//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "gwp_asan/guarded_pool_allocator.h" #include "gwp_asan/crash_handler.h" #include "gwp_asan/options.h" #include "gwp_asan/utilities.h" #include #include using AllocationMetadata = gwp_asan::AllocationMetadata; using Error = gwp_asan::Error; namespace gwp_asan { namespace { // Forward declare the pointer to the singleton version of this class. // Instantiated during initialisation, this allows the signal handler // to find this class in order to deduce the root cause of failures. Must not be // referenced by users outside this translation unit, in order to avoid // init-order-fiasco. GuardedPoolAllocator *SingletonPtr = nullptr; size_t roundUpTo(size_t Size, size_t Boundary) { return (Size + Boundary - 1) & ~(Boundary - 1); } uintptr_t getPageAddr(uintptr_t Ptr, uintptr_t PageSize) { return Ptr & ~(PageSize - 1); } bool isPowerOfTwo(uintptr_t X) { return (X & (X - 1)) == 0; } } // anonymous namespace // Gets the singleton implementation of this class. Thread-compatible until // init() is called, thread-safe afterwards. GuardedPoolAllocator *GuardedPoolAllocator::getSingleton() { return SingletonPtr; } void GuardedPoolAllocator::init(const options::Options &Opts) { // Note: We return from the constructor here if GWP-ASan is not available. // This will stop heap-allocation of class members, as well as mmap() of the // guarded slots. if (!Opts.Enabled || Opts.SampleRate == 0 || Opts.MaxSimultaneousAllocations == 0) return; Check(Opts.SampleRate >= 0, "GWP-ASan Error: SampleRate is < 0."); Check(Opts.SampleRate < (1 << 30), "GWP-ASan Error: SampleRate is >= 2^30."); Check(Opts.MaxSimultaneousAllocations >= 0, "GWP-ASan Error: MaxSimultaneousAllocations is < 0."); SingletonPtr = this; Backtrace = Opts.Backtrace; State.VersionMagic = {{AllocatorVersionMagic::kAllocatorVersionMagic[0], AllocatorVersionMagic::kAllocatorVersionMagic[1], AllocatorVersionMagic::kAllocatorVersionMagic[2], AllocatorVersionMagic::kAllocatorVersionMagic[3]}, AllocatorVersionMagic::kAllocatorVersion, 0}; State.MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations; const size_t PageSize = getPlatformPageSize(); // getPageAddr() and roundUpTo() assume the page size to be a power of 2. assert((PageSize & (PageSize - 1)) == 0); State.PageSize = PageSize; // Number of pages required = // + MaxSimultaneousAllocations * maximumAllocationSize (N pages per slot) // + MaxSimultaneousAllocations (one guard on the left side of each slot) // + 1 (an extra guard page at the end of the pool, on the right side) // + 1 (an extra page that's used for reporting internally-detected crashes, // like double free and invalid free, to the signal handler; see // raiseInternallyDetectedError() for more info) size_t PoolBytesRequired = PageSize * (2 + State.MaxSimultaneousAllocations) + State.MaxSimultaneousAllocations * State.maximumAllocationSize(); assert(PoolBytesRequired % PageSize == 0); void *GuardedPoolMemory = reserveGuardedPool(PoolBytesRequired); size_t BytesRequired = roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata), PageSize); Metadata = reinterpret_cast( map(BytesRequired, kGwpAsanMetadataName)); // Allocate memory and set up the free pages queue. BytesRequired = roundUpTo( State.MaxSimultaneousAllocations * sizeof(*FreeSlots), PageSize); FreeSlots = reinterpret_cast(map(BytesRequired, kGwpAsanFreeSlotsName)); // Multiply the sample rate by 2 to give a good, fast approximation for (1 / // SampleRate) chance of sampling. if (Opts.SampleRate != 1) AdjustedSampleRatePlusOne = static_cast(Opts.SampleRate) * 2 + 1; else AdjustedSampleRatePlusOne = 2; initPRNG(); getThreadLocals()->NextSampleCounter = ((getRandomUnsigned32() % (AdjustedSampleRatePlusOne - 1)) + 1) & ThreadLocalPackedVariables::NextSampleCounterMask; State.GuardedPagePool = reinterpret_cast(GuardedPoolMemory); State.GuardedPagePoolEnd = reinterpret_cast(GuardedPoolMemory) + PoolBytesRequired; if (Opts.InstallForkHandlers) installAtFork(); } void GuardedPoolAllocator::disable() { PoolMutex.lock(); BacktraceMutex.lock(); } void GuardedPoolAllocator::enable() { PoolMutex.unlock(); BacktraceMutex.unlock(); } void GuardedPoolAllocator::iterate(void *Base, size_t Size, iterate_callback Cb, void *Arg) { uintptr_t Start = reinterpret_cast(Base); for (size_t i = 0; i < State.MaxSimultaneousAllocations; ++i) { const AllocationMetadata &Meta = Metadata[i]; if (Meta.Addr && !Meta.IsDeallocated && Meta.Addr >= Start && Meta.Addr < Start + Size) Cb(Meta.Addr, Meta.RequestedSize, Arg); } } void GuardedPoolAllocator::uninitTestOnly() { if (State.GuardedPagePool) { unreserveGuardedPool(); State.GuardedPagePool = 0; State.GuardedPagePoolEnd = 0; } if (Metadata) { unmap(Metadata, roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata), State.PageSize)); Metadata = nullptr; } if (FreeSlots) { unmap(FreeSlots, roundUpTo(State.MaxSimultaneousAllocations * sizeof(*FreeSlots), State.PageSize)); FreeSlots = nullptr; } *getThreadLocals() = ThreadLocalPackedVariables(); } // Note, minimum backing allocation size in GWP-ASan is always one page, and // each slot could potentially be multiple pages (but always in // page-increments). Thus, for anything that requires less than page size // alignment, we don't need to allocate extra padding to ensure the alignment // can be met. size_t GuardedPoolAllocator::getRequiredBackingSize(size_t Size, size_t Alignment, size_t PageSize) { assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!"); assert(Alignment != 0 && "Alignment should be non-zero"); assert(Size != 0 && "Size should be non-zero"); if (Alignment <= PageSize) return Size; return Size + Alignment - PageSize; } uintptr_t GuardedPoolAllocator::alignUp(uintptr_t Ptr, size_t Alignment) { assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!"); assert(Alignment != 0 && "Alignment should be non-zero"); if ((Ptr & (Alignment - 1)) == 0) return Ptr; Ptr += Alignment - (Ptr & (Alignment - 1)); return Ptr; } uintptr_t GuardedPoolAllocator::alignDown(uintptr_t Ptr, size_t Alignment) { assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!"); assert(Alignment != 0 && "Alignment should be non-zero"); if ((Ptr & (Alignment - 1)) == 0) return Ptr; Ptr -= Ptr & (Alignment - 1); return Ptr; } void *GuardedPoolAllocator::allocate(size_t Size, size_t Alignment) { // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall // back to the supporting allocator. if (State.GuardedPagePoolEnd == 0) { getThreadLocals()->NextSampleCounter = (AdjustedSampleRatePlusOne - 1) & ThreadLocalPackedVariables::NextSampleCounterMask; return nullptr; } if (Size == 0) Size = 1; if (Alignment == 0) Alignment = alignof(max_align_t); if (!isPowerOfTwo(Alignment) || Alignment > State.maximumAllocationSize() || Size > State.maximumAllocationSize()) return nullptr; size_t BackingSize = getRequiredBackingSize(Size, Alignment, State.PageSize); if (BackingSize > State.maximumAllocationSize()) return nullptr; // Protect against recursivity. if (getThreadLocals()->RecursiveGuard) return nullptr; ScopedRecursiveGuard SRG; size_t Index; { ScopedLock L(PoolMutex); Index = reserveSlot(); } if (Index == kInvalidSlotID) return nullptr; uintptr_t SlotStart = State.slotToAddr(Index); AllocationMetadata *Meta = addrToMetadata(SlotStart); uintptr_t SlotEnd = State.slotToAddr(Index) + State.maximumAllocationSize(); uintptr_t UserPtr; // Randomly choose whether to left-align or right-align the allocation, and // then apply the necessary adjustments to get an aligned pointer. if (getRandomUnsigned32() % 2 == 0) UserPtr = alignUp(SlotStart, Alignment); else UserPtr = alignDown(SlotEnd - Size, Alignment); assert(UserPtr >= SlotStart); assert(UserPtr + Size <= SlotEnd); // If a slot is multiple pages in size, and the allocation takes up a single // page, we