const ComplexType *CTy = Ty->getAs()) { // TODO: Implement this. For now ignore. (void)CTy; return Address::invalid(); // FIXME? } // struct __va_list_tag { // unsigned char gpr; // unsigned char fpr; // unsigned short reserved; // void *overflow_arg_area; // void *reg_save_area; // }; bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; bool isInt = !Ty->isFloatingType(); bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; // All aggregates are passed indirectly? That doesn't seem consistent // with the argument-lowering code. bool isIndirect = isAggregateTypeForABI(Ty); CGBuilderTy &Builder = CGF.Builder; // The calling convention either uses 1-2 GPRs or 1 FPR. Address NumRegsAddr = Address::invalid(); if (isInt || IsSoftFloatABI) { NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); } else { NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); } llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); // "Align" the register count when TY is i64. if (isI64 || (isF64 && IsSoftFloatABI)) { NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); } llvm::Value *CC = Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); llvm::Type *DirectTy = CGF.ConvertType(Ty); if (isIndirect) DirectTy = DirectTy->getPointerTo(0); // Case 1: consume registers. Address RegAddr = Address::invalid(); { CGF.EmitBlock(UsingRegs); Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CharUnits::fromQuantity(8)); assert(RegAddr.getElementType() == CGF.Int8Ty); // Floating-point registers start after the general-purpose registers. if (!(isInt || IsSoftFloatABI)) { RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, CharUnits::fromQuantity(32)); } // Get the address of the saved value by scaling the number of // registers we've used by the number of CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); llvm::Value *RegOffset = Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); // Increase the used-register count. NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); Builder.CreateStore(NumRegs, NumRegsAddr); CGF.EmitBranch(Cont); } // Case 2: consume space in the overflow area. Address MemAddr = Address::invalid(); { CGF.EmitBlock(UsingOverflow); Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); // Everything in the overflow area is rounded up to a size of at least 4. CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); CharUnits Size; if (!isIndirect) { auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); Size = TypeInfo.Width.alignTo(OverflowAreaAlign); } else { Size = CGF.getPointerSize(); } Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), OverflowAreaAlign); // Round up address of argument to alignment CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); if (Align > OverflowAreaAlign) { llvm::Value *Ptr = OverflowArea.getPointer(); OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), Align); } MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); // Increase the overflow area. OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); CGF.EmitBranch(Cont); } CGF.EmitBlock(Cont); // Merge the cases with a phi. Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, "vaarg.addr"); // Load the pointer if the argument was passed indirectly. if (isIndirect) { Result = Address(Builder.CreateLoad(Result, "aggr"), getContext().getTypeAlignInChars(Ty)); } return Result; } bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts) { assert(Triple.isPPC32()); switch (Opts.getStructReturnConvention()) { case CodeGenOptions::SRCK_Default: break; case CodeGenOptions::SRCK_OnStack: // -maix-struct-return return false; case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return return true; } if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) return true; return false; } bool PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, /*IsAIX*/ false); } // PowerPC-64 namespace { /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. class PPC64_SVR4_ABIInfo : public SwiftABIInfo { public: enum ABIKind { ELFv1 = 0, ELFv2 }; private: static const unsigned GPRBits = 64; ABIKind Kind; bool IsSoftFloatABI; public: PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool SoftFloatABI) : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} bool isPromotableTypeForABI(QualType Ty) const; CharUnits getParamTypeAlignment(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; bool isHomogeneousAggregateBaseType(QualType Ty) const override; bool isHomogeneousAggregateSmallEnough(const Type *Ty, uint64_t Members) const override; // TODO: We can add more logic to computeInfo to improve performance. // Example: For aggregate arguments that fit in a register, we could // use getDirectInReg (as is done below for structs containing a single // floating-point value) to avoid pushing them to memory on function // entry. This would require changing the logic in PPCISelLowering // when lowering the parameters in the caller and args in the callee. void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) { // We rely on the default argument classification for the most part. // One exception: An aggregate containing a single floating-point // or vector item must be passed in a register if one is available. const Type *T = isSingleElementStruct(I.type, getContext()); if (T) { const BuiltinType *BT = T->getAs(); if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || (BT && BT->isFloatingPoint())) { QualType QT(T, 0); I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); continue; } } I.info = classifyArgumentType(I.type); } } Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { return occupiesMoreThan(CGT, scalars, /*total*/ 4); } bool isSwiftErrorInRegister() const override { return false; } }; class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { public: PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, PPC64_SVR4_ABIInfo::ABIKind Kind, bool SoftFloatABI) : TargetCodeGenInfo( std::make_unique(CGT, Kind, SoftFloatABI)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; }; } // Return true if the ABI requires Ty to be passed sign- or zero- // extended to 64 bits. bool PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Promotable integer types are required to be promoted by the ABI. if (isPromotableIntegerTypeForABI(Ty)) return true; // In addition to the usual promotable integer types, we also need to // extend all 32-bit types, since the ABI requires promotion to 64 bits. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Int: case BuiltinType::UInt: return true; default: break; } if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() < 64) return true; return false; } /// isAlignedParamType - Determine whether a type requires 16-byte or /// higher alignment in the parameter area. Always returns at least 8. CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { // Complex types are passed just like their elements. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); auto FloatUsesVector = [this](QualType Ty){ return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( Ty) == &llvm::APFloat::IEEEquad(); }; // Only vector types of size 16 bytes need alignment (larger types are // passed via reference, smaller types are not aligned). if (Ty->isVectorType()) { return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); } else if (FloatUsesVector(Ty)) { // According to ABI document section 'Optional Save Areas': If extended // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION // format are supported, map them to a single quadword, quadword aligned. return CharUnits::fromQuantity(16); } // For single-element float/vector structs, we consider the whole type // to have the same alignment requirements as its single element. const Type *AlignAsType = nullptr; const Type *EltType = isSingleElementStruct(Ty, getContext()); if (EltType) { const BuiltinType *BT = EltType->getAs(); if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || (BT && BT->isFloatingPoint())) AlignAsType = EltType; } // Likewise for ELFv2 homogeneous aggregates. const Type *Base = nullptr; uint64_t Members = 0; if (!AlignAsType && Kind == ELFv2 && isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) AlignAsType = Base; // With special case aggregates, only vector base types need alignment. if (AlignAsType) { bool UsesVector = AlignAsType->isVectorType() || FloatUsesVector(QualType(AlignAsType, 0)); return CharUnits::fromQuantity(UsesVector ? 16 : 8); } // Otherwise, we only need alignment for any aggregate type that // has an alignment requirement of >= 16 bytes. if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { return CharUnits::fromQuantity(16); } return CharUnits::fromQuantity(8); } /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous /// aggregate. Base is set to the base element type, and Members is set /// to the number of base elements. bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, uint64_t &Members) const { if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { uint64_t NElements = AT->getSize().getZExtValue(); if (NElements == 0) return false; if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) return false; Members *= NElements; } else if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; Members = 0; // If this is a C++ record, check the properties of the record such as // bases and ABI specific restrictions if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) return false; for (const auto &I : CXXRD->bases()) { // Ignore empty records. if (isEmptyRecord(getContext(), I.getType(), true)) continue; uint64_t FldMembers; if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) return false; Members += FldMembers; } } for (const auto *FD : RD->fields()) { // Ignore (non-zero arrays of) empty records. QualType FT = FD->getType(); while (const ConstantArrayType *AT = getContext().getAsConstantArrayType(FT)) { if (AT->getSize().getZExtValue() == 0) return false; FT = AT->getElementType(); } if (isEmptyRecord(getContext(), FT, true)) continue; // For compatibility with GCC, ignore empty bitfields in C++ mode. if (getContext().getLangOpts().CPlusPlus && FD->isZeroLengthBitField(getContext())) continue; uint64_t FldMembers; if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) return false; Members = (RD->isUnion() ? std::max(Members, FldMembers) : Members + FldMembers); } if (!Base) return false; // Ensure there is no padding. if (getContext().getTypeSize(Base) * Members != getContext().getTypeSize(Ty)) return false; } else { Members = 1; if (const ComplexType *CT = Ty->getAs()) { Members = 2; Ty = CT->getElementType(); } // Most ABIs only support float, double, and some vector type widths. if (!isHomogeneousAggregateBaseType(Ty)) return false; // The base type must be the same for all members. Types that // agree in both total size and mode (float vs. vector) are // treated as being equivalent here. const Type *TyPtr = Ty.getTypePtr(); if (!Base) { Base = TyPtr; // If it's a non-power-of-2 vector, its size is already a power-of-2, // so make sure to widen it explicitly. if (const VectorType *VT = Base->getAs()) { QualType EltTy = VT->getElementType(); unsigned NumElements = getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); Base = getContext() .getVectorType(EltTy, NumElements, VT->getVectorKind()) .getTypePtr(); } } if (Base->isVectorType() != TyPtr->isVectorType() || getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) return false; } return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); } bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { // Homogeneous aggregates for ELFv2 must have base types of float, // double, long double, or 128-bit vectors. if (const BuiltinType *BT = Ty->getAs()) { if (BT->getKind() == BuiltinType::Float || BT->getKind() == BuiltinType::Double || BT->getKind() == BuiltinType::LongDouble || BT->getKind() == BuiltinType::Ibm128 || (getContext().getTargetInfo().hasFloat128Type() && (BT->getKind() == BuiltinType::Float128))) { if (IsSoftFloatABI) return false; return true; } } if (const VectorType *VT = Ty->getAs()) { if (getContext().getTypeSize(VT) == 128) return true; } return false; } bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( const Type *Base, uint64_t Members) const { // Vector and fp128 types require one register, other floating point types // require one or two registers depending on their size. uint32_t NumRegs = ((getContext().getTargetInfo().hasFloat128Type() && Base->isFloat128Type()) || Base->isVectorType()) ? 1 : (getContext().getTypeSize(Base) + 63) / 64; // Homogeneous Aggregates may occupy at most 8 registers. return Members * NumRegs <= 8; } ABIArgInfo PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { Ty = useFirstFieldIfTransparentUnion(Ty); if (Ty->isAnyComplexType()) return ABIArgInfo::getDirect(); // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) // or via reference (larger than 16 bytes). if (Ty->isVectorType()) { uint64_t Size = getContext().getTypeSize(Ty); if (Size > 128) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); else if (Size < 128) { llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); return ABIArgInfo::getDirect(CoerceTy); } } if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() > 128) return getNaturalAlignIndirect(Ty, /*ByVal=*/true); if (isAggregateTypeForABI(Ty)) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); // ELFv2 homogeneous aggregates are passed as array types. const Type *Base = nullptr; uint64_t Members = 0; if (Kind == ELFv2 && isHomogeneousAggregate(Ty, Base, Members)) { llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); return ABIArgInfo::getDirect(CoerceTy); } // If an aggregate may end up fully in registers, we do not // use the ByVal method, but pass the aggregate as array. // This is usually beneficial since we avoid forcing the // back-end to store the argument to memory. uint64_t Bits = getContext().getTypeSize(Ty); if (Bits > 0 && Bits <= 8 * GPRBits) { llvm::Type *CoerceTy; // Types up to 8 bytes are passed as integer type (which will be // properly aligned in the argument save area doubleword). if (Bits <= GPRBits) CoerceTy = llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); // Larger types are passed as arrays, with the base type selected // according to the required alignment in the save area. else { uint64_t RegBits = ABIAlign * 8; uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); } return ABIArgInfo::getDirect(CoerceTy); } // All other aggregates are passed ByVal. return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), /*ByVal=*/true, /*Realign=*/TyAlign > ABIAlign); } return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } ABIArgInfo PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) // or via reference (larger than 16 bytes). if (RetTy->isVectorType()) { uint64_t Size = getContext().getTypeSize(RetTy); if (Size > 128) return getNaturalAlignIndirect(RetTy); else if (Size < 128) { llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); return ABIArgInfo::getDirect(CoerceTy); } } if (const auto *EIT = RetTy->getAs()) if (EIT->getNumBits() > 128) return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); if (isAggregateTypeForABI(RetTy)) { // ELFv2 homogeneous aggregates are returned as array types. const Type *Base = nullptr; uint64_t Members = 0; if (Kind == ELFv2 && isHomogeneousAggregate(RetTy, Base, Members)) { llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); return ABIArgInfo::getDirect(CoerceTy); } // ELFv2 small aggregates are returned in up to two registers. uint64_t Bits = getContext().getTypeSize(RetTy); if (Kind == ELFv2 && Bits <= 2 * GPRBits) { if (Bits == 0) return ABIArgInfo::getIgnore(); llvm::Type *CoerceTy; if (Bits > GPRBits) { CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); } else CoerceTy = llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); return ABIArgInfo::getDirect(CoerceTy); } // All other aggregates are returned indirectly. return getNaturalAlignIndirect(RetTy); } return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { auto TypeInfo = getContext().getTypeInfoInChars(Ty); TypeInfo.Align = getParamTypeAlignment(Ty); CharUnits SlotSize = CharUnits::fromQuantity(8); // If we have a complex type and the base type is smaller than 8 bytes, // the ABI calls for the real and imaginary parts to be right-adjusted // in separate doublewords. However, Clang expects us to produce a // pointer to a structure with the two parts packed tightly. So generate // loads of the real and imaginary parts relative to the va_list pointer, // and store them to a temporary structure. if (const ComplexType *CTy = Ty->getAs()) { CharUnits EltSize = TypeInfo.Width / 2; if (EltSize < SlotSize) return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); } // Otherwise, just use the general rule. return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, SlotSize, /*AllowHigher*/ true); } bool PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, /*IsAIX*/ false); } bool PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, /*IsAIX*/ false); } //===----------------------------------------------------------------------===// // AArch64 ABI Implementation //===----------------------------------------------------------------------===// namespace { class AArch64ABIInfo : public SwiftABIInfo { public: enum ABIKind { AAPCS = 0, DarwinPCS, Win64 }; private: ABIKind Kind; public: AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : SwiftABIInfo(CGT), Kind(Kind) {} private: ABIKind getABIKind() const { return Kind; } bool isDarwinPCS() const { return Kind == DarwinPCS; } ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, unsigned CallingConvention) const; ABIArgInfo coerceIllegalVector(QualType Ty) const; bool isHomogeneousAggregateBaseType(QualType Ty) const override; bool isHomogeneousAggregateSmallEnough(const Type *Ty, uint64_t Members) const override; bool isIllegalVectorType(QualType Ty) const; void computeInfo(CGFunctionInfo &FI) const override { if (!::classifyReturnType(getCXXABI(), FI, *this)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); for (auto &it : FI.arguments()) it.info = classifyArgumentType(it.type, FI.isVariadic(), FI.getCallingConvention()); } Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF) const; Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF) const; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override { llvm::Type *BaseTy = CGF.ConvertType(Ty); if (isa(BaseTy)) llvm::report_fatal_error("Passing SVE types to variadic functions is " "currently not supported"); return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) : EmitAAPCSVAArg(VAListAddr, Ty, CGF); } Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { return occupiesMoreThan(CGT, scalars, /*total*/ 4); } bool isSwiftErrorInRegister() const override { return true; } bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, unsigned elts) const override; bool allowBFloatArgsAndRet() const override { return getTarget().hasBFloat16Type(); } }; class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { public: AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) : TargetCodeGenInfo(std::make_unique(CGT, Kind)) {} StringRef getARCRetainAutoreleasedReturnValueMarker() const override { return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; } int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 31; } bool doesReturnSlotInterfereWithArgs() const override { return false; } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { const FunctionDecl *FD = dyn_cast_or_null(D); if (!FD) return; const auto *TA = FD->getAttr(); if (TA == nullptr) return; ParsedTargetAttr Attr = TA->parse(); if (Attr.BranchProtection.empty()) return; TargetInfo::BranchProtectionInfo BPI; StringRef Error; (void)CGM.getTarget().validateBranchProtection( Attr.BranchProtection, Attr.Architecture, BPI, Error); assert(Error.empty()); auto *Fn = cast(GV); static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast(BPI.SignReturnAddr)]); if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { Fn->addFnAttr("sign-return-address-key", BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey ? "a_key" : "b_key"); } Fn->addFnAttr("branch-target-enforcement", BPI.BranchTargetEnforcement ? "true" : "false"); } bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, llvm::Type *Ty) const override { if (CGF.getTarget().hasFeature("ls64")) { auto *ST = dyn_cast(Ty); if (ST && ST->getNumElements() == 1) { auto *AT = dyn_cast(ST->getElementType(0)); if (AT && AT->getNumElements() == 8 && AT->getElementType()->isIntegerTy(64)) return true; } } return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); } }; class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { public: WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) : AArch64TargetCodeGenInfo(CGT, K) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); if (GV->isDeclaration()) return; addStackProbeTargetAttributes(D, GV, CGM); } } ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { assert(Ty->isVectorType() && "expected vector type!"); const auto *VT = Ty->castAs(); if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); assert(VT->getElementType()->castAs()->getKind() == BuiltinType::UChar && "unexpected builtin type for SVE predicate!"); return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( llvm::Type::getInt1Ty(getVMContext()), 16)); } if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); const auto *BT = VT->getElementType()->castAs(); llvm::ScalableVectorType *ResType = nullptr; switch (BT->getKind()) { default: llvm_unreachable("unexpected builtin type for SVE vector!"); case BuiltinType::SChar: case BuiltinType::UChar: ResType = llvm::ScalableVectorType::get( llvm::Type::getInt8Ty(getVMContext()), 16); break; case BuiltinType::Short: case BuiltinType::UShort: ResType = llvm::ScalableVectorType::get( llvm::Type::getInt16Ty(getVMContext()), 8); break; case BuiltinType::Int: case BuiltinType::UInt: ResType = llvm::ScalableVectorType::get( llvm::Type::getInt32Ty(getVMContext()), 4); break; case BuiltinType::Long: case BuiltinType::ULong: ResType = llvm::ScalableVectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2); break; case BuiltinType::Half: ResType = llvm::ScalableVectorType::get( llvm::Type::getHalfTy(getVMContext()), 8); break; case BuiltinType::Float: ResType = llvm::ScalableVectorType::get( llvm::Type::getFloatTy(getVMContext()), 4); break; case BuiltinType::Double: ResType = llvm::ScalableVectorType::get( llvm::Type::getDoubleTy(getVMContext()), 2); break; case BuiltinType::BFloat16: ResType = llvm::ScalableVectorType::get( llvm::Type::getBFloatTy(getVMContext()), 8); break; } return ABIArgInfo::getDirect(ResType); } uint64_t Size = getContext().getTypeSize(Ty); // Android promotes <2 x i8> to i16, not i32 if (isAndroid() && (Size <= 16)) { llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); return ABIArgInfo::getDirect(ResType); } if (Size <= 32) { llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); return ABIArgInfo::getDirect(ResType); } if (Size == 64) { auto *ResType = llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); return ABIArgInfo::getDirect(ResType); } if (Size == 128) { auto *ResType = llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); return ABIArgInfo::getDirect(ResType); } return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, unsigned CallingConvention) const { Ty = useFirstFieldIfTransparentUnion(Ty); // Handle illegal vector types here. if (isIllegalVectorType(Ty)) return coerceIllegalVector(Ty); if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() > 128) return getNaturalAlignIndirect(Ty); return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == CGCXXABI::RAA_DirectInMemory); } // Empty records are always ignored on Darwin, but actually passed in C++ mode // elsewhere for GNU compatibility. uint64_t Size = getContext().getTypeSize(Ty); bool IsEmpty = isEmptyRecord(getContext(), Ty, true); if (IsEmpty || Size == 0) { if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) return ABIArgInfo::getIgnore(); // GNU C mode. The only argument that gets ignored is an empty one with size // 0. if (IsEmpty && Size == 0) return ABIArgInfo::getIgnore(); return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); } // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. const Type *Base = nullptr; uint64_t Members = 0; bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; bool IsWinVariadic = IsWin64 && IsVariadic; // In variadic functions on Windows, all composite types are treated alike, // no special handling of HFAs/HVAs. if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { if (Kind != AArch64ABIInfo::AAPCS) return ABIArgInfo::getDirect( llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); // For alignment adjusted HFAs, cap the argument alignment to 16, leave it // default otherwise. unsigned Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; return ABIArgInfo::getDirect( llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, nullptr, true, Align); } // Aggregates <= 16 bytes are passed directly in registers or on the stack. if (Size <= 128) { // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of // same size and alignment. if (getTarget().isRenderScriptTarget()) { return coerceToIntArray(Ty, getContext(), getVMContext()); } unsigned Alignment; if (Kind == AArch64ABIInfo::AAPCS) { Alignment = getContext().getTypeUnadjustedAlign(Ty); Alignment = Alignment < 128 ? 