//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // These classes implement wrappers around llvm::Value in order to // fully represent the range of values for C L- and R- values. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H #include "clang/AST/ASTContext.h" #include "clang/AST/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/Type.h" #include "Address.h" #include "CodeGenTBAA.h" namespace llvm { class Constant; class MDNode; } namespace clang { namespace CodeGen { class AggValueSlot; class CodeGenFunction; struct CGBitFieldInfo; /// RValue - This trivial value class is used to represent the result of an /// expression that is evaluated. It can be one of three things: either a /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the /// address of an aggregate value in memory. class RValue { enum Flavor { Scalar, Complex, Aggregate }; // The shift to make to an aggregate's alignment to make it look // like a pointer. enum { AggAlignShift = 4 }; // Stores first value and flavor. llvm::PointerIntPair V1; // Stores second value and volatility. llvm::PointerIntPair V2; // Stores element type for aggregate values. llvm::Type *ElementType; public: bool isScalar() const { return V1.getInt() == Scalar; } bool isComplex() const { return V1.getInt() == Complex; } bool isAggregate() const { return V1.getInt() == Aggregate; } bool isVolatileQualified() const { return V2.getInt(); } /// getScalarVal() - Return the Value* of this scalar value. llvm::Value *getScalarVal() const { assert(isScalar() && "Not a scalar!"); return V1.getPointer(); } /// getComplexVal - Return the real/imag components of this complex value. /// std::pair getComplexVal() const { return std::make_pair(V1.getPointer(), V2.getPointer()); } /// getAggregateAddr() - Return the Value* of the address of the aggregate. Address getAggregateAddress() const { assert(isAggregate() && "Not an aggregate!"); auto align = reinterpret_cast(V2.getPointer()) >> AggAlignShift; return Address( V1.getPointer(), ElementType, CharUnits::fromQuantity(align)); } llvm::Value *getAggregatePointer() const { assert(isAggregate() && "Not an aggregate!"); return V1.getPointer(); } static RValue getIgnored() { // FIXME: should we make this a more explicit state? return get(nullptr); } static RValue get(llvm::Value *V) { RValue ER; ER.V1.setPointer(V); ER.V1.setInt(Scalar); ER.V2.setInt(false); return ER; } static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { RValue ER; ER.V1.setPointer(V1); ER.V2.setPointer(V2); ER.V1.setInt(Complex); ER.V2.setInt(false); return ER; } static RValue getComplex(const std::pair &C) { return getComplex(C.first, C.second); } // FIXME: Aggregate rvalues need to retain information about whether they are // volatile or not. Remove default to find all places that probably get this // wrong. static RValue getAggregate(Address addr, bool isVolatile = false) { RValue ER; ER.V1.setPointer(addr.getPointer()); ER.V1.setInt(Aggregate); ER.ElementType = addr.getElementType(); auto align = static_cast(addr.getAlignment().getQuantity()); ER.V2.setPointer(reinterpret_cast(align << AggAlignShift)); ER.V2.setInt(isVolatile); return ER; } }; /// Does an ARC strong l-value have precise lifetime? enum ARCPreciseLifetime_t { ARCImpreciseLifetime, ARCPreciseLifetime }; /// The source of the alignment of an l-value; an expression of /// confidence in the alignment actually matching the estimate. enum class AlignmentSource { /// The l-value was an access to a declared entity or something /// equivalently strong, like the address of an array allocated by a /// language runtime. Decl, /// The l-value was considered opaque, so the alignment was /// determined from a type, but that type was an explicitly-aligned /// typedef. AttributedType, /// The l-value was considered opaque, so the alignment was /// determined from a type. Type }; /// Given that the base address has the given alignment source, what's /// our confidence in the alignment of the field? static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { // For now, we don't distinguish fields of opaque pointers from // top-level declarations, but maybe we should. return AlignmentSource::Decl; } class LValueBaseInfo { AlignmentSource AlignSource; public: explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) : AlignSource(Source) {} AlignmentSource getAlignmentSource() const { return AlignSource; } void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } void mergeForCast(const LValueBaseInfo &Info) { setAlignmentSource(Info.getAlignmentSource()); } }; /// LValue - This represents an lvalue references. Because C/C++ allow /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a /// bitrange. class LValue { enum { Simple, // This is a normal l-value, use getAddress(). VectorElt, // This is a vector element l-value (V[i]), use getVector* BitField, // This is a bitfield l-value, use getBitfield*. ExtVectorElt, // This is an extended vector subset, use getExtVectorComp GlobalReg, // This is a register l-value, use getGlobalReg() MatrixElt // This is a matrix element, use getVector* } LVType; llvm::Value *V; llvm::Type *ElementType; union { // Index into a vector subscript: V[i] llvm::Value *VectorIdx; // ExtVector element subset: V.xyx llvm::Constant *VectorElts; // BitField start bit and size const CGBitFieldInfo *BitFieldInfo; }; QualType Type; // 'const' is unused here Qualifiers Quals; // The alignment to use when accessing this lvalue. (For vector elements, // this is the alignment of the whole vector.) unsigned Alignment; // objective-c's ivar bool Ivar:1; // objective-c's ivar is an array bool ObjIsArray:1; // LValue is non-gc'able for any reason, including being a parameter or local // variable. bool NonGC: 1; // Lvalue is a global reference of an objective-c object bool GlobalObjCRef : 1; // Lvalue is a thread local reference bool ThreadLocalRef : 1; // Lvalue has ARC imprecise lifetime. We store this inverted to try // to make the default bitfield pattern all-zeroes. bool ImpreciseLifetime : 1; // This flag shows if a nontemporal load/stores should be used when accessing // this lvalue. bool Nontemporal : 1; LValueBaseInfo BaseInfo; TBAAAccessInfo TBAAInfo; Expr *BaseIvarExp; private: void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { assert((!Alignment.isZero() || Type->isIncompleteType()) && "initializing l-value with zero alignment!"); if (isGlobalReg()) assert(ElementType == nullptr && "Global reg does not store elem type"); else assert(llvm::cast(V->getType()) ->isOpaqueOrPointeeTypeMatches(ElementType) && "Pointer element type mismatch"); this->Type = Type; this->Quals = Quals; const unsigned MaxAlign = 1U << 31; this->Alignment = Alignment.getQuantity() <= MaxAlign ? Alignment.getQuantity() : MaxAlign; assert(this->Alignment == Alignment.getQuantity() && "Alignment exceeds allowed max!"); this->BaseInfo = BaseInfo; this->TBAAInfo = TBAAInfo; // Initialize Objective-C flags. this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; this->ImpreciseLifetime = false; this->Nontemporal = false; this->ThreadLocalRef = false; this->BaseIvarExp = nullptr; } public: bool isSimple() const { return LVType == Simple; } bool isVectorElt() const { return LVType == VectorElt; } bool isBitField() const { return LVType == BitField; } bool isExtVectorElt() const { return LVType == ExtVectorElt; } bool isGlobalReg() const { return LVType == GlobalReg; } bool isMatrixElt() const { return LVType == MatrixElt; } bool isVolatileQualified() const { return Quals.hasVolatile(); } bool isRestrictQualified() const { return Quals.hasRestrict(); } unsigned getVRQualifiers() const { return Quals.getCVRQualifiers() & ~Qualifiers::Const; } QualType getType() const { return Type; } Qualifiers::ObjCLifetime getObjCLifetime() const { return Quals.getObjCLifetime(); } bool isObjCIvar() const { return Ivar; } void setObjCIvar(bool Value) { Ivar = Value; } bool isObjCArray() const { return ObjIsArray; } void setObjCArray(bool Value) { ObjIsArray = Value; } bool isNonGC () const { return NonGC; } void setNonGC(bool Value) { NonGC = Value; } bool isGlobalObjCRef() const { return GlobalObjCRef; } void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } bool isThreadLocalRef() const { return ThreadLocalRef; } void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} ARCPreciseLifetime_t isARCPreciseLifetime() const { return ARCPreciseLifetime_t(!ImpreciseLifetime); } void setARCPreciseLifetime(ARCPreciseLifetime_t value) { ImpreciseLifetime = (value == ARCImpreciseLifetime); } bool isNontemporal() const { return Nontemporal; } void setNontemporal(bool Value) { Nontemporal = Value; } bool isObjCWeak() const { return Quals.getObjCGCAttr() == Qualifiers::Weak; } bool isObjCStrong() const { return Quals.getObjCGCAttr() == Qualifiers::Strong; } bool isVolatile() const { return Quals.hasVolatile(); } Expr *getBaseIvarExp() const { return BaseIvarExp; } void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } const Qualifiers &getQuals() const { return Quals; } Qualifiers &getQuals() { return Quals; } LangAS getAddressSpace() const { return Quals.getAddressSpace(); } CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } LValueBaseInfo getBaseInfo() const { return BaseInfo; } void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } // simple lvalue llvm::Value *getPointer(CodeGenFunction &CGF) const { assert(isSimple()); return V; } Address getAddress(CodeGenFunction &CGF) const { return Address(getPointer(CGF), ElementType, getAlignment()); } void setAddress(Address address) { assert(isSimple()); V = address.getPointer(); ElementType = address.getElementType(); Alignment = address.getAlignment().getQuantity(); } // vector elt lvalue Address getVectorAddress() const { return Address(getVectorPointer(), ElementType, getAlignment()); } llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; } llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } Address getMatrixAddress() const { return Address(getMatrixPointer(), ElementType, getAlignment()); } llvm::Value *getMatrixPointer() const { assert(isMatrixElt()); return V; } llvm::Value *getMatrixIdx() const { assert(isMatrixElt()); return VectorIdx; } // extended vector elements. Address getExtVectorAddress() const { return Address(getExtVectorPointer(), ElementType, getAlignment()); } llvm::Value *getExtVectorPointer() const { assert(isExtVectorElt()); return V; } llvm::Constant *getExtVectorElts() const { assert(isExtVectorElt()); return VectorElts; } // bitfield lvalue Address getBitFieldAddress() const { return Address(getBitFieldPointer(), ElementType, getAlignment()); } llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; } const CGBitFieldInfo &getBitFieldInfo() const { assert(isBitField()); return *BitFieldInfo; } // global register lvalue llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } static LValue MakeAddr(Address address, QualType type, ASTContext &Context, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { Qualifiers qs = type.getQualifiers(); qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); LValue R; R.LVType = Simple; assert(address.getPointer()->getType()->isPointerTy()); R.V = address.getPointer(); R.ElementType = address.getElementType(); R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo); return R; } static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = VectorElt; R.V = vecAddress.getPointer(); R.ElementType = vecAddress.getElementType(); R.VectorIdx = Idx; R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), BaseInfo, TBAAInfo); return R; } static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = ExtVectorElt; R.V = vecAddress.getPointer(); R.ElementType = vecAddress.getElementType(); R.VectorElts = Elts; R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), BaseInfo, TBAAInfo); return R; } /// Create a new object to represent a bit-field access. /// /// \param Addr - The base address of the bit-field sequence this /// bit-field refers to. /// \param Info - The information describing how to perform the bit-field /// access. static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = BitField; R.V = Addr.getPointer(); R.ElementType = Addr.getElementType(); R.BitFieldInfo = &Info; R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo, TBAAInfo); return R; } static LValue MakeGlobalReg(llvm::Value *V, CharUnits alignment, QualType type) { LValue R; R.LVType = GlobalReg; R.V = V; R.ElementType = nullptr; R.Initialize(type, type.getQualifiers(), alignment, LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); return R; } static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { LValue R; R.LVType = MatrixElt; R.V = matAddress.getPointer(); R.ElementType = matAddress.getElementType(); R.VectorIdx = Idx; R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(), BaseInfo, TBAAInfo); return R; } RValue asAggregateRValue(CodeGenFunction &CGF) const { return RValue::getAggregate(getAddress(CGF), isVolatileQualified()); } }; /// An aggregate value slot. class AggValueSlot { /// The address. Address Addr; // Qualifiers Qualifiers Quals; /// DestructedFlag - This is set to true if some external code is /// responsible for setting up a destructor for the slot. Otherwise /// the code which constructs it should push the appropriate cleanup. bool DestructedFlag : 1; /// ObjCGCFlag - This is set to true if writing to the memory in the /// slot might require calling an appropriate Objective-C GC /// barrier. The exact interaction here is unnecessarily mysterious. bool ObjCGCFlag : 1; /// ZeroedFlag - This is set to true if the memory in the slot is /// known to be zero before the