can improve overflow detection by leaving the unused pages as // unmapped. const size_t PageSize = State.PageSize; allocateInGuardedPool( reinterpret_cast(getPageAddr(UserPtr, PageSize)), roundUpTo(Size, PageSize)); Meta->RecordAllocation(UserPtr, Size); { ScopedLock UL(BacktraceMutex); Meta->AllocationTrace.RecordBacktrace(Backtrace); } return reinterpret_cast(UserPtr); } void GuardedPoolAllocator::raiseInternallyDetectedError(uintptr_t Address, Error E) { // Disable the allocator before setting the internal failure state. In // non-recoverable mode, the allocator will be permanently disabled, and so // things will be accessed without locks. disable(); // Races between internally- and externally-raised faults can happen. Right // now, in this thread we've locked the allocator in order to raise an // internally-detected fault, and another thread could SIGSEGV to raise an // externally-detected fault. What will happen is that the other thread will // wait in the signal handler, as we hold the allocator's locks from the // disable() above. We'll trigger the signal handler by touching the // internal-signal-raising address below, and the signal handler from our // thread will get to run first as we will continue to hold the allocator // locks until the enable() at the end of this function. Be careful though, if // this thread receives another SIGSEGV after the disable() above, but before // touching the internal-signal-raising address below, then this thread will // get an "externally-raised" SIGSEGV while *also* holding the allocator // locks, which means this thread's signal handler will deadlock. This could // be resolved with a re-entrant lock, but asking platforms to implement this // seems unnecessary given the only way to get a SIGSEGV in this critical // section is either a memory safety bug in the couple lines of code below (be // careful!), or someone outside uses `kill(this_thread, SIGSEGV)`, which // really shouldn't happen. State.FailureType = E; State.FailureAddress = Address; // Raise a SEGV by touching a specific address that identifies to the crash // handler that this is an internally-raised fault. Changing this address? // Don't forget to update __gwp_asan_get_internal_crash_address. volatile char *p = reinterpret_cast(State.internallyDetectedErrorFaultAddress()); *p = 0; // This should never be reached in non-recoverable mode. Ensure that the // signal handler called handleRecoverablePostCrashReport(), which was // responsible for re-setting these fields. assert(State.FailureType == Error::UNKNOWN); assert(State.FailureAddress == 0u); // In recoverable mode, the signal handler (after dumping the crash) marked // the page containing the InternalFaultSegvAddress as read/writeable, to // allow the second touch to succeed after returning from the signal handler. // Now, we need to mark the page as non-read/write-able again, so future // internal faults can be raised. deallocateInGuardedPool( reinterpret_cast(getPageAddr( State.internallyDetectedErrorFaultAddress(), State.PageSize)), State.PageSize); // And now we're done with patching ourselves back up, enable the allocator. enable(); } void GuardedPoolAllocator::deallocate(void *Ptr) { assert(pointerIsMine(Ptr) && "Pointer is not mine!"); uintptr_t UPtr = reinterpret_cast(Ptr); size_t Slot = State.getNearestSlot(UPtr); uintptr_t SlotStart = State.slotToAddr(Slot); AllocationMetadata *Meta = addrToMetadata(UPtr); // If this allocation is responsible for crash, never recycle it. Turn the // deallocate() call into a no-op. if (Meta->HasCrashed) return; if (Meta->Addr != UPtr) { raiseInternallyDetectedError(UPtr, Error::INVALID_FREE); return; } if (Meta->IsDeallocated) { raiseInternallyDetectedError(UPtr, Error::DOUBLE_FREE); return; } // Intentionally scope the mutex here, so that other threads can access the // pool during the expensive markInaccessible() call. { ScopedLock