64 : 128; } else { Alignment = std::max(getContext().getTypeAlign(Ty), (unsigned)getTarget().getPointerWidth(0)); } Size = llvm::alignTo(Size, Alignment); // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. // For aggregates with 16-byte alignment, we use i128. llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); return ABIArgInfo::getDirect( Size == Alignment ? BaseTy : llvm::ArrayType::get(BaseTy, Size / Alignment)); } return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, bool IsVariadic) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (const auto *VT = RetTy->getAs()) { if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) return coerceIllegalVector(RetTy); } // Large vector types should be returned via memory. if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) return getNaturalAlignIndirect(RetTy); if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (const auto *EIT = RetTy->getAs()) if (EIT->getNumBits() > 128) return getNaturalAlignIndirect(RetTy); return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } uint64_t Size = getContext().getTypeSize(RetTy); if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) return ABIArgInfo::getIgnore(); const Type *Base = nullptr; uint64_t Members = 0; if (isHomogeneousAggregate(RetTy, Base, Members) && !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && IsVariadic)) // Homogeneous Floating-point Aggregates (HFAs) are returned directly. return ABIArgInfo::getDirect(); // Aggregates <= 16 bytes are returned directly in registers or on the stack. if (Size <= 128) { // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of // same size and alignment. if (getTarget().isRenderScriptTarget()) { return coerceToIntArray(RetTy, getContext(), getVMContext()); } if (Size <= 64 && getDataLayout().isLittleEndian()) { // Composite types are returned in lower bits of a 64-bit register for LE, // and in higher bits for BE. However, integer types are always returned // in lower bits for both LE and BE, and they are not rounded up to // 64-bits. We can skip rounding up of composite types for LE, but not for // BE, otherwise composite types will be indistinguishable from integer // types. return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), Size)); } unsigned Alignment = getContext().getTypeAlign(RetTy); Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. // For aggregates with 16-byte alignment, we use i128. if (Alignment < 128 && Size == 128) { llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); } return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } return getNaturalAlignIndirect(RetTy); } /// isIllegalVectorType - check whether the vector type is legal for AArch64. bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { if (const VectorType *VT = Ty->getAs()) { // Check whether VT is a fixed-length SVE vector. These types are // represented as scalable vectors in function args/return and must be // coerced from fixed vectors. if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) return true; // Check whether VT is legal. unsigned NumElements = VT->getNumElements(); uint64_t Size = getContext().getTypeSize(VT); // NumElements should be power of 2. if (!llvm::isPowerOf2_32(NumElements)) return true; // arm64_32 has to be compatible with the ARM logic here, which allows huge // vectors for some reason. llvm::Triple Triple = getTarget().getTriple(); if (Triple.getArch() == llvm::Triple::aarch64_32 && Triple.isOSBinFormatMachO()) return Size <= 32; return Size != 64 && (Size != 128 || NumElements == 1); } return false; } bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, unsigned elts) const { if (!llvm::isPowerOf2_32(elts)) return false; if (totalSize.getQuantity() != 8 && (totalSize.getQuantity() != 16 || elts == 1)) return false; return true; } bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { // Homogeneous aggregates for AAPCS64 must have base types of a floating // point type or a short-vector type. This is the same as the 32-bit ABI, // but with the difference that any floating-point type is allowed, // including __fp16. if (const BuiltinType *BT = Ty->getAs()) { if (BT->isFloatingPoint()) return true; } else if (const VectorType *VT = Ty->getAs()) { unsigned VecSize = getContext().getTypeSize(VT); if (VecSize == 64 || VecSize == 128) return true; } return false; } bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, uint64_t Members) const { return Members <= 4; } Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF) const { ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, CGF.CurFnInfo->getCallingConvention()); bool IsIndirect = AI.isIndirect(); llvm::Type *BaseTy = CGF.ConvertType(Ty); if (IsIndirect) BaseTy = llvm::PointerType::getUnqual(BaseTy); else if (AI.getCoerceToType()) BaseTy = AI.getCoerceToType(); unsigned NumRegs = 1; if (llvm::ArrayType *ArrTy = dyn_cast(BaseTy)) { BaseTy = ArrTy->getElementType(); NumRegs = ArrTy->getNumElements(); } bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); // The AArch64 va_list type and handling is specified in the Procedure Call // Standard, section B.4: // // struct { // void *__stack; // void *__gr_top; // void *__vr_top; // int __gr_offs; // int __vr_offs; // }; llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CharUnits TySize = getContext().getTypeSizeInChars(Ty); CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); Address reg_offs_p = Address::invalid(); llvm::Value *reg_offs = nullptr; int reg_top_index; int RegSize = IsIndirect ? 8 : TySize.getQuantity(); if (!IsFPR) { // 3 is the field number of __gr_offs reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); reg_top_index = 1; // field number for __gr_top RegSize = llvm::alignTo(RegSize, 8); } else { // 4 is the field number of __vr_offs. reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); reg_top_index = 2; // field number for __vr_top RegSize = 16 * NumRegs; } //======================================= // Find out where argument was passed //======================================= // If reg_offs >= 0 we're already using the stack for this type of // argument. We don't want to keep updating reg_offs (in case it overflows, // though anyone passing 2GB of arguments, each at most 16 bytes, deserves // whatever they get). llvm::Value *UsingStack = nullptr; UsingStack = CGF.Builder.CreateICmpSGE( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); // Otherwise, at least some kind of argument could go in these registers, the // question is whether this particular type is too big. CGF.EmitBlock(MaybeRegBlock); // Integer arguments may need to correct register alignment (for example a // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we // align __gr_offs to calculate the potential address. if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { int Align = TyAlign.getQuantity(); reg_offs = CGF.Builder.CreateAdd( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), "align_regoffs"); reg_offs = CGF.Builder.CreateAnd( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), "aligned_regoffs"); } // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. // The fact that this is done unconditionally reflects the fact that // allocating an argument to the stack also uses up all the remaining // registers of the appropriate kind. llvm::Value *NewOffset = nullptr; NewOffset = CGF.Builder.CreateAdd( reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); CGF.Builder.CreateStore(NewOffset, reg_offs_p); // Now we're in a position to decide whether this argument really was in // registers or not. llvm::Value *InRegs = nullptr; InRegs = CGF.Builder.CreateICmpSLE( NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); //======================================= // Argument was in registers //======================================= // Now we emit the code for if the argument was originally passed in // registers. First start the appropriate block: CGF.EmitBlock(InRegBlock); llvm::Value *reg_top = nullptr; Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), CharUnits::fromQuantity(IsFPR ? 16 : 8)); Address RegAddr = Address::invalid(); llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); if (IsIndirect) { // If it's been passed indirectly (actually a struct), whatever we find from // stored registers or on the stack will actually be a struct **. MemTy = llvm::PointerType::getUnqual(MemTy); } const Type *Base = nullptr; uint64_t NumMembers = 0; bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); if (IsHFA && NumMembers > 1) { // Homogeneous aggregates passed in registers will have their elements split // and stored 16-bytes apart regardless of size (they're notionally in qN, // qN+1, ...). We reload and store into a temporary local variable // contiguously. assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); Address Tmp = CGF.CreateTempAlloca(HFATy, std::max(TyAlign, BaseTyInfo.Align)); // On big-endian platforms, the value will be right-aligned in its slot. int Offset = 0; if (CGF.CGM.getDataLayout().isBigEndian() && BaseTyInfo.Width.getQuantity() < 16) Offset = 16 - BaseTyInfo.Width.getQuantity(); for (unsigned i = 0; i < NumMembers; ++i) { CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); Address LoadAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); CGF.Builder.CreateStore(Elem, StoreAddr); } RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); } else { // Otherwise the object is contiguous in memory. // It might be right-aligned in its slot. CharUnits SlotSize = BaseAddr.getAlignment(); if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && (IsHFA || !isAggregateTypeForABI(Ty)) && TySize < SlotSize) { CharUnits Offset = SlotSize - TySize; BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); } RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); } CGF.EmitBranch(ContBlock); //======================================= // Argument was on the stack //======================================= CGF.EmitBlock(OnStackBlock); Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); // Again, stack arguments may need realignment. In this case both integer and // floating-point ones might be affected. if (!IsIndirect && TyAlign.getQuantity() > 8) { int Align = TyAlign.getQuantity(); OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); OnStackPtr = CGF.Builder.CreateAdd( OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), "align_stack"); OnStackPtr = CGF.Builder.CreateAnd( OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), "align_stack"); OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); } Address OnStackAddr(OnStackPtr, std::max(CharUnits::fromQuantity(8), TyAlign)); // All stack slots are multiples of 8 bytes. CharUnits StackSlotSize = CharUnits::fromQuantity(8); CharUnits StackSize; if (IsIndirect) StackSize = StackSlotSize; else StackSize = TySize.alignTo(StackSlotSize); llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); // Write the new value of __stack for the next call to va_arg CGF.Builder.CreateStore(NewStack, stack_p); if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && TySize < StackSlotSize) { CharUnits Offset = StackSlotSize - TySize; OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); } OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); CGF.EmitBranch(ContBlock); //======================================= // Tidy up //======================================= CGF.EmitBlock(ContBlock); Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr, OnStackBlock, "vaargs.addr"); if (IsIndirect) return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), TyAlign); return ResAddr; } Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // The backend's lowering doesn't support va_arg for aggregates or // illegal vector types. Lower VAArg here for these cases and use // the LLVM va_arg instruction for everything else. if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); // Empty records are ignored for parameter passing purposes. if (isEmptyRecord(getContext(), Ty, true)) { Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); return Addr; } // The size of the actual thing passed, which might end up just // being a pointer for indirect types. auto TyInfo = getContext().getTypeInfoInChars(Ty); // Arguments bigger than 16 bytes which aren't homogeneous // aggregates should be passed indirectly. bool IsIndirect = false; if (TyInfo.Width.getQuantity() > 16) { const Type *Base = nullptr; uint64_t Members = 0; IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); } return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, SlotSize, /*AllowHigherAlign*/ true); } Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { bool IsIndirect = false; // Composites larger than 16 bytes are passed by reference. if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) IsIndirect = true; return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, CGF.getContext().getTypeInfoInChars(Ty), CharUnits::fromQuantity(8), /*allowHigherAlign*/ false); } //===----------------------------------------------------------------------===// // ARM ABI Implementation //===----------------------------------------------------------------------===// namespace { class ARMABIInfo : public SwiftABIInfo { public: enum ABIKind { APCS = 0, AAPCS = 1, AAPCS_VFP = 2, AAPCS16_VFP = 3, }; private: ABIKind Kind; bool IsFloatABISoftFP; public: ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : SwiftABIInfo(CGT), Kind(_Kind) { setCCs(); IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || CGT.getCodeGenOpts().FloatABI == ""; // default } bool isEABI() const { switch (getTarget().getTriple().getEnvironment()) { case llvm::Triple::Android: case llvm::Triple::EABI: case llvm::Triple::EABIHF: case llvm::Triple::GNUEABI: case llvm::Triple::GNUEABIHF: case llvm::Triple::MuslEABI: case llvm::Triple::MuslEABIHF: return true; default: return false; } } bool isEABIHF() const { switch (getTarget().getTriple().getEnvironment()) { case llvm::Triple::EABIHF: case llvm::Triple::GNUEABIHF: case llvm::Triple::MuslEABIHF: return true; default: return false; } } ABIKind getABIKind() const { return Kind; } bool allowBFloatArgsAndRet() const override { return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); } private: ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, unsigned functionCallConv) const; ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, unsigned functionCallConv) const; ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, uint64_t Members) const; ABIArgInfo coerceIllegalVector(QualType Ty) const; bool isIllegalVectorType(QualType Ty) const; bool containsAnyFP16Vectors(QualType Ty) const; bool isHomogeneousAggregateBaseType(QualType Ty) const override; bool isHomogeneousAggregateSmallEnough(const Type *Ty, uint64_t Members) const override; bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; llvm::CallingConv::ID getLLVMDefaultCC() const; llvm::CallingConv::ID getABIDefaultCC() const; void setCCs(); bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { return occupiesMoreThan(CGT, scalars, /*total*/ 4); } bool isSwiftErrorInRegister() const override { return true; } bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, unsigned elts) const override; }; class ARMTargetCodeGenInfo : public TargetCodeGenInfo { public: ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) : TargetCodeGenInfo(std::make_unique(CGT, K)) {} const ARMABIInfo &getABIInfo() const { return static_cast(TargetCodeGenInfo::getABIInfo()); } int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 13; } StringRef getARCRetainAutoreleasedReturnValueMarker() const override { return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-15 are the 16 integer registers. AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); return false; } unsigned getSizeOfUnwindException() const override { if (getABIInfo().isEABI()) return 88; return TargetCodeGenInfo::getSizeOfUnwindException(); } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { if (GV->isDeclaration()) return; const FunctionDecl *FD = dyn_cast_or_null(D); if (!FD) return; auto *Fn = cast(GV); if (const auto *TA = FD->getAttr()) { ParsedTargetAttr Attr = TA->parse(); if (!Attr.BranchProtection.empty()) { TargetInfo::BranchProtectionInfo BPI; StringRef DiagMsg; StringRef Arch = Attr.Architecture.empty() ? CGM.getTarget().getTargetOpts().CPU : Attr.Architecture; if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, Arch, BPI, DiagMsg)) { CGM.getDiags().Report( D->getLocation(), diag::warn_target_unsupported_branch_protection_attribute) << Arch; } else { static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; assert(static_cast(BPI.SignReturnAddr) <= 2 && "Unexpected SignReturnAddressScopeKind"); Fn->addFnAttr( "sign-return-address", SignReturnAddrStr[static_cast(BPI.SignReturnAddr)]); Fn->addFnAttr("branch-target-enforcement", BPI.BranchTargetEnforcement ? "true" : "false"); } } else if (CGM.getLangOpts().BranchTargetEnforcement || CGM.getLangOpts().hasSignReturnAddress()) { // If the Branch Protection attribute is missing, validate the target // Architecture attribute against Branch Protection command line // settings. if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture)) CGM.getDiags().Report( D->getLocation(), diag::warn_target_unsupported_branch_protection_attribute) << Attr.Architecture; } } const ARMInterruptAttr *Attr = FD->getAttr(); if (!Attr) return; const char *Kind; switch (Attr->getInterrupt()) { case ARMInterruptAttr::Generic: Kind = ""; break; case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; case ARMInterruptAttr::SWI: Kind = "SWI"; break; case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; } Fn->addFnAttr("interrupt", Kind); ARMABIInfo::ABIKind ABI = cast(getABIInfo()).getABIKind(); if (ABI == ARMABIInfo::APCS) return; // AAPCS guarantees that sp will be 8-byte aligned on any public interface, // however this is not necessarily true on taking any interrupt. Instruct // the backend to perform a realignment as part of the function prologue. llvm::AttrBuilder B(Fn->getContext()); B.addStackAlignmentAttr(8); Fn->addFnAttrs(B); } }; class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { public: WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) : ARMTargetCodeGenInfo(CGT, K) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; void WindowsARMTargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); if (GV->isDeclaration()) return; addStackProbeTargetAttributes(D, GV, CGM); } } void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!::classifyReturnType(getCXXABI(), FI, *this)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), FI.getCallingConvention()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type, FI.isVariadic(), FI.getCallingConvention()); // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; llvm::CallingConv::ID cc = getRuntimeCC(); if (cc != llvm::CallingConv::C) FI.setEffectiveCallingConvention(cc); } /// Return the default calling convention that LLVM will use. llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { // The default calling convention that LLVM will infer. if (isEABIHF() || getTarget().getTriple().isWatchABI()) return llvm::CallingConv::ARM_AAPCS_VFP; else if (isEABI()) return llvm::CallingConv::ARM_AAPCS; else return llvm::CallingConv::ARM_APCS; } /// Return the calling convention that our ABI would like us to use /// as the C calling convention. llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { switch (getABIKind()) { case APCS: return llvm::CallingConv::ARM_APCS; case AAPCS: return llvm::CallingConv::ARM_AAPCS; case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; } llvm_unreachable("bad ABI kind"); } void ARMABIInfo::setCCs() { assert(getRuntimeCC() == llvm::CallingConv::C); // Don't muddy up the IR with a ton of explicit annotations if // they'd just match what LLVM will infer from the triple. llvm::CallingConv::ID abiCC = getABIDefaultCC(); if (abiCC != getLLVMDefaultCC()) RuntimeCC = abiCC; } ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { uint64_t Size = getContext().getTypeSize(Ty); if (Size <= 32) { llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); return ABIArgInfo::getDirect(ResType); } if (Size == 64 || Size == 128) { auto *ResType = llvm::FixedVectorType::get( llvm::Type::getInt32Ty(getVMContext()), Size / 32); return ABIArgInfo::getDirect(ResType); } return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, const Type *Base, uint64_t Members) const { assert(Base && "Base class should be set for homogeneous aggregate"); // Base can be a floating-point or a vector. if (const VectorType *VT = Base->getAs()) { // FP16 vectors should be converted to integer vectors if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { uint64_t Size = getContext().getTypeSize(VT); auto *NewVecTy = llvm::FixedVectorType::get( llvm::Type::getInt32Ty(getVMContext()), Size / 32); llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); return ABIArgInfo::getDirect(Ty, 0, nullptr, false); } } unsigned Align = 0; if (getABIKind() == ARMABIInfo::AAPCS || getABIKind() == ARMABIInfo::AAPCS_VFP) { // For alignment adjusted HFAs, cap the argument alignment to 8, leave it // default otherwise. Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; } return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); } ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, unsigned functionCallConv) const { // 6.1.2.1 The following argument types are VFP CPRCs: // A single-precision floating-point type (including promoted // half-precision types); A double-precision floating-point type; // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate // with a Base Type of a single- or double-precision floating-point type, // 64-bit containerized vectors or 128-bit containerized vectors with one // to four Elements. // Variadic functions should always marshal to the base standard. bool IsAAPCS_VFP = !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); Ty = useFirstFieldIfTransparentUnion(Ty); // Handle illegal vector types here. if (isIllegalVectorType(Ty)) return coerceIllegalVector(Ty); if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) { Ty = EnumTy->getDecl()->getIntegerType(); } if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() > 64) return getNaturalAlignIndirect(Ty, /*ByVal=*/true); return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); } // Ignore empty records. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); if (IsAAPCS_VFP) { // Homogeneous Aggregates need to be expanded when we can fit the aggregate // into VFP registers. const Type *Base = nullptr; uint64_t Members = 0; if (isHomogeneousAggregate(Ty, Base, Members)) return classifyHomogeneousAggregate(Ty, Base, Members); } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { // WatchOS does have homogeneous aggregates. Note that we intentionally use // this convention even for a variadic function: the backend will use GPRs // if needed. const Type *Base = nullptr; uint64_t Members = 0; if (isHomogeneousAggregate(Ty, Base, Members)) { assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); llvm::Type *Ty = llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); return ABIArgInfo::getDirect(Ty, 0, nullptr, false); } } if (getABIKind() == ARMABIInfo::AAPCS16_VFP && getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're // bigger than 128-bits, they get placed in space allocated by the caller, // and a pointer is passed. return ABIArgInfo::getIndirect( CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); } // Support byval for ARM. // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at // most 8-byte. We realign the indirect argument if type alignment is bigger // than ABI alignment. uint64_t ABIAlign = 4; uint64_t TyAlign; if (getABIKind() == ARMABIInfo::AAPCS_VFP || getABIKind() == ARMABIInfo::AAPCS) { TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); } else { TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); } if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), /*ByVal=*/true, /*Realign=*/TyAlign > ABIAlign); } // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of // same size and alignment. if (getTarget().isRenderScriptTarget()) { return coerceToIntArray(Ty, getContext(), getVMContext()); } // Otherwise, pass by coercing to a structure of the appropriate size. llvm::Type* ElemTy; unsigned SizeRegs; // FIXME: Try to match the types of the arguments more accurately where // we can. if (TyAlign <= 4) { ElemTy = llvm::Type::getInt32Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; } else { ElemTy = llvm::Type::getInt64Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; } return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); } static bool isIntegerLikeType(QualType Ty, ASTContext &Context, llvm::LLVMContext &VMContext) { // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure // is called integer-like if its size is less than or equal to one word, and // the offset of each of its addressable sub-fields is zero. uint64_t Size = Context.getTypeSize(Ty); // Check that the type fits in a word. if (Size > 32) return false; // FIXME: Handle vector types! if (Ty->isVectorType()) return false; // Float types are never treated as "integer like". if (Ty->isRealFloatingType()) return false; // If this is a builtin or pointer type then it is ok. if (Ty->getAs() || Ty->isPointerType()) return true; // Small complex integer types are "integer like". if (const ComplexType *CT = Ty->getAs()) return isIntegerLikeType(CT->getElementType(), Context, VMContext); // Single element and zero sized arrays should be allowed, by the definition // above, but they are not. // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // Ignore records with flexible arrays. const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // Check that all sub-fields are at offset 0, and are themselves "integer // like". const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); bool HadField = false; unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { const FieldDecl *FD = *i; // Bit-fields are not addressable, we only need to verify they are "integer // like". We still have to disallow a subsequent non-bitfield, for example: // struct { int : 0; int x } // is non-integer like according to gcc. if (FD->isBitField()) { if (!RD->isUnion()) HadField = true; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; continue; } // Check if this field is at offset 0. if (Layout.getFieldOffset(idx) != 0) return false; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; // Only allow at most one field in a structure. This doesn't match the // wording above, but follows gcc in situations with a field following an // empty structure. if (!RD->isUnion()) { if (HadField) return false; HadField = true; } } return true; } ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, unsigned functionCallConv) const { // Variadic functions should always marshal to the base standard. bool IsAAPCS_VFP = !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (const VectorType *VT = RetTy->getAs()) { // Large vector types should be returned via memory. if (getContext().getTypeSize(RetTy) > 128) return getNaturalAlignIndirect(RetTy); // TODO: FP16/BF16 vectors should be converted to integer vectors // This check is similar to isIllegalVectorType - refactor? if ((!getTarget().hasLegalHalfType() && (VT->getElementType()->isFloat16Type() || VT->getElementType()->isHalfType())) || (IsFloatABISoftFP && VT->getElementType()->isBFloat16Type())) return coerceIllegalVector(RetTy); } if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (const auto *EIT = RetTy->getAs()) if (EIT->getNumBits() > 64) return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect(); } // Are we following APCS? if (getABIKind() == APCS) { if (isEmptyRecord(getContext(), RetTy, false)) return ABIArgInfo::getIgnore(); // Complex types are all returned as packed integers. // // FIXME: Consider using 2 x vector types if the back end handles them // correctly. if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(llvm::IntegerType::get( getVMContext(), getContext().getTypeSize(RetTy))); // Integer like structures are returned in r0. if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { // Return in the smallest viable integer type. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } // Otherwise return in memory. return getNaturalAlignIndirect(RetTy); } // Otherwise this is an AAPCS variant. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Check for homogeneous aggregates with AAPCS-VFP. if (IsAAPCS_VFP) { const Type *Base = nullptr; uint64_t Members = 0; if (isHomogeneousAggregate(RetTy, Base, Members)) return classifyHomogeneousAggregate(RetTy, Base, Members); } // Aggregates <= 4 bytes are returned in r0; other aggregates // are returned indirectly. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 32) { // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of // same size and alignment. if (getTarget().isRenderScriptTarget()) { return coerceToIntArray(RetTy, getContext(), getVMContext()); } if (getDataLayout().isBigEndian()) // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); // Return in the smallest viable integer type. if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); llvm::Type *CoerceTy = llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); return ABIArgInfo::getDirect(CoerceTy); } return getNaturalAlignIndirect(RetTy); } /// isIllegalVector - check whether Ty is an illegal vector type. bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { if (const VectorType *VT = Ty->getAs ()) { // On targets that don't support half, fp16 or bfloat, they are expanded // into float, and we don't want the ABI to depend on whether or not they // are supported in hardware. Thus return false to coerce vectors of these // types into integer vectors. // We do not depend on hasLegalHalfType for bfloat as it is a // separate IR type. if ((!getTarget().hasLegalHalfType() && (VT->getElementType()->isFloat16Type() || VT->getElementType()->isHalfType())) || (IsFloatABISoftFP && VT->getElementType()->isBFloat16Type())) return true; if (isAndroid()) { // Android shipped using Clang 3.1, which supported a slightly different // vector ABI. The primary differences were that 3-element vector types // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path // accepts that legacy behavior for Android only. // Check whether VT is legal. unsigned NumElements = VT->getNumElements(); // NumElements should be power of 2 or equal to 3. if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) return true; } else { // Check whether VT is legal. unsigned NumElements = VT->getNumElements(); uint64_t Size = getContext().getTypeSize(VT); // NumElements should be power of 2. if (!llvm::isPowerOf2_32(NumElements)) return true; // Size should be greater than 32 bits. return Size <= 32; } } return false; } /// Return true if a type contains any 16-bit floating point vectors bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { uint64_t NElements = AT->getSize().getZExtValue(); if (NElements == 0) return false; return containsAnyFP16Vectors(AT->getElementType()); } else if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { return containsAnyFP16Vectors(B.getType()); })) return true; if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { return FD && containsAnyFP16Vectors(FD->getType()); })) return true; return false; } else { if (const VectorType *VT = Ty->getAs()) return (VT->getElementType()->isFloat16Type() || VT->getElementType()->isBFloat16Type() || VT->getElementType()->isHalfType()); return false; } } bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, llvm::Type *eltTy, unsigned numElts) const { if (!llvm::isPowerOf2_32(numElts)) return false; unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); if (size > 64) return false; if (vectorSize.getQuantity() != 8 && (vectorSize.getQuantity() != 16 || numElts == 1)) return false; return true; } bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { // Homogeneous aggregates for AAPCS-VFP must have base types of float, // double, or 64-bit or 128-bit vectors. if (const BuiltinType *BT = Ty->getAs()) { if (BT->getKind() == BuiltinType::Float || BT->getKind() == BuiltinType::Double || BT->getKind() == BuiltinType::LongDouble) return true; } else if (const VectorType *VT = Ty->getAs()) { unsigned VecSize = getContext().getTypeSize(VT); if (VecSize == 64 || VecSize == 128) return true; } return false; } bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, uint64_t Members) const { return Members <= 4; } bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const { // Give precedence to user-specified calling conventions. if (callConvention != llvm::CallingConv::C) return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); else return (getABIKind() == AAPCS_VFP) || (acceptHalf && (getABIKind() == AAPCS16_VFP)); } Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { CharUnits SlotSize = CharUnits::fromQuantity(4); // Empty records are ignored for parameter passing purposes. if (isEmptyRecord(getContext(), Ty, true)) { Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); return Addr; } CharUnits TySize = getContext().getTypeSizeInChars(Ty); CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); // Use indirect if size of the illegal vector is bigger than 16 bytes. bool IsIndirect = false; const Type *Base = nullptr; uint64_t Members = 0; if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { IsIndirect = true; // ARMv7k passes structs bigger than 16 bytes indirectly, in space // allocated by the caller. } else if (TySize > CharUnits::fromQuantity(16) && getABIKind() == ARMABIInfo::AAPCS16_VFP && !isHomogeneousAggregate(Ty, Base, Members)) { IsIndirect = true; // Otherwise, bound the type's ABI alignment. // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. // Our callers should be prepared to handle an under-aligned address. } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || getABIKind() == ARMABIInfo::AAPCS) { TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { // ARMv7k allows type alignment up to 16 bytes. TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); } else { TyAlignForABI = CharUnits::fromQuantity(4); } TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, SlotSize, /*AllowHigherAlign*/ true); } //===----------------------------------------------------------------------===// // NVPTX ABI Implementation //===----------------------------------------------------------------------===// namespace { class NVPTXTargetCodeGenInfo; class NVPTXABIInfo : public ABIInfo { NVPTXTargetCodeGenInfo &CGInfo; public: NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) : ABIInfo(CGT), CGInfo(Info) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool isUnsupportedType(QualType T) const; ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; }; class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { public: NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT, *this)) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; bool shouldEmitStaticExternCAliases() const override; llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { // On the device side, surface reference is represented as an object handle // in 64-bit integer. return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); } llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { // On the device side, texture reference is represented as an object handle // in 64-bit integer. return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); } bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, LValue Src) const override { emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); return true; } bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, LValue Src) const override { emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); return true; } private: // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the // resulting MDNode to the nvvm.annotations MDNode. static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, int Operand); static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, LValue Src) { llvm::Value *Handle = nullptr; llvm::Constant *C = llvm::dyn_cast(Src.getAddress(CGF).getPointer()); // Lookup `addrspacecast` through the constant pointer if any. if (auto *ASC = llvm::dyn_cast_or_null(C)) C = llvm::cast(ASC->getPointerOperand()); if (auto *GV = llvm::dyn_cast_or_null(C)) { // Load the handle from the specific global variable using // `nvvm.texsurf.handle.internal` intrinsic. Handle = CGF.EmitRuntimeCall( CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, {GV->getType()}), {GV}, "texsurf_handle"); } else Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); CGF.EmitStoreOfScalar(Handle, Dst); } }; /// Checks if the type is unsupported directly by the current target. bool NVPTXABIInfo::isUnsupportedType(QualType T) const { ASTContext &Context = getContext(); if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) return true; if (!Context.getTargetInfo().hasFloat128Type() && (T->isFloat128Type() || (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) return true; if (const auto *EIT = T->getAs()) return EIT->getNumBits() > (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && Context.getTypeSize(T) > 64U) return true; if (const auto *AT = T->getAsArrayTypeUnsafe()) return isUnsupportedType(AT->getElementType()); const auto *RT = T->getAs(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (const CXXBaseSpecifier &I : CXXRD->bases()) if (isUnsupportedType(I.getType())) return true; for (const FieldDecl *I : RD->fields()) if (isUnsupportedType(I->getType())) return true; return false; } /// Coerce the given type into an array with maximum allowed size of elements. ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const { // Alignment and Size are measured in bits. const uint64_t Size = getContext().getTypeSize(Ty); const uint64_t Alignment = getContext().getTypeAlign(Ty); const unsigned Div = std::min(MaxSize, Alignment); llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); const uint64_t NumElements = (Size + Div - 1) / Div; return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); } ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (getContext().getLangOpts().OpenMP && getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) return coerceToIntArrayWithLimit(RetTy, 64); // note: this is different from default ABI if (!RetTy->isScalarType()) return ABIArgInfo::getDirect(); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Return aggregates type as indirect by value if (isAggregateTypeForABI(Ty)) { // Under CUDA device compilation, tex/surf builtin types are replaced with // object types and passed directly. if (getContext().getLangOpts().CUDAIsDevice) { if (Ty->isCUDADeviceBuiltinSurfaceType()) return ABIArgInfo::getDirect( CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); if (Ty->isCUDADeviceBuiltinTextureType()) return ABIArgInfo::getDirect( CGInfo.getCUDADeviceBuiltinTextureDeviceType()); } return getNaturalAlignIndirect(Ty, /* byval */ true); } if (const auto *EIT = Ty->getAs()) { if ((EIT->getNumBits() > 128) || (!getContext().getTargetInfo().hasInt128Type() && EIT->getNumBits() > 64)) return getNaturalAlignIndirect(Ty, /* byval */ true); } return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; FI.setEffectiveCallingConvention(getRuntimeCC()); } Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { llvm_unreachable("NVPTX does not support varargs"); } void NVPTXTargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (GV->isDeclaration()) return; const VarDecl *VD = dyn_cast_or_null(D); if (VD) { if (M.getLangOpts().CUDA) { if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) addNVVMMetadata(GV, "surface", 1); else if (VD->getType()->isCUDADeviceBuiltinTextureType()) addNVVMMetadata(GV, "texture", 1); return; } } const FunctionDecl *FD = dyn_cast_or_null(D); if (!FD) return; llvm::Function *F = cast(GV); // Perform special handling in OpenCL mode if (M.getLangOpts().OpenCL) { // Use OpenCL function attributes to check for kernel functions // By default, all functions are device functions if (FD->hasAttr()) { // OpenCL __kernel functions get kernel metadata // Create !{, metadata !"kernel", i32 1} node addNVVMMetadata(F, "kernel", 1); // And kernel functions are not subject to inlining F->addFnAttr(llvm::Attribute::NoInline); } } // Perform special handling in CUDA mode. if (M.getLangOpts().CUDA) { // CUDA __global__ functions get a kernel metadata entry. Since // __global__ functions cannot be called from the device, we do not // need to set the noinline attribute. if (FD->hasAttr()) { // Create !{, metadata !"kernel", i32 1} node addNVVMMetadata(F, "kernel", 1); } if (CUDALaunchBoundsAttr *Attr = FD->getAttr()) { // Create !{, metadata !"maxntidx", i32 } node llvm::APSInt MaxThreads(32); MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); if (MaxThreads > 0) addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was // not specified in __launch_bounds__ or if the user specified a 0 value, // we don't have to add a PTX directive. if (Attr->getMinBlocks()) { llvm::APSInt MinBlocks(32); MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); if (MinBlocks > 0) // Create !{, metadata !"minctasm", i32 } node addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); } } } } void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, int Operand) { llvm::Module *M = GV->getParent(); llvm::LLVMContext &Ctx = M->getContext(); // Get "nvvm.annotations" metadata node llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); llvm::Metadata *MDVals[] = { llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), llvm::ConstantAsMetadata::get( llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; // Append metadata to nvvm.annotations MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); } bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { return false; } } //===----------------------------------------------------------------------===// // SystemZ ABI Implementation //===----------------------------------------------------------------------===// namespace { class SystemZABIInfo : public SwiftABIInfo { bool HasVector; bool IsSoftFloatABI; public: SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} bool isPromotableIntegerTypeForABI(QualType Ty) const; bool isCompoundType(QualType Ty) const; bool isVectorArgumentType(QualType Ty) const; bool isFPArgumentType(QualType Ty) const; QualType GetSingleElementType(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType ArgTy) const; void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool shouldPassIndirectlyForSwift(ArrayRef scalars, bool asReturnValue) const override { return occupiesMoreThan(CGT, scalars, /*total*/ 4); } bool isSwiftErrorInRegister() const override { return false; } }; class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { public: SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) : TargetCodeGenInfo( std::make_unique(CGT, HasVector, SoftFloatABI)) {} llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, CGBuilderTy &Builder, CodeGenModule &CGM) const override { assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); // Only use TDC in constrained FP mode. if (!Builder.getIsFPConstrained()) return nullptr; llvm::Type *Ty = V->getType(); if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { llvm::Module &M = CGM.getModule(); auto &Ctx = M.getContext(); llvm::Function *TDCFunc = llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); unsigned TDCBits = 0; switch (BuiltinID) { case Builtin::BI__builtin_isnan: TDCBits = 0xf; break; case Builtin::BIfinite: case Builtin::BI__finite: case Builtin::BIfinitef: case Builtin::BI__finitef: case Builtin::BIfinitel: case Builtin::BI__finitel: case Builtin::BI__builtin_isfinite: TDCBits = 0xfc0; break; case Builtin::BI__builtin_isinf: TDCBits = 0x30; break; default: break; } if (TDCBits) return Builder.CreateCall( TDCFunc, {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); } return nullptr; } }; } bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Promotable integer types are required to be promoted by the ABI. if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) return true; if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() < 64) return true; // 32-bit values must also be promoted. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Int: case BuiltinType::UInt: return true; default: return false; } return false; } bool SystemZABIInfo::isCompoundType(QualType Ty) const { return (Ty->isAnyComplexType() || Ty->isVectorType() || isAggregateTypeForABI(Ty)); } bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { return (HasVector && Ty->isVectorType() && getContext().getTypeSize(Ty) <= 128); } bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { if (IsSoftFloatABI) return false; if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Float: case BuiltinType::Double: return true; default: return false; } return false; } QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { const RecordType *RT = Ty->getAs(); if (RT && RT->isStructureOrClassType()) { const RecordDecl *RD = RT->getDecl(); QualType Found; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (const auto &I : CXXRD->bases()) { QualType Base = I.getType(); // Empty bases don't affect things either way. if (isEmptyRecord(getContext(), Base, true)) continue; if (!Found.isNull()) return Ty; Found = GetSingleElementType(Base); } // Check the fields. for (const auto *FD : RD->fields()) { // For compatibility with GCC, ignore empty bitfields in C++ mode. // Unlike isSingleElementStruct(), empty structure and array fields // do count. So do anonymous bitfields that aren't zero-sized. if (getContext().getLangOpts().CPlusPlus && FD->isZeroLengthBitField(getContext())) continue; // Like isSingleElementStruct(), ignore C++20 empty data members. if (FD->hasAttr() && isEmptyRecord(getContext(), FD->getType(), true)) continue; // Unlike isSingleElementStruct(), arrays do not count. // Nested structures still do though. if (!Found.isNull()) return Ty; Found = GetSingleElementType(FD->getType()); } // Unlike isSingleElementStruct(), trailing padding is allowed. // An 8-byte aligned struct s { float f; } is passed as a double. if (!Found.isNull()) return Found; } return Ty; } Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i64 __gpr; // i64 __fpr; // i8 *__overflow_arg_area; // i8 *__reg_save_area; // }; // Every non-vector argument occupies 8 bytes and is passed by preference // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are // always passed on the stack. Ty = getContext().getCanonicalType(Ty); auto TyInfo = getContext().getTypeInfoInChars(Ty); llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); llvm::Type *DirectTy = ArgTy; ABIArgInfo AI = classifyArgumentType(Ty); bool IsIndirect = AI.isIndirect(); bool InFPRs = false; bool IsVector = false; CharUnits UnpaddedSize; CharUnits DirectAlign; if (IsIndirect) { DirectTy = llvm::PointerType::getUnqual(DirectTy); UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); } else { if (AI.getCoerceToType()) ArgTy = AI.getCoerceToType(); InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); IsVector = ArgTy->isVectorTy(); UnpaddedSize = TyInfo.Width; DirectAlign = TyInfo.Align; } CharUnits PaddedSize = CharUnits::fromQuantity(8); if (IsVector && UnpaddedSize > PaddedSize) PaddedSize = CharUnits::fromQuantity(16); assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); CharUnits Padding = (PaddedSize - UnpaddedSize); llvm::Type *IndexTy = CGF.Int64Ty; llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); if (IsVector) { // Work out the address of a vector argument on the stack. // Vector arguments are always passed in the high bits of a // single (8 byte) or double (16 byte) stack slot. Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); Address OverflowArgArea = Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), TyInfo.Align); Address MemAddr = CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); // Update overflow_arg_area_ptr pointer llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), PaddedSizeV, "overflow_arg_area"); CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); return MemAddr; } assert(PaddedSize.getQuantity() == 8); unsigned MaxRegs, RegCountField, RegSaveIndex; CharUnits RegPadding; if (InFPRs) { MaxRegs = 4; // Maximum of 4 FPR arguments RegCountField = 1; // __fpr RegSaveIndex = 16; // save offset for f0 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR } else { MaxRegs = 5; // Maximum of 5 GPR arguments RegCountField = 0; // __gpr RegSaveIndex = 2; // save offset for r2 RegPadding = Padding; // values are passed in the low bits of a GPR } Address RegCountPtr = CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, "fits_in_regs"); llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // Work out the address of an argument register. llvm::Value *ScaledRegCount = CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); llvm::Value *RegBase = llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() + RegPadding.getQuantity()); llvm::Value *RegOffset = CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); Address RegSaveAreaPtr = CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"), PaddedSize); Address RegAddr = CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); // Update the register count llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); llvm::Value *NewRegCount = CGF.Builder.CreateAdd(RegCount, One, "reg_count"); CGF.Builder.CreateStore(NewRegCount, RegCountPtr); CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); // Work out the address of a stack argument. Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); Address OverflowArgArea = Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), PaddedSize); Address RawMemAddr = CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); Address MemAddr = CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); // Update overflow_arg_area_ptr pointer llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), PaddedSizeV, "overflow_arg_area"); CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); CGF.EmitBranch(ContBlock); // Return the appropriate result. CGF.EmitBlock(ContBlock); Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, "va_arg.addr"); if (IsIndirect) ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), TyInfo.Align); return ResAddr; } ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isVectorArgumentType(RetTy)) return ABIArgInfo::getDirect(); if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) return getNaturalAlignIndirect(RetTy); return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { // Handle the generic C++ ABI. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); // Integers and enums are extended to full register width. if (isPromotableIntegerTypeForABI(Ty)) return ABIArgInfo::getExtend(Ty); // Handle vector types and vector-like structure types. Note that // as opposed to float-like structure types, we do not allow any // padding for vector-like structures, so verify the sizes match. uint64_t Size = getContext().getTypeSize(Ty); QualType SingleElementTy = GetSingleElementType(Ty); if (isVectorArgumentType(SingleElementTy) && getContext().getTypeSize(SingleElementTy) == Size) return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. if (Size != 8 && Size != 16 && Size != 32 && Size != 64) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); // Handle small structures. if (const RecordType *RT = Ty->getAs()) { // Structures with flexible arrays have variable length, so really // fail the size test above. const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); // The structure is passed as an unextended integer, a float, or a double. llvm::Type *PassTy; if (isFPArgumentType(SingleElementTy)) { assert(Size == 32 || Size == 64); if (Size == 32) PassTy = llvm::Type::getFloatTy(getVMContext()); else PassTy = llvm::Type::getDoubleTy(getVMContext()); } else PassTy = llvm::IntegerType::get(getVMContext(), Size); return ABIArgInfo::getDirect(PassTy); } // Non-structure compounds are passed indirectly. if (isCompoundType(Ty)) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); return ABIArgInfo::getDirect(nullptr); } //===----------------------------------------------------------------------===// // MSP430 ABI Implementation //===----------------------------------------------------------------------===// namespace { class MSP430ABIInfo : public DefaultABIInfo { static ABIArgInfo complexArgInfo() { ABIArgInfo Info = ABIArgInfo::getDirect(); Info.setCanBeFlattened(false); return Info; } public: MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const { if (RetTy->isAnyComplexType()) return complexArgInfo(); return DefaultABIInfo::classifyReturnType(RetTy); } ABIArgInfo classifyArgumentType(QualType RetTy) const { if (RetTy->isAnyComplexType()) return complexArgInfo(); return DefaultABIInfo::classifyArgumentType(RetTy); } // Just copy the original implementations because // DefaultABIInfo::classify{Return,Argument}Type() are not virtual void computeInfo(CGFunctionInfo &FI) const override { if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type); } Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override { return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); } }; class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { public: MSP430TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; }; } void MSP430TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (GV->isDeclaration()) return; if (const FunctionDecl *FD = dyn_cast_or_null(D)) { const auto *InterruptAttr = FD->getAttr(); if (!InterruptAttr) return; // Handle 'interrupt' attribute: llvm::Function *F = cast(GV); // Step 1: Set ISR calling convention. F->setCallingConv(llvm::CallingConv::MSP430_INTR); // Step 2: Add attributes goodness. F->addFnAttr(llvm::Attribute::NoInline); F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); } } //===----------------------------------------------------------------------===// // MIPS ABI Implementation. This works for both little-endian and // big-endian variants. //===----------------------------------------------------------------------===// namespace { class MipsABIInfo : public ABIInfo { bool IsO32; unsigned MinABIStackAlignInBytes, StackAlignInBytes; void CoerceToIntArgs(uint64_t TySize, SmallVectorImpl &ArgList) const; llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; public: MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), StackAlignInBytes(IsO32 ? 8 : 16) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; ABIArgInfo extendType(QualType Ty) const; }; class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { unsigned SizeOfUnwindException; public: MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) : TargetCodeGenInfo(std::make_unique(CGT, IsO32)), SizeOfUnwindException(IsO32 ? 24 : 32) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 29; } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { const FunctionDecl *FD = dyn_cast_or_null(D); if (!FD) return; llvm::Function *Fn = cast(GV); if (FD->hasAttr()) Fn->addFnAttr("long-call"); else if (FD->hasAttr()) Fn->addFnAttr("short-call"); // Other attributes do not have a meaning for declarations. if (GV->isDeclaration()) return; if (FD->hasAttr()) { Fn->addFnAttr("mips16"); } else if (FD->hasAttr()) { Fn->addFnAttr("nomips16"); } if (FD->hasAttr()) Fn->addFnAttr("micromips"); else if (FD->hasAttr()) Fn->addFnAttr("nomicromips"); const MipsInterruptAttr *Attr = FD->getAttr(); if (!Attr) return; const char *Kind; switch (Attr->getInterrupt()) { case MipsInterruptAttr::eic: Kind = "eic"; break; case MipsInterruptAttr::sw0: Kind = "sw0"; break; case MipsInterruptAttr::sw1: Kind = "sw1"; break; case MipsInterruptAttr::hw0: Kind = "hw0"; break; case MipsInterruptAttr::hw1: Kind = "hw1"; break; case MipsInterruptAttr::hw2: Kind = "hw2"; break; case MipsInterruptAttr::hw3: Kind = "hw3"; break; case MipsInterruptAttr::hw4: Kind = "hw4"; break; case MipsInterruptAttr::hw5: Kind = "hw5"; break; } Fn->addFnAttr("interrupt", Kind); } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; unsigned getSizeOfUnwindException() const override { return SizeOfUnwindException; } }; } void MipsABIInfo::CoerceToIntArgs( uint64_t TySize, SmallVectorImpl &ArgList) const { llvm::IntegerType *IntTy = llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); // Add (TySize / MinABIStackAlignInBytes) args of IntTy. for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) ArgList.push_back(IntTy); // If necessary, add one more integer type to ArgList. unsigned R = TySize % (MinABIStackAlignInBytes * 8); if (R) ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); } // In N32/64, an aligned double precision floating point field is passed in // a register. llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { SmallVector ArgList, IntArgList; if (IsO32) { CoerceToIntArgs(TySize, ArgList); return llvm::StructType::get(getVMContext(), ArgList); } if (Ty->isComplexType()) return CGT.ConvertType(Ty); const RecordType *RT = Ty->getAs(); // Unions/vectors are passed in integer registers. if (!RT || !RT->isStructureOrClassType()) { CoerceToIntArgs(TySize, ArgList); return llvm::StructType::get(getVMContext(), ArgList); } const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); assert(!(TySize % 8) && "Size of structure must be multiple of 8."); uint64_t LastOffset = 0; unsigned idx = 0; llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); // Iterate over fields in the struct/class and check if there are any aligned // double fields. for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { const QualType Ty = i->getType(); const BuiltinType *BT = Ty->getAs(); if (!BT || BT->getKind() != BuiltinType::Double) continue; uint64_t Offset = Layout.getFieldOffset(idx); if (Offset % 64) // Ignore doubles that are not aligned. continue; // Add ((Offset - LastOffset) / 64) args of type i64. for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) ArgList.push_back(I64); // Add double type. ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); LastOffset = Offset + 64; } CoerceToIntArgs(TySize - LastOffset, IntArgList); ArgList.append(IntArgList.begin(), IntArgList.end()); return llvm::StructType::get(getVMContext(), ArgList); } llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, uint64_t Offset) const { if (OrigOffset + MinABIStackAlignInBytes > Offset) return nullptr; return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); } ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { Ty = useFirstFieldIfTransparentUnion(Ty); uint64_t OrigOffset = Offset; uint64_t TySize = getContext().getTypeSize(Ty); uint64_t Align = getContext().getTypeAlign(Ty) / 8; Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), (uint64_t)StackAlignInBytes); unsigned CurrOffset = llvm::alignTo(Offset, Align); Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { // Ignore empty aggregates. if (TySize == 0) return ABIArgInfo::getIgnore(); if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { Offset = OrigOffset + MinABIStackAlignInBytes; return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); } // If we have reached here, aggregates are passed directly by coercing to // another structure type. Padding is inserted if the offset of the // aggregate is unaligned. ABIArgInfo ArgInfo = ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, getPaddingType(OrigOffset, CurrOffset)); ArgInfo.setInReg(true); return ArgInfo; } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Make sure we pass indirectly things that are too large. if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() > 128 || (EIT->getNumBits() > 64 && !getContext().getTargetInfo().hasInt128Type())) return getNaturalAlignIndirect(Ty); // All integral types are promoted to the GPR width. if (Ty->isIntegralOrEnumerationType()) return extendType(Ty); return ABIArgInfo::getDirect( nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); } llvm::Type* MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { const RecordType *RT = RetTy->getAs(); SmallVector RTList; if (RT && RT->isStructureOrClassType()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); unsigned FieldCnt = Layout.getFieldCount(); // N32/64 returns struct/classes in floating point registers if the // following conditions are met: // 1. The size of the struct/class is no larger than 128-bit. // 2. The struct/class has one or two fields all of which are floating // point types. // 3. The offset of the first field is zero (this follows what gcc does). // // Any other composite results are returned in integer registers. // if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); for (; b != e; ++b) { const BuiltinType *BT = b->getType()->getAs(); if (!BT || !BT->isFloatingPoint()) break; RTList.push_back(CGT.ConvertType(b->getType())); } if (b == e) return llvm::StructType::get(getVMContext(), RTList, RD->hasAttr()); RTList.clear(); } } CoerceToIntArgs(Size, RTList); return llvm::StructType::get(getVMContext(), RTList); } ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { uint64_t Size = getContext().getTypeSize(RetTy); if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // O32 doesn't treat zero-sized structs differently from other structs. // However, N32/N64 ignores zero sized return values. if (!IsO32 && Size == 0) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { if (Size <= 128) { if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); // O32 returns integer vectors in registers and N32/N64 returns all small // aggregates in registers. if (!IsO32 || (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { ABIArgInfo ArgInfo = ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); ArgInfo.setInReg(true); return ArgInfo; } } return getNaturalAlignIndirect(RetTy); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); // Make sure we pass indirectly things that are too large. if (const auto *EIT = RetTy->getAs()) if (EIT->getNumBits() > 128 || (EIT->getNumBits() > 64 && !getContext().getTargetInfo().hasInt128Type())) return getNaturalAlignIndirect(RetTy); if (isPromotableIntegerTypeForABI(RetTy)) return ABIArgInfo::getExtend(RetTy); if ((RetTy->isUnsignedIntegerOrEnumerationType() || RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) return ABIArgInfo::getSignExtend(RetTy); return ABIArgInfo::getDirect(); } void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { ABIArgInfo &RetInfo = FI.getReturnInfo(); if (!getCXXABI().classifyReturnType(FI)) RetInfo = classifyReturnType(FI.getReturnType()); // Check if a pointer to an aggregate is passed as a hidden argument. uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type, Offset); } Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType OrigTy) const { QualType Ty = OrigTy; // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. // Pointers are also promoted in the same way but this only matters for N32. unsigned SlotSizeInBits = IsO32 ? 32 : 64; unsigned PtrWidth = getTarget().getPointerWidth(0); bool DidPromote = false; if ((Ty->isIntegerType() && getContext().getIntWidth(Ty) < SlotSizeInBits) || (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { DidPromote = true; Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, Ty->isSignedIntegerType()); } auto TyInfo = getContext().getTypeInfoInChars(Ty); // The alignment of things in the argument area is never larger than // StackAlignInBytes. TyInfo.Align = std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); // MinABIStackAlignInBytes is the size of argument slots on the stack. CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); // If there was a promotion, "unpromote" into a temporary. // TODO: can we just use a pointer into a subset of the original slot? if (DidPromote) { Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); // Truncate down to the right width. llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() : CGF.IntPtrTy); llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); if (OrigTy->isPointerType()) V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); CGF.Builder.CreateStore(V, Temp); Addr = Temp; } return Addr; } ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { int TySize = getContext().getTypeSize(Ty); // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) return ABIArgInfo::getSignExtend(Ty); return ABIArgInfo::getExtend(Ty); } bool MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This information comes from gcc's implementation, which seems to // as canonical as it gets. // Everything on MIPS is 4 bytes. Double-precision FP registers // are aliased to pairs of single-precision FP registers. llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-31 are the general purpose registers, $0 - $31. // 32-63 are the floating-point registers, $f0 - $f31. // 64 and 65 are the multiply/divide registers, $hi and $lo. // 66 is the (notional, I think) register for signal-handler return. AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); // 67-74 are the floating-point status registers, $fcc0 - $fcc7. // They are one bit wide and ignored here. // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. // (coprocessor 1 is the FP unit) // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. // 176-181 are the DSP accumulator registers. AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); return false; } //===----------------------------------------------------------------------===// // M68k ABI Implementation //===----------------------------------------------------------------------===// namespace { class M68kTargetCodeGenInfo : public TargetCodeGenInfo { public: M68kTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; }; } // namespace void M68kTargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (const auto *FD = dyn_cast_or_null(D)) { if (const auto *attr = FD->getAttr()) { // Handle 'interrupt' attribute: llvm::Function *F = cast(GV); // Step 1: Set ISR calling convention. F->setCallingConv(llvm::CallingConv::M68k_INTR); // Step 2: Add attributes goodness. F->addFnAttr(llvm::Attribute::NoInline); // Step 3: Emit ISR vector alias. unsigned Num = attr->getNumber() / 2; llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, "__isr_" + Twine(Num), F); } } } //===----------------------------------------------------------------------===// // AVR ABI Implementation. Documented at // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny //===----------------------------------------------------------------------===// namespace { class AVRABIInfo : public DefaultABIInfo { private: // The total amount of registers can be used to pass parameters. It is 18 on // AVR, or 6 on AVRTiny. const unsigned ParamRegs; // The total amount