assignment into it. This means that /// zero fields don't need to be set. bool ZeroedFlag : 1; /// AliasedFlag - This is set to true if the slot might be aliased /// and it's not undefined behavior to access it through such an /// alias. Note that it's always undefined behavior to access a C++ /// object that's under construction through an alias derived from /// outside the construction process. /// /// This flag controls whether calls that produce the aggregate /// value may be evaluated directly into the slot, or whether they /// must be evaluated into an unaliased temporary and then memcpy'ed /// over. Since it's invalid in general to memcpy a non-POD C++ /// object, it's important that this flag never be set when /// evaluating an expression which constructs such an object. bool AliasedFlag : 1; /// This is set to true if the tail padding of this slot might overlap /// another object that may have already been initialized (and whose /// value must be preserved by this initialization). If so, we may only /// store up to the dsize of the type. Otherwise we can widen stores to /// the size of the type. bool OverlapFlag : 1; /// If is set to true, sanitizer checks are already generated for this address /// or not required. For instance, if this address represents an object /// created in 'new' expression, sanitizer checks for memory is made as a part /// of 'operator new' emission and object constructor should not generate /// them. bool SanitizerCheckedFlag : 1; AggValueSlot(Address Addr, Qualifiers Quals, bool DestructedFlag, bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag, bool OverlapFlag, bool SanitizerCheckedFlag) : Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag), ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag), AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag), SanitizerCheckedFlag(SanitizerCheckedFlag) {} public: enum IsAliased_t { IsNotAliased, IsAliased }; enum IsDestructed_t { IsNotDestructed, IsDestructed }; enum IsZeroed_t { IsNotZeroed, IsZeroed }; enum Overlap_t { DoesNotOverlap, MayOverlap }; enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked }; /// ignored - Returns an aggregate value slot indicating that the /// aggregate value is being ignored. static AggValueSlot ignored() { return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); } /// forAddr - Make a slot for an aggregate value. /// /// \param quals - The qualifiers that dictate how the slot should /// be initialied. Only 'volatile' and the Objective-C lifetime /// qualifiers matter. /// /// \param isDestructed - true if something else is responsible /// for calling destructors on this object /// \param needsGC - true if the slot is potentially located /// somewhere that ObjC GC calls should be emitted for static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased, mayOverlap, isChecked); } static AggValueSlot forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC, isAliased, mayOverlap, isZeroed, isChecked); } IsDestructed_t isExternallyDestructed() const { return IsDestructed_t(DestructedFlag); } void setExternallyDestructed(bool destructed = true) { DestructedFlag = destructed; } Qualifiers getQualifiers() const { return Quals; } bool isVolatile() const { return Quals.hasVolatile(); } void setVolatile(bool flag) { if (flag) Quals.addVolatile(); else Quals.removeVolatile(); } Qualifiers::ObjCLifetime getObjCLifetime() const { return Quals.getObjCLifetime(); } NeedsGCBarriers_t requiresGCollection() const { return NeedsGCBarriers_t(ObjCGCFlag); } llvm::Value *getPointer() const { return Addr.getPointer(); } Address getAddress() const { return Addr; } bool isIgnored() const { return !Addr.isValid(); } CharUnits getAlignment() const { return Addr.getAlignment(); } IsAliased_t isPotentiallyAliased() const { return IsAliased_t(AliasedFlag); } Overlap_t mayOverlap() const { return Overlap_t(OverlapFlag); } bool isSanitizerChecked() const { return SanitizerCheckedFlag; } RValue asRValue() const { if (isIgnored()) { return RValue::getIgnored(); } else { return RValue::getAggregate(getAddress(), isVolatile()); } } void setZeroed(bool V = true) { ZeroedFlag = V; } IsZeroed_t isZeroed() const { return IsZeroed_t(ZeroedFlag); } /// Get the preferred size to use when storing a value to this slot. This /// is the type size unless that might overlap another object, in which /// case it's the dsize. CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width : Ctx.getTypeSizeInChars(Type); } }; } // end namespace CodeGen } // end namespace clang #endif