L(PoolMutex); // Ensure that the deallocation is recorded before marking the page as // inaccessible. Otherwise, a racy use-after-free will have inconsistent // metadata. Meta->RecordDeallocation(); // Ensure that the unwinder is not called if the recursive flag is set, // otherwise non-reentrant unwinders may deadlock. if (!getThreadLocals()->RecursiveGuard) { ScopedRecursiveGuard SRG; ScopedLock UL(BacktraceMutex); Meta->DeallocationTrace.RecordBacktrace(Backtrace); } } deallocateInGuardedPool(reinterpret_cast(SlotStart), State.maximumAllocationSize()); // And finally, lock again to release the slot back into the pool. ScopedLock L(PoolMutex); freeSlot(Slot); } // Thread-compatible, protected by PoolMutex. static bool PreviousRecursiveGuard; void GuardedPoolAllocator::preCrashReport(void *Ptr) { assert(pointerIsMine(Ptr) && "Pointer is not mine!"); uintptr_t InternalCrashAddr = __gwp_asan_get_internal_crash_address( &State, reinterpret_cast(Ptr)); if (!InternalCrashAddr) disable(); // If something in the signal handler calls malloc() while dumping the // GWP-ASan report (e.g. backtrace_symbols()), make sure that GWP-ASan doesn't // service that allocation. `PreviousRecursiveGuard` is protected by the // allocator locks taken in disable(), either explicitly above for // externally-raised errors, or implicitly in raiseInternallyDetectedError() // for internally-detected errors. PreviousRecursiveGuard = getThreadLocals()->RecursiveGuard; getThreadLocals()->RecursiveGuard = true; } void GuardedPoolAllocator::postCrashReportRecoverableOnly(void *SignalPtr) { uintptr_t SignalUPtr = reinterpret_cast(SignalPtr); uintptr_t InternalCrashAddr = __gwp_asan_get_internal_crash_address(&State, SignalUPtr); uintptr_t ErrorUptr = InternalCrashAddr ?: SignalUPtr; AllocationMetadata *Metadata = addrToMetadata(ErrorUptr); Metadata->HasCrashed = true; allocateInGuardedPool( reinterpret_cast(getPageAddr(SignalUPtr, State.PageSize)), State.PageSize); // Clear the internal state in order to not confuse the crash handler if a // use-after-free or buffer-overflow comes from a different allocation in the // future. if (InternalCrashAddr) { State.FailureType = Error::UNKNOWN; State.FailureAddress = 0; } size_t Slot = State.getNearestSlot(ErrorUptr); // If the slot is available, remove it permanently. for (size_t i = 0; i < FreeSlotsLength; ++i) { if (FreeSlots[i] == Slot) { FreeSlots[i] = FreeSlots[FreeSlotsLength - 1]; FreeSlotsLength -= 1; break; } } getThreadLocals()->RecursiveGuard = PreviousRecursiveGuard; if (!InternalCrashAddr) enable(); } size_t GuardedPoolAllocator::getSize(const void *Ptr) { assert(pointerIsMine(Ptr)); ScopedLock L(PoolMutex); AllocationMetadata *Meta = addrToMetadata(reinterpret_cast(Ptr)); assert(Meta->Addr == reinterpret_cast(Ptr)); return Meta->RequestedSize; } AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const { return &Metadata[State.getNearestSlot(Ptr)]; } size_t GuardedPoolAllocator::reserveSlot() { // Avoid potential reuse of a slot before we have made at least a single // allocation in each slot. Helps with our use-after-free detection. if (NumSampledAllocations < State.MaxSimultaneousAllocations) return NumSampledAllocations++; if (FreeSlotsLength == 0) return kInvalidSlotID; size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength; size_t SlotIndex = FreeSlots[ReservedIndex]; FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength]; return SlotIndex; } void GuardedPoolAllocator::freeSlot(size_t SlotIndex) { assert(FreeSlotsLength < State.MaxSimultaneousAllocations); FreeSlots[FreeSlotsLength++] = SlotIndex; } uint32_t GuardedPoolAllocator::getRandomUnsigned32() { uint32_t RandomState = getThreadLocals()->RandomState; RandomState ^= RandomState << 13; RandomState ^= RandomState >> 17; RandomState ^= RandomState << 5; getThreadLocals()->RandomState = RandomState; return RandomState; } } // namespace gwp_asan