of registers can be used to pass return value. It is 8 on // AVR, or 4 on AVRTiny. const unsigned RetRegs; public: AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {} ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const { if (isAggregateTypeForABI(Ty)) { // On AVR, a return struct with size less than or equals to 8 bytes is // returned directly via registers R18-R25. On AVRTiny, a return struct // with size less than or equals to 4 bytes is returned directly via // registers R22-R25. if (getContext().getTypeSize(Ty) <= RetRegs * 8) return ABIArgInfo::getDirect(); // A return struct with larger size is returned via a stack // slot, along with a pointer to it as the function's implicit argument. LargeRet = true; return getNaturalAlignIndirect(Ty); } // Otherwise we follow the default way which is compatible. return DefaultABIInfo::classifyReturnType(Ty); } ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const { unsigned TySize = getContext().getTypeSize(Ty); // An int8 type argument always costs two registers like an int16. if (TySize == 8 && NumRegs >= 2) { NumRegs -= 2; return ABIArgInfo::getExtend(Ty); } // If the argument size is an odd number of bytes, round up the size // to the next even number. TySize = llvm::alignTo(TySize, 16); // Any type including an array/struct type can be passed in rgisters, // if there are enough registers left. if (TySize <= NumRegs * 8) { NumRegs -= TySize / 8; return ABIArgInfo::getDirect(); } // An argument is passed either completely in registers or completely in // memory. Since there are not enough registers left, current argument // and all other unprocessed arguments should be passed in memory. // However we still need to return `ABIArgInfo::getDirect()` other than // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot // will be allocated, so the stack frame layout will be incompatible with // avr-gcc. NumRegs = 0; return ABIArgInfo::getDirect(); } void computeInfo(CGFunctionInfo &FI) const override { // Decide the return type. bool LargeRet = false; if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet); // Decide each argument type. The total number of registers can be used for // arguments depends on several factors: // 1. Arguments of varargs functions are passed on the stack. This applies // even to the named arguments. So no register can be used. // 2. Total 18 registers can be used on avr and 6 ones on avrtiny. // 3. If the return type is a struct with too large size, two registers // (out of 18/6) will be cost as an implicit pointer argument. unsigned NumRegs = ParamRegs; if (FI.isVariadic()) NumRegs = 0; else if (LargeRet) NumRegs -= 2; for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type, NumRegs); } }; class AVRTargetCodeGenInfo : public TargetCodeGenInfo { public: AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) : TargetCodeGenInfo(std::make_unique(CGT, NPR, NRR)) {} LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, const VarDecl *D) const override { // Check if global/static variable is defined in address space // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) // but not constant. if (D) { LangAS AS = D->getType().getAddressSpace(); if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) CGM.getDiags().Report(D->getLocation(), diag::err_verify_nonconst_addrspace) << "__flash*"; } return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { if (GV->isDeclaration()) return; const auto *FD = dyn_cast_or_null(D); if (!FD) return; auto *Fn = cast(GV); if (FD->getAttr()) Fn->addFnAttr("interrupt"); if (FD->getAttr()) Fn->addFnAttr("signal"); } }; } //===----------------------------------------------------------------------===// // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. // Currently subclassed only to implement custom OpenCL C function attribute // handling. //===----------------------------------------------------------------------===// namespace { class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: TCETargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; }; void TCETargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (GV->isDeclaration()) return; const FunctionDecl *FD = dyn_cast_or_null(D); if (!FD) return; llvm::Function *F = cast(GV); if (M.getLangOpts().OpenCL) { if (FD->hasAttr()) { // OpenCL C Kernel functions are not subject to inlining F->addFnAttr(llvm::Attribute::NoInline); const ReqdWorkGroupSizeAttr *Attr = FD->getAttr(); if (Attr) { // Convert the reqd_work_group_size() attributes to metadata. llvm::LLVMContext &Context = F->getContext(); llvm::NamedMDNode *OpenCLMetadata = M.getModule().getOrInsertNamedMetadata( "opencl.kernel_wg_size_info"); SmallVector Operands; Operands.push_back(llvm::ConstantAsMetadata::get(F)); Operands.push_back( llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); Operands.push_back( llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); Operands.push_back( llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); // Add a boolean constant operand for "required" (true) or "hint" // (false) for implementing the work_group_size_hint attr later. // Currently always true as the hint is not yet implemented. Operands.push_back( llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); } } } } } //===----------------------------------------------------------------------===// // Hexagon ABI Implementation //===----------------------------------------------------------------------===// namespace { class HexagonABIInfo : public DefaultABIInfo { public: HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} private: ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, QualType Ty) const; Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, QualType Ty) const; Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, QualType Ty) const; }; class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { public: HexagonTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 29; } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &GCM) const override { if (GV->isDeclaration()) return; const FunctionDecl *FD = dyn_cast_or_null(D); if (!FD) return; } }; } // namespace void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { unsigned RegsLeft = 6; if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type, &RegsLeft); } static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" " through registers"); if (*RegsLeft == 0) return false; if (Size <= 32) { (*RegsLeft)--; return true; } if (2 <= (*RegsLeft & (~1U))) { *RegsLeft = (*RegsLeft & (~1U)) - 2; return true; } // Next available register was r5 but candidate was greater than 32-bits so it // has to go on the stack. However we still consume r5 if (*RegsLeft == 1) *RegsLeft = 0; return false; } ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, unsigned *RegsLeft) const { if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); uint64_t Size = getContext().getTypeSize(Ty); if (Size <= 64) HexagonAdjustRegsLeft(Size, RegsLeft); if (Size > 64 && Ty->isBitIntType()) return getNaturalAlignIndirect(Ty, /*ByVal=*/true); return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect(); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); // Ignore empty records. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); uint64_t Size = getContext().getTypeSize(Ty); unsigned Align = getContext().getTypeAlign(Ty); if (Size > 64) return getNaturalAlignIndirect(Ty, /*ByVal=*/true); if (HexagonAdjustRegsLeft(Size, RegsLeft)) Align = Size <= 32 ? 32 : 64; if (Size <= Align) { // Pass in the smallest viable integer type. if (!llvm::isPowerOf2_64(Size)) Size = llvm::NextPowerOf2(Size); return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); } return DefaultABIInfo::classifyArgumentType(Ty); } ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); const TargetInfo &T = CGT.getTarget(); uint64_t Size = getContext().getTypeSize(RetTy); if (RetTy->getAs()) { // HVX vectors are returned in vector registers or register pairs. if (T.hasFeature("hvx")) { assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; if (Size == VecSize || Size == 2*VecSize) return ABIArgInfo::getDirectInReg(); } // Large vector types should be returned via memory. if (Size > 64) return getNaturalAlignIndirect(RetTy); } if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (Size > 64 && RetTy->isBitIntType()) return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect(); } if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Aggregates <= 8 bytes are returned in registers, other aggregates // are returned indirectly. if (Size <= 64) { // Return in the smallest viable integer type. if (!llvm::isPowerOf2_64(Size)) Size = llvm::NextPowerOf2(Size); return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); } return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); } Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // Load the overflow area pointer. Address __overflow_area_pointer_p = CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( __overflow_area_pointer_p, "__overflow_area_pointer"); uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; if (Align > 4) { // Alignment should be a power of 2. assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); // overflow_arg_area = (overflow_arg_area + align - 1) & -align; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); // Add offset to the current pointer to access the argument. __overflow_area_pointer = CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); // Create a mask which should be "AND"ed // with (overflow_arg_area + align - 1) llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); __overflow_area_pointer = CGF.Builder.CreateIntToPtr( CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), "__overflow_area_pointer.align"); } // Get the type of the argument from memory and bitcast // overflow area pointer to the argument type. llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); Address AddrTyped = CGF.Builder.CreateBitCast( Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), llvm::PointerType::getUnqual(PTy)); // Round up to the minimum stack alignment for varargs which is 4 bytes. uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); __overflow_area_pointer = CGF.Builder.CreateGEP( CGF.Int8Ty, __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "__overflow_area_pointer.next"); CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); return AddrTyped; } Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // FIXME: Need to handle alignment llvm::Type *BP = CGF.Int8PtrTy; llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); // Handle address alignment for type alignment > 32 bits uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; if (TyAlign > 4) { assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); Addr = Builder.CreateIntToPtr(AddrAsInt, BP); } llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); Address AddrTyped = Builder.CreateBitCast( Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); llvm::Value *NextAddr = Builder.CreateGEP( CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; if (ArgSize > 8) return EmitVAArgFromMemory(CGF, VAListAddr, Ty); // Here we have check if the argument is in register area or // in overflow area. // If the saved register area pointer + argsize rounded up to alignment > // saved register area end pointer, argument is in overflow area. unsigned RegsLeft = 6; Ty = CGF.getContext().getCanonicalType(Ty); (void)classifyArgumentType(Ty, &RegsLeft); llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); // Get rounded size of the argument.GCC does not allow vararg of // size < 4 bytes. We follow the same logic here. ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; // Argument may be in saved register area CGF.EmitBlock(MaybeRegBlock); // Load the current saved register area pointer. Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( VAListAddr, 0, "__current_saved_reg_area_pointer_p"); llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); // Load the saved register area end pointer. Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( VAListAddr, 1, "__saved_reg_area_end_pointer_p"); llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); // If the size of argument is > 4 bytes, check if the stack // location is aligned to 8 bytes if (ArgAlign > 4) { llvm::Value *__current_saved_reg_area_pointer_int = CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, CGF.Int32Ty); __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( __current_saved_reg_area_pointer_int, llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), "align_current_saved_reg_area_pointer"); __current_saved_reg_area_pointer_int = CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), "align_current_saved_reg_area_pointer"); __current_saved_reg_area_pointer = CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, __current_saved_reg_area_pointer->getType(), "align_current_saved_reg_area_pointer"); } llvm::Value *__new_saved_reg_area_pointer = CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), "__new_saved_reg_area_pointer"); llvm::Value *UsingStack = nullptr; UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, __saved_reg_area_end_pointer); CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); // Argument in saved register area // Implement the block where argument is in register saved area CGF.EmitBlock(InRegBlock); llvm::Type *PTy = CGF.ConvertType(Ty); llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); CGF.Builder.CreateStore(__new_saved_reg_area_pointer, __current_saved_reg_area_pointer_p); CGF.EmitBranch(ContBlock); // Argument in overflow area // Implement the block where the argument is in overflow area. CGF.EmitBlock(OnStackBlock); // Load the overflow area pointer Address __overflow_area_pointer_p = CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( __overflow_area_pointer_p, "__overflow_area_pointer"); // Align the overflow area pointer according to the alignment of the argument if (ArgAlign > 4) { llvm::Value *__overflow_area_pointer_int = CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); __overflow_area_pointer_int = CGF.Builder.CreateAdd(__overflow_area_pointer_int, llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), "align_overflow_area_pointer"); __overflow_area_pointer_int = CGF.Builder.CreateAnd(__overflow_area_pointer_int, llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), "align_overflow_area_pointer"); __overflow_area_pointer = CGF.Builder.CreateIntToPtr( __overflow_area_pointer_int, __overflow_area_pointer->getType(), "align_overflow_area_pointer"); } // Get the pointer for next argument in overflow area and store it // to overflow area pointer. llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( CGF.Int8Ty, __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), "__overflow_area_pointer.next"); CGF.Builder.CreateStore(__new_overflow_area_pointer, __overflow_area_pointer_p); CGF.Builder.CreateStore(__new_overflow_area_pointer, __current_saved_reg_area_pointer_p); // Bitcast the overflow area pointer to the type of argument. llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); CGF.EmitBranch(ContBlock); // Get the correct pointer to load the variable argument // Implement the ContBlock CGF.EmitBlock(ContBlock); llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); } Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { if (getTarget().getTriple().isMusl()) return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); return EmitVAArgForHexagon(CGF, VAListAddr, Ty); } //===----------------------------------------------------------------------===// // Lanai ABI Implementation //===----------------------------------------------------------------------===// namespace { class LanaiABIInfo : public DefaultABIInfo { public: LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} bool shouldUseInReg(QualType Ty, CCState &State) const; void computeInfo(CGFunctionInfo &FI) const override { CCState State(FI); // Lanai uses 4 registers to pass arguments unless the function has the // regparm attribute set. if (FI.getHasRegParm()) { State.FreeRegs = FI.getRegParm(); } else { State.FreeRegs = 4; } if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) I.info = classifyArgumentType(I.type, State); } ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; }; } // end anonymous namespace bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { unsigned Size = getContext().getTypeSize(Ty); unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; if (SizeInRegs == 0) return false; if (SizeInRegs > State.FreeRegs) { State.FreeRegs = 0; return false; } State.FreeRegs -= SizeInRegs; return true; } ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, CCState &State) const { if (!ByVal) { if (State.FreeRegs) { --State.FreeRegs; // Non-byval indirects just use one pointer. return getNaturalAlignIndirectInReg(Ty); } return getNaturalAlignIndirect(Ty, false); } // Compute the byval alignment. const unsigned MinABIStackAlignInBytes = 4; unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, /*Realign=*/TypeAlign > MinABIStackAlignInBytes); } ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, CCState &State) const { // Check with the C++ ABI first. const RecordType *RT = Ty->getAs(); if (RT) { CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); if (RAA == CGCXXABI::RAA_Indirect) { return getIndirectResult(Ty, /*ByVal=*/false, State); } else if (RAA == CGCXXABI::RAA_DirectInMemory) { return getNaturalAlignIndirect(Ty, /*ByVal=*/true); } } if (isAggregateTypeForABI(Ty)) { // Structures with flexible arrays are always indirect. if (RT && RT->getDecl()->hasFlexibleArrayMember()) return getIndirectResult(Ty, /*ByVal=*/true, State); // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); llvm::LLVMContext &LLVMContext = getVMContext(); unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; if (SizeInRegs <= State.FreeRegs) { llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); SmallVector Elements(SizeInRegs, Int32); llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); State.FreeRegs -= SizeInRegs; return ABIArgInfo::getDirectInReg(Result); } else { State.FreeRegs = 0; } return getIndirectResult(Ty, true, State); } // Treat an enum type as its underlying type. if (const auto *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); bool InReg = shouldUseInReg(Ty, State); // Don't pass >64 bit integers in registers. if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() > 64) return getIndirectResult(Ty, /*ByVal=*/true, State); if (isPromotableIntegerTypeForABI(Ty)) { if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getExtend(Ty); } if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getDirect(); } namespace { class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { public: LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} }; } //===----------------------------------------------------------------------===// // AMDGPU ABI Implementation //===----------------------------------------------------------------------===// namespace { class AMDGPUABIInfo final : public DefaultABIInfo { private: static const unsigned MaxNumRegsForArgsRet = 16; unsigned numRegsForType(QualType Ty) const; bool isHomogeneousAggregateBaseType(QualType Ty) const override; bool isHomogeneousAggregateSmallEnough(const Type *Base, uint64_t Members) const override; // Coerce HIP scalar pointer arguments from generic pointers to global ones. llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, unsigned ToAS) const { // Single value types. auto *PtrTy = llvm::dyn_cast(Ty); if (PtrTy && PtrTy->getAddressSpace() == FromAS) return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); return Ty; } public: explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyKernelArgumentType(QualType Ty) const; ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; }; bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { return true; } bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( const Type *Base, uint64_t Members) const { uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; // Homogeneous Aggregates may occupy at most 16 registers. return Members * NumRegs <= MaxNumRegsForArgsRet; } /// Estimate number of registers the type will use when passed in registers. unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { unsigned NumRegs = 0; if (const VectorType *VT = Ty->getAs()) { // Compute from the number of elements. The reported size is based on the // in-memory size, which includes the padding 4th element for 3-vectors. QualType EltTy = VT->getElementType(); unsigned EltSize = getContext().getTypeSize(EltTy); // 16-bit element vectors should be passed as packed. if (EltSize == 16) return (VT->getNumElements() + 1) / 2; unsigned EltNumRegs = (EltSize + 31) / 32; return EltNumRegs * VT->getNumElements(); } if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); assert(!RD->hasFlexibleArrayMember()); for (const FieldDecl *Field : RD->fields()) { QualType FieldTy = Field->getType(); NumRegs += numRegsForType(FieldTy); } return NumRegs; } return (getContext().getTypeSize(Ty) + 31) / 32; } void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { llvm::CallingConv::ID CC = FI.getCallingConvention(); if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); unsigned NumRegsLeft = MaxNumRegsForArgsRet; for (auto &Arg : FI.arguments()) { if (CC == llvm::CallingConv::AMDGPU_KERNEL) { Arg.info = classifyKernelArgumentType(Arg.type); } else { Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); } } } Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { llvm_unreachable("AMDGPU does not support varargs"); } ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { if (isAggregateTypeForABI(RetTy)) { // Records with non-trivial destructors/copy-constructors should not be // returned by value. if (!getRecordArgABI(RetTy, getCXXABI())) { // Ignore empty structs/unions. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Lower single-element structs to just return a regular value. if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); if (const RecordType *RT = RetTy->getAs()) { const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return DefaultABIInfo::classifyReturnType(RetTy); } // Pack aggregates <= 4 bytes into single VGPR or pair. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); if (Size <= 32) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); if (Size <= 64) { llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); } if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) return ABIArgInfo::getDirect(); } } // Otherwise just do the default thing. return DefaultABIInfo::classifyReturnType(RetTy); } /// For kernels all parameters are really passed in a special buffer. It doesn't /// make sense to pass anything byval, so everything must be direct. ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { Ty = useFirstFieldIfTransparentUnion(Ty); // TODO: Can we omit empty structs? if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) Ty = QualType(SeltTy, 0); llvm::Type *OrigLTy = CGT.ConvertType(Ty); llvm::Type *LTy = OrigLTy; if (getContext().getLangOpts().HIP) { LTy = coerceKernelArgumentType( OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); } // FIXME: Should also use this for OpenCL, but it requires addressing the // problem of kernels being called. // // FIXME: This doesn't apply the optimization of coercing pointers in structs // to global address space when using byref. This would require implementing a // new kind of coercion of the in-memory type when for indirect arguments. if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && isAggregateTypeForABI(Ty)) { return ABIArgInfo::getIndirectAliased( getContext().getTypeAlignInChars(Ty), getContext().getTargetAddressSpace(LangAS::opencl_constant), false /*Realign*/, nullptr /*Padding*/); } // If we set CanBeFlattened to true, CodeGen will expand the struct to its // individual elements, which confuses the Clover OpenCL backend; therefore we // have to set it to false here. Other args of getDirect() are just defaults. return ABIArgInfo::getDirect(LTy, 0, nullptr, false); } ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const { assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); Ty = useFirstFieldIfTransparentUnion(Ty); if (isAggregateTypeForABI(Ty)) { // Records with non-trivial destructors/copy-constructors should not be // passed by value. if (auto RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); // Lower single-element structs to just pass a regular value. TODO: We // could do reasonable-size multiple-element structs too, using getExpand(), // though watch out for things like bitfields. if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return DefaultABIInfo::classifyArgumentType(Ty); } // Pack aggregates <= 8 bytes into single VGPR or pair. uint64_t Size = getContext().getTypeSize(Ty); if (Size <= 64) { unsigned NumRegs = (Size + 31) / 32; NumRegsLeft -= std::min(NumRegsLeft, NumRegs); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); if (Size <= 32) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); // XXX: Should this be i64 instead, and should the limit increase? llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); } if (NumRegsLeft > 0) { unsigned NumRegs = numRegsForType(Ty); if (NumRegsLeft >= NumRegs) { NumRegsLeft -= NumRegs; return ABIArgInfo::getDirect(); } } } // Otherwise just do the default thing. ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); if (!ArgInfo.isIndirect()) { unsigned NumRegs = numRegsForType(Ty); NumRegsLeft -= std::min(NumRegs, NumRegsLeft); } return ArgInfo; } class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { public: AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, CodeGenModule &CGM) const; void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const override; unsigned getOpenCLKernelCallingConv() const override; llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, llvm::PointerType *T, QualType QT) const override; LangAS getASTAllocaAddressSpace() const override { return getLangASFromTargetAS( getABIInfo().getDataLayout().getAllocaAddrSpace()); } LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, const VarDecl *D) const override; llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, SyncScope Scope, llvm::AtomicOrdering Ordering, llvm::LLVMContext &Ctx) const override; llvm::Function * createEnqueuedBlockKernel(CodeGenFunction &CGF, llvm::Function *BlockInvokeFunc, llvm::Value *BlockLiteral) const override; bool shouldEmitStaticExternCAliases() const override; void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; }; } static bool requiresAMDGPUProtectedVisibility(const Decl *D, llvm::GlobalValue *GV) { if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) return false; return D->hasAttr() || (isa(D) && D->hasAttr()) || (isa(D) && (D->hasAttr() || D->hasAttr() || cast(D)->getType()->isCUDADeviceBuiltinSurfaceType() || cast(D)->getType()->isCUDADeviceBuiltinTextureType())); } void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { const auto *ReqdWGS = M.getLangOpts().OpenCL ? FD->getAttr() : nullptr; const bool IsOpenCLKernel = M.getLangOpts().OpenCL && FD->hasAttr(); const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr(); const auto *FlatWGS = FD->getAttr(); if (ReqdWGS || FlatWGS) { unsigned Min = 0; unsigned Max = 0; if (FlatWGS) { Min = FlatWGS->getMin() ->EvaluateKnownConstInt(M.getContext()) .getExtValue(); Max = FlatWGS->getMax() ->EvaluateKnownConstInt(M.getContext()) .getExtValue(); } if (ReqdWGS && Min == 0 && Max == 0) Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); if (Min != 0) { assert(Min <= Max && "Min must be less than or equal Max"); std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); } else assert(Max == 0 && "Max must be zero"); } else if (IsOpenCLKernel || IsHIPKernel) { // By default, restrict the maximum size to a value specified by // --gpu-max-threads-per-block=n or its default value for HIP. const unsigned OpenCLDefaultMaxWorkGroupSize = 256; const unsigned DefaultMaxWorkGroupSize = IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize : M.getLangOpts().GPUMaxThreadsPerBlock; std::string AttrVal = std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); } if (const auto *Attr = FD->getAttr()) { unsigned Min = Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); unsigned Max = Attr->getMax() ? Attr->getMax() ->EvaluateKnownConstInt(M.getContext()) .getExtValue() : 0; if (Min != 0) { assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); std::string AttrVal = llvm::utostr(Min); if (Max != 0) AttrVal = AttrVal + "," + llvm::utostr(Max); F->addFnAttr("amdgpu-waves-per-eu", AttrVal); } else assert(Max == 0 && "Max must be zero"); } if (const auto *Attr = FD->getAttr()) { unsigned NumSGPR = Attr->getNumSGPR(); if (NumSGPR != 0) F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); } if (const auto *Attr = FD->getAttr()) { uint32_t NumVGPR = Attr->getNumVGPR(); if (NumVGPR != 0) F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); } } void AMDGPUTargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (requiresAMDGPUProtectedVisibility(D, GV)) { GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); GV->setDSOLocal(true); } if (GV->isDeclaration()) return; llvm::Function *F = dyn_cast(GV); if (!F) return; const FunctionDecl *FD = dyn_cast_or_null(D); if (FD) setFunctionDeclAttributes(FD, F, M); const bool IsHIPKernel = M.getLangOpts().HIP && FD && FD->hasAttr(); if (IsHIPKernel) F->addFnAttr("uniform-work-group-size", "true"); if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) F->addFnAttr("amdgpu-ieee", "false"); } unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { return llvm::CallingConv::AMDGPU_KERNEL; } // Currently LLVM assumes null pointers always have value 0, // which results in incorrectly transformed IR. Therefore, instead of // emitting null pointers in private and local address spaces, a null // pointer in generic address space is emitted which is casted to a // pointer in local or private address space. llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, QualType QT) const { if (CGM.getContext().getTargetNullPointerValue(QT) == 0) return llvm::ConstantPointerNull::get(PT); auto &Ctx = CGM.getContext(); auto NPT = llvm::PointerType::getWithSamePointeeType( PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); return llvm::ConstantExpr::getAddrSpaceCast( llvm::ConstantPointerNull::get(NPT), PT); } LangAS AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, const VarDecl *D) const { assert(!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only"); LangAS DefaultGlobalAS = getLangASFromTargetAS( CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); if (!D) return DefaultGlobalAS; LangAS AddrSpace = D->getType().getAddressSpace(); assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); if (AddrSpace != LangAS::Default) return AddrSpace; // Only promote to address space 4 if VarDecl has constant initialization. if (CGM.isTypeConstant(D->getType(), false) && D->hasConstantInitialization()) { if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) return ConstAS.getValue(); } return DefaultGlobalAS; } llvm::SyncScope::ID AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, SyncScope Scope, llvm::AtomicOrdering Ordering, llvm::LLVMContext &Ctx) const { std::string Name; switch (Scope) { case SyncScope::HIPSingleThread: Name = "singlethread"; break; case SyncScope::HIPWavefront: case SyncScope::OpenCLSubGroup: Name = "wavefront"; break; case SyncScope::HIPWorkgroup: case SyncScope::OpenCLWorkGroup: Name = "workgroup"; break; case SyncScope::HIPAgent: case SyncScope::OpenCLDevice: Name = "agent"; break; case SyncScope::HIPSystem: case SyncScope::OpenCLAllSVMDevices: Name = ""; break; } if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { if (!Name.empty()) Name = Twine(Twine(Name) + Twine("-")).str(); Name = Twine(Twine(Name) + Twine("one-as")).str(); } return Ctx.getOrInsertSyncScopeID(Name); } bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { return false; } void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( const FunctionType *&FT) const { FT = getABIInfo().getContext().adjustFunctionType( FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); } //===----------------------------------------------------------------------===// // SPARC v8 ABI Implementation. // Based on the SPARC Compliance Definition version 2.4.1. // // Ensures that complex values are passed in registers. // namespace { class SparcV8ABIInfo : public DefaultABIInfo { public: SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} private: ABIArgInfo classifyReturnType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override; }; } // end anonymous namespace ABIArgInfo SparcV8ABIInfo::classifyReturnType(QualType Ty) const { if (Ty->isAnyComplexType()) { return ABIArgInfo::getDirect(); } else { return DefaultABIInfo::classifyReturnType(Ty); } } void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &Arg : FI.arguments()) Arg.info = classifyArgumentType(Arg.type); } namespace { class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { public: SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { int Offset; if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) Offset = 12; else Offset = 8; return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, llvm::ConstantInt::get(CGF.Int32Ty, Offset)); } llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { int Offset; if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) Offset = -12; else Offset = -8; return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, llvm::ConstantInt::get(CGF.Int32Ty, Offset)); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // SPARC v9 ABI Implementation. // Based on the SPARC Compliance Definition version 2.4.1. // // Function arguments a mapped to a nominal "parameter array" and promoted to // registers depending on their type. Each argument occupies 8 or 16 bytes in // the array, structs larger than 16 bytes are passed indirectly. // // One case requires special care: // // struct mixed { // int i; // float f; // }; // // When a struct mixed is passed by value, it only occupies 8 bytes in the // parameter array, but the int is passed in an integer register, and the float // is passed in a floating point register. This is represented as two arguments // with the LLVM IR inreg attribute: // // declare void f(i32 inreg %i, float inreg %f) // // The code generator will only allocate 4 bytes from the parameter array for // the inreg arguments. All other arguments are allocated a multiple of 8 // bytes. // namespace { class SparcV9ABIInfo : public ABIInfo { public: SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} private: ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; // Coercion type builder for structs passed in registers. The coercion type // serves two purposes: // // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' // in registers. // 2. Expose aligned floating point elements as first-level elements, so the // code generator knows to pass them in floating point registers. // // We also compute the InReg flag which indicates that the struct contains // aligned 32-bit floats. // struct CoerceBuilder { llvm::LLVMContext &Context; const llvm::DataLayout &DL; SmallVector Elems; uint64_t Size; bool InReg; CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) : Context(c), DL(dl), Size(0), InReg(false) {} // Pad Elems with integers until Size is ToSize. void pad(uint64_t ToSize) { assert(ToSize >= Size && "Cannot remove elements"); if (ToSize == Size) return; // Finish the current 64-bit word. uint64_t Aligned = llvm::alignTo(Size, 64); if (Aligned > Size && Aligned <= ToSize) { Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); Size = Aligned; } // Add whole 64-bit words. while (Size + 64 <= ToSize) { Elems.push_back(llvm::Type::getInt64Ty(Context)); Size += 64; } // Final in-word padding. if (Size < ToSize) { Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); Size = ToSize; } } // Add a floating point element at Offset. void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { // Unaligned floats are treated as integers. if (Offset % Bits) return; // The InReg flag is only required if there are any floats < 64 bits. if (Bits < 64) InReg = true; pad(Offset); Elems.push_back(Ty); Size = Offset + Bits; } // Add a struct type to the coercion type, starting at Offset (in bits). void addStruct(uint64_t Offset, llvm::StructType *StrTy) { const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { llvm::Type *ElemTy = StrTy->getElementType(i); uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); switch (ElemTy->getTypeID()) { case llvm::Type::StructTyID: addStruct(ElemOffset, cast(ElemTy)); break; case llvm::Type::FloatTyID: addFloat(ElemOffset, ElemTy, 32); break; case llvm::Type::DoubleTyID: addFloat(ElemOffset, ElemTy, 64); break; case llvm::Type::FP128TyID: addFloat(ElemOffset, ElemTy, 128); break; case llvm::Type::PointerTyID: if (ElemOffset % 64 == 0) { pad(ElemOffset); Elems.push_back(ElemTy); Size += 64; } break; default: break; } } } // Check if Ty is a usable substitute for the coercion type. bool isUsableType(llvm::StructType *Ty) const { return llvm::makeArrayRef(Elems) == Ty->elements(); } // Get the coercion type as a literal struct type. llvm::Type *getType() const { if (Elems.size() == 1) return Elems.front(); else return llvm::StructType::get(Context, Elems); } }; }; } // end anonymous namespace ABIArgInfo SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); uint64_t Size = getContext().getTypeSize(Ty); // Anything too big to fit in registers is passed with an explicit indirect // pointer / sret pointer. if (Size > SizeLimit) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Integer types smaller than a register are extended. if (Size < 64 && Ty->isIntegerType()) return ABIArgInfo::getExtend(Ty); if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() < 64) return ABIArgInfo::getExtend(Ty); // Other non-aggregates go in registers. if (!isAggregateTypeForABI(Ty)) return ABIArgInfo::getDirect(); // If a C++ object has either a non-trivial copy constructor or a non-trivial // destructor, it is passed with an explicit indirect pointer / sret pointer. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); // This is a small aggregate type that should be passed in registers. // Build a coercion type from the LLVM struct type. llvm::StructType *StrTy = dyn_cast(CGT.ConvertType(Ty)); if (!StrTy) return ABIArgInfo::getDirect(); CoerceBuilder CB(getVMContext(), getDataLayout()); CB.addStruct(0, StrTy); CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); // Try to use the original type for coercion. llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); if (CB.InReg) return ABIArgInfo::getDirectInReg(CoerceTy); else return ABIArgInfo::getDirect(CoerceTy); } Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { ABIArgInfo AI = classifyType(Ty, 16 * 8); llvm::Type *ArgTy = CGT.ConvertType(Ty); if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) AI.setCoerceToType(ArgTy); CharUnits SlotSize = CharUnits::fromQuantity(8); CGBuilderTy &Builder = CGF.Builder; Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); auto TypeInfo = getContext().getTypeInfoInChars(Ty); Address ArgAddr = Address::invalid(); CharUnits Stride; switch (AI.getKind()) { case ABIArgInfo::Expand: case ABIArgInfo::CoerceAndExpand: case ABIArgInfo::InAlloca: llvm_unreachable("Unsupported ABI kind for va_arg"); case ABIArgInfo::Extend: { Stride = SlotSize; CharUnits Offset = SlotSize - TypeInfo.Width; ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); break; } case ABIArgInfo::Direct: { auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); ArgAddr = Addr; break; } case ABIArgInfo::Indirect: case ABIArgInfo::IndirectAliased: Stride = SlotSize; ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), TypeInfo.Align); break; case ABIArgInfo::Ignore: return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); } // Update VAList. Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); Builder.CreateStore(NextPtr.getPointer(), VAListAddr); return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); } void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); for (auto &I : FI.arguments()) I.info = classifyType(I.type, 16 * 8); } namespace { class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { public: SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { return 14; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, llvm::ConstantInt::get(CGF.Int32Ty, 8)); } llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, llvm::ConstantInt::get(CGF.Int32Ty, -8)); } }; } // end anonymous namespace bool SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *i8 = CGF.Int8Ty; llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); // 0-31: the 8-byte general-purpose registers AssignToArrayRange(Builder, Address, Eight8, 0, 31); // 32-63: f0-31, the 4-byte floating-point registers AssignToArrayRange(Builder, Address, Four8, 32, 63); // Y = 64 // PSR = 65 // WIM = 66 // TBR = 67 // PC = 68 // NPC = 69 // FSR = 70 // CSR = 71 AssignToArrayRange(Builder, Address, Eight8, 64, 71); // 72-87: d0-15, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 72, 87); return false; } // ARC ABI implementation. namespace { class ARCABIInfo : public DefaultABIInfo { public: using DefaultABIInfo::DefaultABIInfo; private: Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { if (!State.FreeRegs) return; if (Info.isIndirect() && Info.getInReg()) State.FreeRegs--; else if (Info.isDirect() && Info.getInReg()) { unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; if (sz < State.FreeRegs) State.FreeRegs -= sz; else State.FreeRegs = 0; } } void computeInfo(CGFunctionInfo &FI) const override { CCState State(FI); // ARC uses 8 registers to pass arguments. State.FreeRegs = 8; if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); updateState(FI.getReturnInfo(), FI.getReturnType(), State); for (auto &I : FI.arguments()) { I.info = classifyArgumentType(I.type, State.FreeRegs); updateState(I.info, I.type, State); } } ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; ABIArgInfo getIndirectByValue(QualType Ty) const; ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; ABIArgInfo classifyReturnType(QualType RetTy) const; }; class ARCTargetCodeGenInfo : public TargetCodeGenInfo { public: ARCTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} }; ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : getNaturalAlignIndirect(Ty, false); } ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { // Compute the byval alignment. const unsigned MinABIStackAlignInBytes = 4; unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, TypeAlign > MinABIStackAlignInBytes); } Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, getContext().getTypeInfoInChars(Ty), CharUnits::fromQuantity(4), true); } ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, uint8_t FreeRegs) const { // Handle the generic C++ ABI. const RecordType *RT = Ty->getAs(); if (RT) { CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); if (RAA == CGCXXABI::RAA_Indirect) return getIndirectByRef(Ty, FreeRegs > 0); if (RAA == CGCXXABI::RAA_DirectInMemory) return getIndirectByValue(Ty); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; if (isAggregateTypeForABI(Ty)) { // Structures with flexible arrays are always indirect. if (RT && RT->getDecl()->hasFlexibleArrayMember()) return getIndirectByValue(Ty); // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); llvm::LLVMContext &LLVMContext = getVMContext(); llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); SmallVector Elements(SizeInRegs, Int32); llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); return FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg(Result) : ABIArgInfo::getDirect(Result, 0, nullptr, false); } if (const auto *EIT = Ty->getAs()) if (EIT->getNumBits() > 64) return getIndirectByValue(Ty); return isPromotableIntegerTypeForABI(Ty) ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : ABIArgInfo::getExtend(Ty)) : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : ABIArgInfo::getDirect()); } ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirectInReg(); // Arguments of size > 4 registers are indirect. auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; if (RetSize > 4) return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); return DefaultABIInfo::classifyReturnType(RetTy); } } // End anonymous namespace. //===----------------------------------------------------------------------===// // XCore ABI Implementation //===----------------------------------------------------------------------===// namespace { /// A SmallStringEnc instance is used to build up the TypeString by passing /// it by reference between functions that append to it. typedef llvm::SmallString<128> SmallStringEnc; /// TypeStringCache caches the meta encodings of Types. /// /// The reason for caching TypeStrings is two fold: /// 1. To cache a type's encoding for later uses; /// 2. As a means to break recursive member type inclusion. /// /// A cache Entry can have a Status of: /// NonRecursive: The type encoding is not recursive; /// Recursive: The type encoding is recursive; /// Incomplete: An incomplete TypeString; /// IncompleteUsed: An incomplete TypeString that has been used in a /// Recursive type encoding. /// /// A NonRecursive entry will have all of its sub-members expanded as fully /// as possible. Whilst it may contain types which are recursive, the type /// itself is not recursive and thus its encoding may be safely used whenever /// the type is encountered. /// /// A Recursive entry will have all of its sub-members expanded as fully as /// possible. The type itself is recursive and it may contain other types which /// are recursive. The Recursive encoding must not be used during the expansion /// of a recursive type's recursive branch. For simplicity the code uses /// IncompleteCount to reject all usage of Recursive encodings for member types. /// /// An Incomplete entry is always a RecordType and only encodes its /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and /// are placed into the cache during type expansion as a means to identify and /// handle recursive inclusion of types as sub-members. If there is recursion /// the entry becomes IncompleteUsed. /// /// During the expansion of a RecordType's members: /// /// If the cache contains a NonRecursive encoding for the member type, the /// cached encoding is used; /// /// If the cache contains a Recursive encoding for the member type, the /// cached encoding is 'Swapped' out, as it may be incorrect, and... /// /// If the member is a RecordType, an Incomplete encoding is placed into the /// cache to break potential recursive inclusion of itself as a sub-member; /// /// Once a member RecordType has been expanded, its temporary incomplete /// entry is removed from the cache. If a Recursive encoding was swapped out /// it is swapped back in; /// /// If an incomplete entry is used to expand a sub-member, the incomplete /// entry is marked as IncompleteUsed. The cache keeps count of how many /// IncompleteUsed entries it currently contains in IncompleteUsedCount; /// /// If a member's encoding is found to be a NonRecursive or Recursive viz: /// IncompleteUsedCount==0, the member's encoding is added to the cache. /// Else the member is part of a recursive type and thus the recursion has /// been exited too soon for the encoding to be correct for the member. /// class TypeStringCache { enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; struct Entry { std::string Str; // The encoded TypeString for the type. enum Status State; // Information about the encoding in 'Str'. std::string Swapped; // A temporary place holder for a Recursive encoding // during the expansion of RecordType's members. }; std::map Map; unsigned IncompleteCount; // Number of Incomplete entries in the Map. unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. public: TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); bool removeIncomplete(const IdentifierInfo *ID); void addIfComplete(const IdentifierInfo *ID, StringRef Str, bool IsRecursive); StringRef lookupStr(const IdentifierInfo *ID); }; /// TypeString encodings for enum & union fields must be order. /// FieldEncoding is a helper for this ordering process. class FieldEncoding { bool HasName; std::string Enc; public: FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} StringRef str() { return Enc; } bool operator<(const FieldEncoding &rhs) const { if (HasName != rhs.HasName) return HasName; return Enc < rhs.Enc; } }; class XCoreABIInfo : public DefaultABIInfo { public: XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; }; class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { mutable TypeStringCache TSC; void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, const CodeGen::CodeGenModule &M) const; public: XCoreTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} void emitTargetMetadata(CodeGen::CodeGenModule &CGM, const llvm::MapVector &MangledDeclNames) const override; }; } // End anonymous namespace. // TODO: this implementation is likely now redundant with the default // EmitVAArg. Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { CGBuilderTy &Builder = CGF.Builder; // Get the VAList. CharUnits SlotSize = CharUnits::fromQuantity(4); Address AP(Builder.CreateLoad(VAListAddr), SlotSize); // Handle the argument. ABIArgInfo AI = classifyArgumentType(Ty); CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); llvm::Type *ArgTy = CGT.ConvertType(Ty); if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) AI.setCoerceToType(ArgTy); llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); Address Val = Address::invalid(); CharUnits ArgSize = CharUnits::Zero(); switch (AI.getKind()) { case ABIArgInfo::Expand: case ABIArgInfo::CoerceAndExpand: case ABIArgInfo::InAlloca: llvm_unreachable("Unsupported ABI kind for va_arg"); case ABIArgInfo::Ignore: Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); ArgSize = CharUnits::Zero(); break; case ABIArgInfo::Extend: case ABIArgInfo::Direct: Val = Builder.CreateBitCast(AP, ArgPtrTy); ArgSize = CharUnits::fromQuantity( getDataLayout().getTypeAllocSize(AI.getCoerceToType())); ArgSize = ArgSize.alignTo(SlotSize); break; case ABIArgInfo::Indirect: case ABIArgInfo::IndirectAliased: Val = Builder.CreateElementBitCast(AP, ArgPtrTy); Val = Address(Builder.CreateLoad(Val), TypeAlign); ArgSize = SlotSize; break; } // Increment the VAList. if (!ArgSize.isZero()) { Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); Builder.CreateStore(APN.getPointer(), VAListAddr); } return Val; } /// During the expansion of a RecordType, an incomplete TypeString is placed /// into the cache as a means to identify and break recursion. /// If there is a Recursive encoding in the cache, it is swapped out and will /// be reinserted by removeIncomplete(). /// All other types of encoding should have been used rather than arriving here. void TypeStringCache::addIncomplete(const IdentifierInfo *ID, std::string StubEnc) { if (!ID) return; Entry &E = Map[ID]; assert( (E.Str.empty() || E.State == Recursive) && "Incorrectly use of addIncomplete"); assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); E.Swapped.swap(E.Str); // swap out the Recursive E.Str.swap(StubEnc); E.State = Incomplete; ++IncompleteCount; } /// Once the RecordType has been expanded, the temporary incomplete TypeString /// must be removed from the cache. /// If a Recursive was swapped out by addIncomplete(), it will be replaced. /// Returns true if the RecordType was defined recursively. bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { if (!ID) return false; auto I = Map.find(ID); assert(I != Map.end() && "Entry not present"); Entry &E = I->second; assert( (E.State == Incomplete || E.State == IncompleteUsed) && "Entry must be an incomplete type"); bool IsRecursive = false; if (E.State == IncompleteUsed) { // We made use of our Incomplete encoding, thus we are recursive. IsRecursive = true; --IncompleteUsedCount; } if (E.Swapped.empty()) Map.erase(I); else { // Swap the Recursive back. E.Swapped.swap(E.Str); E.Swapped.clear(); E.State = Recursive; } --IncompleteCount; return IsRecursive; } /// Add the encoded TypeString to the cache only if it is NonRecursive or /// Recursive (viz: all sub-members were expanded as fully as possible). void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, bool IsRecursive) { if (!ID || IncompleteUsedCount) return; // No key or it is is an incomplete sub-type so don't add. Entry &E = Map[ID]; if (IsRecursive && !E.Str.empty()) { assert(E.State==Recursive && E.Str.size() == Str.size() && "This is not the same Recursive entry"); // The parent container was not recursive after all, so we could have used // this Recursive sub-member entry after all, but we assumed the worse when // we started viz: IncompleteCount!=0. return; } assert(E.Str.empty() && "Entry already present"); E.Str = Str.str(); E.State = IsRecursive? Recursive : NonRecursive; } /// Return a cached TypeString encoding for the ID. If there isn't one, or we /// are recursively expanding a type (IncompleteCount != 0) and the cached /// encoding is Recursive, return an empty StringRef. StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { if (!ID) return StringRef(); // We have no key. auto I = Map.find(ID); if (I == Map.end()) return StringRef(); // We have no encoding. Entry &E = I->second; if (E.State == Recursive && IncompleteCount) return StringRef(); // We don't use Recursive encodings for member types. if (E.State == Incomplete) { // The incomplete type is being used to break out of recursion. E.State = IncompleteUsed; ++IncompleteUsedCount; } return E.Str; } /// The XCore ABI includes a type information section that communicates symbol /// type information to the linker. The linker uses this information to verify /// safety/correctness of things such as array bound and pointers et al. /// The ABI only requires C (and XC) language modules to emit TypeStrings. /// This type information (TypeString) is emitted into meta data for all global /// symbols: definitions, declarations, functions & variables. /// /// The TypeString carries type, qualifier, name, size & value details. /// Please see 'Tools Development Guide' section 2.16.2 for format details: /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf /// The output is tested by test/CodeGen/xcore-stringtype.c. /// static bool getTypeString(SmallStringEnc &Enc, const Decl *D, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. void XCoreTargetCodeGenInfo::emitTargetMD( const Decl *D, llvm::GlobalValue *GV, const CodeGen::CodeGenModule &CGM) const { SmallStringEnc Enc; if (getTypeString(Enc, D, CGM, TSC)) { llvm::LLVMContext &Ctx = CGM.getModule().getContext(); llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Enc.str())}; llvm::NamedMDNode *MD = CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); } } void XCoreTargetCodeGenInfo::emitTargetMetadata( CodeGen::CodeGenModule &CGM, const llvm::MapVector &MangledDeclNames) const { // Warning, new MangledDeclNames may be appended within this loop. // We rely on MapVector insertions adding new elements to the end // of the container. for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { auto Val = *(MangledDeclNames.begin() + I); llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); if (GV) { const Decl *D = Val.first.getDecl()->getMostRecentDecl(); emitTargetMD(D, GV, CGM); } } } //===----------------------------------------------------------------------===// // Base ABI and target codegen info implementation common between SPIR and // SPIR-V. //===----------------------------------------------------------------------===// namespace { class CommonSPIRABIInfo : public DefaultABIInfo { public: CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } private: void setCCs(); }; class SPIRVABIInfo : public CommonSPIRABIInfo { public: SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} void computeInfo(CGFunctionInfo &FI) const override; private: ABIArgInfo classifyKernelArgumentType(QualType Ty) const; }; } // end anonymous namespace namespace { class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { public: CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} CommonSPIRTargetCodeGenInfo(std::unique_ptr ABIInfo) : TargetCodeGenInfo(std::move(ABIInfo)) {} LangAS getASTAllocaAddressSpace() const override { return getLangASFromTargetAS( getABIInfo().getDataLayout().getAllocaAddrSpace()); } unsigned getOpenCLKernelCallingConv() const override; }; class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { public: SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : CommonSPIRTargetCodeGenInfo(std::make_unique(CGT)) {} void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; }; } // End anonymous namespace. void CommonSPIRABIInfo::setCCs() { assert(getRuntimeCC() == llvm::CallingConv::C); RuntimeCC = llvm::CallingConv::SPIR_FUNC; } ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { if (getContext().getLangOpts().HIP) { // Coerce pointer arguments with default address space to CrossWorkGroup // pointers for HIPSPV. When the language mode is HIP, the SPIRTargetInfo // maps cuda_device to SPIR-V's CrossWorkGroup address space. llvm::Type *LTy = CGT.ConvertType(Ty); auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); auto *PtrTy = llvm::dyn_cast(LTy); if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); return ABIArgInfo::getDirect(LTy, 0, nullptr, false); } } return classifyArgumentType(Ty); } void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { // The logic is same as in DefaultABIInfo with an exception on the kernel // arguments handling. llvm::CallingConv::ID CC = FI.getCallingConvention(); if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &I : FI.arguments()) { if (CC == llvm::CallingConv::SPIR_KERNEL) { I.info = classifyKernelArgumentType(I.type); } else { I.info = classifyArgumentType(I.type); } } } namespace clang { namespace CodeGen { void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { if (CGM.getTarget().getTriple().isSPIRV()) SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); else CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); } } } unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { return llvm::CallingConv::SPIR_KERNEL; } void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( const FunctionType *&FT) const { // Convert HIP kernels to SPIR-V kernels. if (getABIInfo().getContext().getLangOpts().HIP) { FT = getABIInfo().getContext().adjustFunctionType( FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); return; } } static bool appendType(SmallStringEnc &Enc, QualType QType, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); /// Helper function for appendRecordType(). /// Builds a SmallVector containing the encoded field types in declaration /// order. static bool extractFieldType(SmallVectorImpl &FE, const RecordDecl *RD, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { for (const auto *Field : RD->fields()) { SmallStringEnc Enc; Enc += "m("; Enc += Field->getName(); Enc += "){"; if (Field->isBitField()) { Enc += "b("; llvm::raw_svector_ostream OS(Enc); OS << Field->getBitWidthValue(CGM.getContext()); Enc += ':'; } if (!appendType(Enc, Field->getType(), CGM, TSC)) return false; if (Field->isBitField()) Enc += ')'; Enc += '}'; FE.emplace_back(!Field->getName().empty(), Enc); } return true; } /// Appends structure and union types to Enc and adds encoding to cache. /// Recursively calls appendType (via extractFieldType) for each field. /// Union types have their fields ordered according to the ABI. static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC, const IdentifierInfo *ID) { // Append the cached TypeString if we have one. StringRef TypeString = TSC.lookupStr(ID); if (!TypeString.empty()) { Enc += TypeString; return true; } // Start to emit an incomplete TypeString. size_t Start = Enc.size(); Enc += (RT->isUnionType()? 'u' : 's'); Enc += '('; if (ID) Enc += ID->getName(); Enc += "){"; // We collect all encoded fields and order as necessary. bool IsRecursive = false; const RecordDecl *RD = RT->getDecl()->getDefinition(); if (RD && !RD->field_empty()) { // An incomplete TypeString stub is placed in the cache for this RecordType // so that recursive calls to this RecordType will use it whilst building a // complete TypeString for this RecordType. SmallVector FE; std::string StubEnc(Enc.substr(Start).str()); StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. TSC.addIncomplete(ID, std::move(StubEnc)); if (!extractFieldType(FE, RD, CGM, TSC)) { (void) TSC.removeIncomplete(ID); return false; } IsRecursive = TSC.removeIncomplete(ID); // The ABI requires unions to be sorted but not structures. // See FieldEncoding::operator< for sort algorithm. if (RT->isUnionType()) llvm::sort(FE); // We can now complete the TypeString. unsigned E = FE.size(); for (unsigned I = 0; I != E; ++I) { if (I) Enc += ','; Enc += FE[I].str(); } } Enc += '}'; TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); return true; } /// Appends enum types to Enc and adds the encoding to the cache. static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, TypeStringCache &TSC, const IdentifierInfo *ID) { // Append the cached TypeString if we have one. StringRef TypeString = TSC.lookupStr(ID); if (!TypeString.empty()) { Enc += TypeString; return true; } size_t Start = Enc.size(); Enc += "e("; if (ID) Enc += ID->getName(); Enc += "){"; // We collect all encoded enumerations and order them alphanumerically. if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { SmallVector FE; for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; ++I) { SmallStringEnc EnumEnc; EnumEnc += "m("; EnumEnc += I->getName(); EnumEnc += "){"; I->getInitVal().toString(EnumEnc); EnumEnc += '}'; FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); } llvm::sort(FE); unsigned E = FE.size(); for (unsigned I = 0; I != E; ++I) { if (I) Enc += ','; Enc += FE[I].str(); } } Enc += '}'; TSC.addIfComplete(ID, Enc.substr(Start), false); return true; } /// Appends type's qualifier to Enc. /// This is done prior to appending the type's encoding. static void appendQualifier(SmallStringEnc &Enc, QualType QT) { // Qualifiers are emitted in alphabetical order. static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; int Lookup = 0; if (QT.isConstQualified()) Lookup += 1<<0; if (QT.isRestrictQualified()) Lookup += 1<<1; if (QT.isVolatileQualified()) Lookup += 1<<2; Enc += Table[Lookup]; } /// Appends built-in types to Enc. static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { const char *EncType; switch (BT->getKind()) { case BuiltinType::Void: EncType = "0"; break; case BuiltinType::Bool: EncType = "b"; break; case BuiltinType::Char_U: EncType = "uc"; break; case BuiltinType::UChar: EncType = "uc"; break; case BuiltinType::SChar: EncType = "sc"; break; case BuiltinType::UShort: EncType = "us"; break; case BuiltinType::Short: EncType = "ss"; break; case BuiltinType::UInt: EncType = "ui"; break; case BuiltinType::Int: EncType = "si"; break; case BuiltinType::ULong: EncType = "ul"; break; case BuiltinType::Long: EncType = "sl"; break; case BuiltinType::ULongLong: EncType = "ull"; break; case BuiltinType::LongLong: EncType = "sll"; break; case BuiltinType::Float: EncType = "ft"; break; case BuiltinType::Double: EncType = "d"; break; case BuiltinType::LongDouble: EncType = "ld"; break; default: return false; } Enc += EncType; return true; } /// Appends a pointer encoding to Enc before calling appendType for the pointee. static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { Enc += "p("; if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) return false; Enc += ')'; return true; } /// Appends array encoding to Enc before calling appendType for the element. static bool appendArrayType(SmallStringEnc &Enc, QualType QT, const ArrayType *AT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC, StringRef NoSizeEnc) { if (AT->getSizeModifier() != ArrayType::Normal) return false; Enc += "a("; if (const ConstantArrayType *CAT = dyn_cast(AT)) CAT->getSize().toStringUnsigned(Enc); else Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". Enc += ':'; // The Qualifiers should be attached to the type rather than the array. appendQualifier(Enc, QT); if (!appendType(Enc, AT->getElementType(), CGM, TSC)) return false; Enc += ')'; return true; } /// Appends a function encoding to Enc, calling appendType for the return type /// and the arguments. static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { Enc += "f{"; if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) return false; Enc += "}("; if (const FunctionProtoType *FPT = FT->getAs()) { // N.B. we are only interested in the adjusted param types. auto I = FPT->param_type_begin(); auto E = FPT->param_type_end(); if (I != E) { do { if (!appendType(Enc, *I, CGM, TSC)) return false; ++I; if (I != E) Enc += ','; } while (I != E); if (FPT->isVariadic()) Enc += ",va"; } else { if (FPT->isVariadic()) Enc += "va"; else Enc += '0'; } } Enc += ')'; return true; } /// Handles the type's qualifier before dispatching a call to handle specific /// type encodings. static bool appendType(SmallStringEnc &Enc, QualType QType, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { QualType QT = QType.getCanonicalType(); if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) // The Qualifiers should be attached to the type rather than the array. // Thus we don't call appendQualifier() here. return appendArrayType(Enc, QT, AT, CGM, TSC, ""); appendQualifier(Enc, QT); if (const BuiltinType *BT = QT->getAs()) return appendBuiltinType(Enc, BT); if (const PointerType *PT = QT->getAs()) return appendPointerType(Enc, PT, CGM, TSC); if (const EnumType *ET = QT->getAs()) return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); if (const RecordType *RT = QT->getAsStructureType()) return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); if (const RecordType *RT = QT->getAsUnionType()) return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); if (const FunctionType *FT = QT->getAs()) return appendFunctionType(Enc, FT, CGM, TSC); return false; } static bool getTypeString(SmallStringEnc &Enc, const Decl *D, const CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { if (!D) return false; if (const FunctionDecl *FD = dyn_cast(D)) { if (FD->getLanguageLinkage() != CLanguageLinkage) return false; return appendType(Enc, FD->getType(), CGM, TSC); } if (const VarDecl *VD = dyn_cast(D)) { if (VD->getLanguageLinkage() != CLanguageLinkage) return false; QualType QT = VD->getType().getCanonicalType(); if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { // Global ArrayTypes are given a size of '*' if the size is unknown. // The Qualifiers should be attached to the type rather than the array. // Thus we don't call appendQualifier() here. return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); } return appendType(Enc, QT, CGM, TSC); } return false; } //===----------------------------------------------------------------------===// // RISCV ABI Implementation //===----------------------------------------------------------------------===// namespace { class RISCVABIInfo : public DefaultABIInfo { private: // Size of the integer ('x') registers in bits. unsigned XLen; // Size of the floating point ('f') registers in bits. Note that the target // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target // with soft float ABI has FLen==0). unsigned FLen; static const int NumArgGPRs = 8; static const int NumArgFPRs = 8; bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off) const; public: RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} // DefaultABIInfo's classifyReturnType and classifyArgumentType are // non-virtual, but computeInfo is virtual, so we overload it. void computeInfo(CGFunctionInfo &FI) const override; ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, int &ArgFPRsLeft) const; ABIArgInfo classifyReturnType(QualType RetTy) const; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; ABIArgInfo extendType(QualType Ty) const; bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededArgGPRs, int &NeededArgFPRs) const; ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const; }; } // end anonymous namespace void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { QualType RetTy = FI.getReturnType(); if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(RetTy); // IsRetIndirect is true if classifyArgumentType indicated the value should // be passed indirect, or if the type size is a scalar greater than 2*XLen // and not a complex type with elements <= FLen. e.g. fp128 is passed direct // in LLVM IR, relying on the backend lowering code to rewrite the argument // list and pass indirectly on RV32. bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; if (!IsRetIndirect && RetTy->isScalarType() && getContext().getTypeSize(RetTy) > (2 * XLen)) { if (RetTy->isComplexType() && FLen) { QualType EltTy = RetTy->castAs()->getElementType(); IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; } else { // This is a normal scalar > 2*XLen, such as fp128 on RV32. IsRetIndirect = true; } } // We must track the number of GPRs used in order to conform to the RISC-V // ABI, as integer scalars passed in registers should have signext/zeroext // when promoted, but are anyext if passed on the stack. As GPR usage is // different for variadic arguments, we must also track whether we are // examining a vararg or not. int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; int ArgFPRsLeft = FLen ? NumArgFPRs : 0; int NumFixedArgs = FI.getNumRequiredArgs(); int ArgNum = 0; for (auto &ArgInfo : FI.arguments()) { bool IsFixed = ArgNum < NumFixedArgs; ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); ArgNum++; } } // Returns true if the struct is a potential candidate for the floating point // calling convention. If this function returns true, the caller is // responsible for checking that if there is only a single field then that // field is a float. bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off) const { bool IsInt = Ty->isIntegralOrEnumerationType(); bool IsFloat = Ty->isRealFloatingType(); if (IsInt || IsFloat) { uint64_t Size = getContext().getTypeSize(Ty); if (IsInt && Size > XLen) return false; // Can't be eligible if larger than the FP registers. Half precision isn't // currently supported on RISC-V and the ABI hasn't been confirmed, so // default to the integer ABI in that case. if (IsFloat && (Size > FLen || Size < 32)) return false; // Can't be eligible if an integer type was already found (int+int pairs // are not eligible). if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) return false; if (!Field1Ty) { Field1Ty = CGT.ConvertType(Ty); Field1Off = CurOff; return true; } if (!Field2Ty) { Field2Ty = CGT.ConvertType(Ty); Field2Off = CurOff; return true; } return false; } if (auto CTy = Ty->getAs()) { if (Field1Ty) return false; QualType EltTy = CTy->getElementType(); if (getContext().getTypeSize(EltTy) > FLen) return false; Field1Ty = CGT.ConvertType(EltTy); Field1Off = CurOff; Field2Ty = Field1Ty; Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); return true; } if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { uint64_t ArraySize = ATy->getSize().getZExtValue(); QualType EltTy = ATy->getElementType(); CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); for (uint64_t i = 0; i < ArraySize; ++i) { bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off, Field2Ty, Field2Off); if (!Ret) return false; CurOff += EltSize; } return true; } if (const auto *RTy = Ty->getAs()) { // Structures with either a non-trivial destructor or a non-trivial // copy constructor are not eligible for the FP calling convention. if (getRecordArgABI(Ty, CGT.getCXXABI())) return false; if (isEmptyRecord(getContext(), Ty, true)) return true; const RecordDecl *RD = RTy->getDecl(); // Unions aren't eligible unless they're empty (which is caught above). if (RD->isUnion()) return false; int ZeroWidthBitFieldCount = 0; for (const FieldDecl *FD : RD->fields()) { const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); QualType QTy = FD->getType(); if (FD->isBitField()) { unsigned BitWidth = FD->getBitWidthValue(getContext()); // Allow a bitfield with a type greater than XLen as long as the // bitwidth is XLen or less. if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) QTy = getContext().getIntTypeForBitwidth(XLen, false); if (BitWidth == 0) { ZeroWidthBitFieldCount++; continue; } } bool Ret = detectFPCCEligibleStructHelper( QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), Field1Ty, Field1Off, Field2Ty, Field2Off); if (!Ret) return false; // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp // or int+fp structs, but are ignored for a struct with an fp field and // any number of zero-width bitfields. if (Field2Ty && ZeroWidthBitFieldCount > 0) return false; } return Field1Ty != nullptr; } return false; } // Determine if a struct is eligible for passing according to the floating // point calling convention (i.e., when flattened it contains a single fp // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and // NeededArgGPRs are incremented appropriately. bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededArgGPRs, int &NeededArgFPRs) const { Field1Ty = nullptr; Field2Ty = nullptr; NeededArgGPRs = 0; NeededArgFPRs = 0; bool IsCandidate = detectFPCCEligibleStructHelper( Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); // Not really a candidate if we have a single int but no float. if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) return false; if (!IsCandidate) return false; if (Field1Ty && Field1Ty->isFloatingPointTy()) NeededArgFPRs++; else if (Field1Ty) NeededArgGPRs++; if (Field2Ty && Field2Ty->isFloatingPointTy()) NeededArgFPRs++; else if (Field2Ty) NeededArgGPRs++; return true; } // Call getCoerceAndExpand for the two-element flattened struct described by // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an // appropriate coerceToType and unpaddedCoerceToType. ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const { SmallVector CoerceElts; SmallVector UnpaddedCoerceElts; if (!Field1Off.isZero()) CoerceElts.push_back(llvm::ArrayType::get( llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); CoerceElts.push_back(Field1Ty); UnpaddedCoerceElts.push_back(Field1Ty); if (!Field2Ty) { return ABIArgInfo::getCoerceAndExpand( llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), UnpaddedCoerceElts[0]); } CharUnits Field2Align = CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); CharUnits Field1End = Field1Off + CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); CharUnits Padding = CharUnits::Zero(); if (Field2Off > Field2OffNoPadNoPack) Padding = Field2Off - Field2OffNoPadNoPack; else if (Field2Off != Field2Align && Field2Off > Field1End) Padding = Field2Off - Field1End; bool IsPacked = !Field2Off.isMultipleOf(Field2Align); if (!Padding.isZero()) CoerceElts.push_back(llvm::ArrayType::get( llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); CoerceElts.push_back(Field2Ty); UnpaddedCoerceElts.push_back(Field2Ty); auto CoerceToType = llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); auto UnpaddedCoerceToType = llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); } ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, int &ArgFPRsLeft) const { assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); Ty = useFirstFieldIfTransparentUnion(Ty); // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always passed indirectly. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { if (ArgGPRsLeft) ArgGPRsLeft -= 1; return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == CGCXXABI::RAA_DirectInMemory); } // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); uint64_t Size = getContext().getTypeSize(Ty); // Pass floating point values via FPRs if possible. if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size && ArgFPRsLeft) { ArgFPRsLeft--; return ABIArgInfo::getDirect(); } // Complex types for the hard float ABI must be passed direct rather than // using CoerceAndExpand. if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { QualType EltTy = Ty->castAs()->getElementType(); if (getContext().getTypeSize(EltTy) <= FLen) { ArgFPRsLeft -= 2; return ABIArgInfo::getDirect(); } } if (IsFixed && FLen && Ty->isStructureOrClassType()) { llvm::Type *Field1Ty = nullptr; llvm::Type *Field2Ty = nullptr; CharUnits Field1Off = CharUnits::Zero(); CharUnits Field2Off = CharUnits::Zero(); int NeededArgGPRs = 0; int NeededArgFPRs = 0; bool IsCandidate = detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededArgGPRs, NeededArgFPRs); if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && NeededArgFPRs <= ArgFPRsLeft) { ArgGPRsLeft -= NeededArgGPRs; ArgFPRsLeft -= NeededArgFPRs; return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, Field2Off); } } uint64_t NeededAlign = getContext().getTypeAlign(Ty); bool MustUseStack = false; // Determine the number of GPRs needed to pass the current argument // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" // register pairs, so may consume 3 registers. int NeededArgGPRs = 1; if (!IsFixed && NeededAlign == 2 * XLen) NeededArgGPRs = 2 + (ArgGPRsLeft % 2); else if (Size > XLen && Size <= 2 * XLen) NeededArgGPRs = 2; if (NeededArgGPRs > ArgGPRsLeft) { MustUseStack = true; NeededArgGPRs = ArgGPRsLeft; } ArgGPRsLeft -= NeededArgGPRs; if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // All integral types are promoted to XLen width, unless passed on the // stack. if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { return extendType(Ty); } if (const auto *EIT = Ty->getAs()) { if (EIT->getNumBits() < XLen && !MustUseStack) return extendType(Ty); if (EIT->getNumBits() > 128 || (!getContext().getTargetInfo().hasInt128Type() && EIT->getNumBits() > 64)) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } return ABIArgInfo::getDirect(); } // Aggregates which are <= 2*XLen will be passed in registers if possible, // so coerce to integers. if (Size <= 2 * XLen) { unsigned Alignment = getContext().getTypeAlign(Ty); // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is // required, and a 2-element XLen array if only XLen alignment is required. if (Size <= XLen) { return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), XLen)); } else if (Alignment == 2 * XLen) { return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), 2 * XLen)); } else { return ABIArgInfo::getDirect(llvm::ArrayType::get( llvm::IntegerType::get(getVMContext(), XLen), 2)); } } return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); int ArgGPRsLeft = 2; int ArgFPRsLeft = FLen ? 2 : 0; // The rules for return and argument types are the same, so defer to // classifyArgumentType. return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, ArgFPRsLeft); } Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); // Empty records are ignored for parameter passing purposes. if (isEmptyRecord(getContext(), Ty, true)) { Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); return Addr; } auto TInfo = getContext().getTypeInfoInChars(Ty); // Arguments bigger than 2*Xlen bytes are passed indirectly. bool IsIndirect = TInfo.Width > 2 * SlotSize; return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, SlotSize, /*AllowHigherAlign=*/true); } ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { int TySize = getContext().getTypeSize(Ty); // RV64 ABI requires unsigned 32 bit integers to be sign extended. if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) return ABIArgInfo::getSignExtend(Ty); return ABIArgInfo::getExtend(Ty); } namespace { class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { public: RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) : TargetCodeGenInfo(std::make_unique(CGT, XLen, FLen)) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { const auto *FD = dyn_cast_or_null(D); if (!FD) return; const auto *Attr = FD->getAttr(); if (!Attr) return; const char *Kind; switch (Attr->getInterrupt()) { case RISCVInterruptAttr::user: Kind = "user"; break; case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; case RISCVInterruptAttr::machine: Kind = "machine"; break; } auto *Fn = cast(GV); Fn->addFnAttr("interrupt", Kind); } }; } // namespace //===----------------------------------------------------------------------===// // VE ABI Implementation. // namespace { class VEABIInfo : public DefaultABIInfo { public: VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} private: ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; void computeInfo(CGFunctionInfo &FI) const override; }; } // end anonymous namespace ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { if (Ty->isAnyComplexType()) return ABIArgInfo::getDirect(); uint64_t Size = getContext().getTypeSize(Ty); if (Size < 64 && Ty->isIntegerType()) return ABIArgInfo::getExtend(Ty); return DefaultABIInfo::classifyReturnType(Ty); } ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { if (Ty->isAnyComplexType()) return ABIArgInfo::getDirect(); uint64_t Size = getContext().getTypeSize(Ty); if (Size < 64 && Ty->isIntegerType()) return ABIArgInfo::getExtend(Ty); return DefaultABIInfo::classifyArgumentType(Ty); } void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (auto &Arg : FI.arguments()) Arg.info = classifyArgumentType(Arg.type); } namespace { class VETargetCodeGenInfo : public TargetCodeGenInfo { public: VETargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(std::make_unique(CGT)) {} // VE ABI requires the arguments of variadic and prototype-less functions // are passed in both registers and memory. bool isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const override { return true; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Driver code //===----------------------------------------------------------------------===// bool CodeGenModule::supportsCOMDAT() const { return getTriple().supportsCOMDAT(); } const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { if (TheTargetCodeGenInfo) return *TheTargetCodeGenInfo; // Helper to set the unique_ptr while still keeping the return value. auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { this->TheTargetCodeGenInfo.reset(P); return *P; }; const llvm::Triple &Triple = getTarget().getTriple(); switch (Triple.getArch()) { default: return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); case llvm::Triple::le32: return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); case llvm::Triple::m68k: return SetCGInfo(new M68kTargetCodeGenInfo(Types)); case llvm::Triple::mips: case llvm::Triple::mipsel: if (Triple.getOS() == llvm::Triple::NaCl) return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); case llvm::Triple::mips64: case llvm::Triple::mips64el: return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); case llvm::Triple::avr: { // For passing parameters, R8~R25 are used on avr, and R18~R25 are used // on avrtiny. For passing return value, R18~R25 are used on avr, and // R22~R25 are used on avrtiny. unsigned NPR = getTarget().getABI() == "avrtiny" ? 6 : 18; unsigned NRR = getTarget().getABI() == "avrtiny" ? 4 : 8; return SetCGInfo(new AVRTargetCodeGenInfo(Types, NPR, NRR)); } case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: case llvm::Triple::aarch64_be: { AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; if (getTarget().getABI() == "darwinpcs") Kind = AArch64ABIInfo::DarwinPCS; else if (Triple.isOSWindows()) return SetCGInfo( new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); } case llvm::Triple::wasm32: case llvm::Triple::wasm64: { WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; if (getTarget().getABI() == "experimental-mv") Kind = WebAssemblyABIInfo::ExperimentalMV; return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); } case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: { if (Triple.getOS() == llvm::Triple::Win32) { return SetCGInfo( new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); } ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; StringRef ABIStr = getTarget().getABI(); if (ABIStr == "apcs-gnu") Kind = ARMABIInfo::APCS; else if (ABIStr == "aapcs16") Kind = ARMABIInfo::AAPCS16_VFP; else if (CodeGenOpts.FloatABI == "hard" || (CodeGenOpts.FloatABI != "soft" && (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || Triple.getEnvironment() == llvm::Triple::MuslEABIHF || Triple.getEnvironment() == llvm::Triple::EABIHF))) Kind = ARMABIInfo::AAPCS_VFP; return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); } case llvm::Triple::ppc: { if (Triple.isOSAIX()) return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); bool IsSoftFloat = CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); bool RetSmallStructInRegABI = PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); return SetCGInfo( new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); } case llvm::Triple::ppcle: { bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; bool RetSmallStructInRegABI = PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); return SetCGInfo( new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); } case llvm::Triple::ppc64: if (Triple.isOSAIX()) return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); if (Triple.isOSBinFormatELF()) { PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; if (getTarget().getABI() == "elfv2") Kind = PPC64_SVR4_ABIInfo::ELFv2; bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; return SetCGInfo( new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); } return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); case llvm::Triple::ppc64le: { assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; if (getTarget().getABI() == "elfv1") Kind = PPC64_SVR4_ABIInfo::ELFv1; bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; return SetCGInfo( new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); } case llvm::Triple::nvptx: case llvm::Triple::nvptx64: return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); case llvm::Triple::msp430: return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); case llvm::Triple::riscv32: case llvm::Triple::riscv64: { StringRef ABIStr = getTarget().getABI(); unsigned XLen = getTarget().getPointerWidth(0); unsigned ABIFLen = 0; if (ABIStr.endswith("f")) ABIFLen = 32; else if (ABIStr.endswith("d")) ABIFLen = 64; return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); } case llvm::Triple::systemz: { bool SoftFloat = CodeGenOpts.FloatABI == "soft"; bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); } case llvm::Triple::tce: case llvm::Triple::tcele: return SetCGInfo(new TCETargetCodeGenInfo(Types)); case llvm::Triple::x86: { bool IsDarwinVectorABI = Triple.isOSDarwin(); bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); if (Triple.getOS() == llvm::Triple::Win32) { return SetCGInfo(new WinX86_32TargetCodeGenInfo( Types, IsDarwinVectorABI, RetSmallStructInRegABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); } else { return SetCGInfo(new X86_32TargetCodeGenInfo( Types, IsDarwinVectorABI, RetSmallStructInRegABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft")); } } case llvm::Triple::x86_64: { StringRef ABI = getTarget().getABI(); X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); switch (Triple.getOS()) { case llvm::Triple::Win32: return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); default: return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); } } case llvm::Triple::hexagon: return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); case llvm::Triple::lanai: return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); case llvm::Triple::r600: return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); case llvm::Triple::amdgcn: return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); case llvm::Triple::sparc: return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); case llvm::Triple::sparcv9: return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); case llvm::Triple::xcore: return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); case llvm::Triple::arc: return SetCGInfo(new ARCTargetCodeGenInfo(Types)); case llvm::Triple::spir: case llvm::Triple::spir64: return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); case llvm::Triple::spirv32: case llvm::Triple::spirv64: return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); case llvm::Triple::ve: return SetCGInfo(new VETargetCodeGenInfo(Types)); } } /// Create an OpenCL kernel for an enqueued block. /// /// The kernel has the same function type as the block invoke function. Its /// name is the name of the block invoke function postfixed with "_kernel". /// It simply calls the block invoke function then returns. llvm::Function * TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Value *BlockLiteral) const { auto *InvokeFT = Invoke->getFunctionType(); llvm::SmallVector ArgTys; for (auto &P : InvokeFT->params()) ArgTys.push_back(P); auto &C = CGF.getLLVMContext(); std::string Name = Invoke->getName().str() + "_kernel"; auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, &CGF.CGM.getModule()); auto IP = CGF.Builder.saveIP(); auto *BB = llvm::BasicBlock::Create(C, "entry", F); auto &Builder = CGF.Builder; Builder.SetInsertPoint(BB); llvm::SmallVector Args; for (auto &A : F->args()) Args.push_back(&A); llvm::CallInst *call = Builder.CreateCall(Invoke, Args); call->setCallingConv(Invoke->getCallingConv()); Builder.CreateRetVoid(); Builder.restoreIP(IP); return F; } /// Create an OpenCL kernel for an enqueued block. /// /// The type of the first argument (the block literal) is the struct type /// of the block literal instead of a pointer type. The first argument /// (block literal) is passed directly by value to the kernel. The kernel /// allocates the same type of struct on stack and stores the block literal /// to it and passes its pointer to the block invoke function. The kernel /// has "enqueued-block" function attribute and kernel argument metadata. llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Value *BlockLiteral) const { auto &Builder = CGF.Builder; auto &C = CGF.getLLVMContext(); auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); auto *InvokeFT = Invoke->getFunctionType(); llvm::SmallVector ArgTys; llvm::SmallVector AddressQuals; llvm::SmallVector AccessQuals; llvm::SmallVector ArgTypeNames; llvm::SmallVector ArgBaseTypeNames; llvm::SmallVector ArgTypeQuals; llvm::SmallVector ArgNames; ArgTys.push_back(BlockTy); ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); ArgTypeQuals.push_back(llvm::MDString::get(C, "")); AccessQuals.push_back(llvm::MDString::get(C, "none")); ArgNames.push_back(llvm::MDString::get(C, "block_literal")); for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { ArgTys.push_back(InvokeFT->getParamType(I)); ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); AccessQuals.push_back(llvm::MDString::get(C, "none")); ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); ArgTypeQuals.push_back(llvm::MDString::get(C, "")); ArgNames.push_back( llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); } std::string Name = Invoke->getName().str() + "_kernel"; auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, &CGF.CGM.getModule()); F->addFnAttr("enqueued-block"); auto IP = CGF.Builder.saveIP(); auto *BB = llvm::BasicBlock::Create(C, "entry", F); Builder.SetInsertPoint(BB); const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); BlockPtr->setAlignment(BlockAlign); Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); llvm::SmallVector Args; Args.push_back(Cast); for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) Args.push_back(I); llvm::CallInst *call = Builder.CreateCall(Invoke, Args); call->setCallingConv(Invoke->getCallingConv()); Builder.CreateRetVoid(); Builder.restoreIP(IP); F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); F->setMetadata("kernel_arg_base_type", llvm::MDNode::get(C, ArgBaseTypeNames)); F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); return F; }