//===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of a target // register file for a code generator. It uses instances of the Register, // RegisterAliases, and RegisterClass classes to gather this information. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "Types.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Format.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/SetTheory.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include #include #include #include #include #include using namespace llvm; cl::OptionCategory RegisterInfoCat("Options for -gen-register-info"); static cl::opt RegisterInfoDebug("register-info-debug", cl::init(false), cl::desc("Dump register information to help debugging"), cl::cat(RegisterInfoCat)); namespace { class RegisterInfoEmitter { CodeGenTarget Target; RecordKeeper &Records; public: RegisterInfoEmitter(RecordKeeper &R) : Target(R), Records(R) { CodeGenRegBank &RegBank = Target.getRegBank(); RegBank.computeDerivedInfo(); } // runEnums - Print out enum values for all of the registers. void runEnums(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runMCDesc - Print out MC register descriptions. void runMCDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetHeader - Emit a header fragment for the register info emitter. void runTargetHeader(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetDesc - Output the target register and register file descriptions. void runTargetDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // run - Output the register file description. void run(raw_ostream &o); void debugDump(raw_ostream &OS); private: void EmitRegMapping(raw_ostream &o, const std::deque &Regs, bool isCtor); void EmitRegMappingTables(raw_ostream &o, const std::deque &Regs, bool isCtor); void EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName); void emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClassName); void emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClassName); }; } // end anonymous namespace // runEnums - Print out enum values for all of the registers. void RegisterInfoEmitter::runEnums(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &Bank) { const auto &Registers = Bank.getRegisters(); // Register enums are stored as uint16_t in the tables. Make sure we'll fit. assert(Registers.size() <= 0xffff && "Too many regs to fit in tables"); StringRef Namespace = Registers.front().TheDef->getValueAsString("Namespace"); emitSourceFileHeader("Target Register Enum Values", OS); OS << "\n#ifdef GET_REGINFO_ENUM\n"; OS << "#undef GET_REGINFO_ENUM\n\n"; OS << "namespace llvm {\n\n"; OS << "class MCRegisterClass;\n" << "extern const MCRegisterClass " << Target.getName() << "MCRegisterClasses[];\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoRegister,\n"; for (const auto &Reg : Registers) OS << " " << Reg.getName() << " = " << Reg.EnumValue << ",\n"; assert(Registers.size() == Registers.back().EnumValue && "Register enum value mismatch!"); OS << " NUM_TARGET_REGS // " << Registers.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "} // end namespace " << Namespace << "\n"; const auto &RegisterClasses = Bank.getRegClasses(); if (!RegisterClasses.empty()) { // RegisterClass enums are stored as uint16_t in the tables. assert(RegisterClasses.size() <= 0xffff && "Too many register classes to fit in tables"); OS << "\n// Register classes\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (const auto &RC : RegisterClasses) OS << " " << RC.getName() << "RegClassID" << " = " << RC.EnumValue << ",\n"; OS << "\n};\n"; if (!Namespace.empty()) OS << "} // end namespace " << Namespace << "\n\n"; } const std::vector &RegAltNameIndices = Target.getRegAltNameIndices(); // If the only definition is the default NoRegAltName, we don't need to // emit anything. if (RegAltNameIndices.size() > 1) { OS << "\n// Register alternate name indices\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (unsigned i = 0, e = RegAltNameIndices.size(); i != e; ++i) OS << " " << RegAltNameIndices[i]->getName() << ",\t// " << i << "\n"; OS << " NUM_TARGET_REG_ALT_NAMES = " << RegAltNameIndices.size() << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "} // end namespace " << Namespace << "\n\n"; } auto &SubRegIndices = Bank.getSubRegIndices(); if (!SubRegIndices.empty()) { OS << "\n// Subregister indices\n\n"; std::string Namespace = SubRegIndices.front().getNamespace(); if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum : uint16_t {\n NoSubRegister,\n"; unsigned i = 0; for (const auto &Idx : SubRegIndices) OS << " " << Idx.getName() << ",\t// " << ++i << "\n"; OS << " NUM_TARGET_SUBREGS\n};\n"; if (!Namespace.empty()) OS << "} // end namespace " << Namespace << "\n\n"; } OS << "// Register pressure sets enum.\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum RegisterPressureSets {\n"; unsigned NumSets = Bank.getNumRegPressureSets(); for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = Bank.getRegSetAt(i); OS << " " << RegUnits.Name << " = " << i << ",\n"; } OS << "};\n"; if (!Namespace.empty()) OS << "} // end namespace " << Namespace << '\n'; OS << '\n'; OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_REGINFO_ENUM\n\n"; } static void printInt(raw_ostream &OS, int Val) { OS << Val; } void RegisterInfoEmitter:: EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName) { unsigned NumRCs = RegBank.getRegClasses().size(); unsigned NumSets = RegBank.getNumRegPressureSets(); OS << "/// Get the weight in units of pressure for this register class.\n" << "const RegClassWeight &" << ClassName << "::\n" << "getRegClassWeight(const TargetRegisterClass *RC) const {\n" << " static const RegClassWeight RCWeightTable[] = {\n"; for (const auto &RC : RegBank.getRegClasses()) { const CodeGenRegister::Vec &Regs = RC.getMembers(); OS << " {" << RC.getWeight(RegBank) << ", "; if (Regs.empty() || RC.Artificial) OS << '0'; else { std::vector RegUnits; RC.buildRegUnitSet(RegBank, RegUnits); OS << RegBank.getRegUnitSetWeight(RegUnits); } OS << "}, \t// " << RC.getName() << "\n"; } OS << " };\n" << " return RCWeightTable[RC->getID()];\n" << "}\n\n"; // Reasonable targets (not ARMv7) have unit weight for all units, so don't // bother generating a table. bool RegUnitsHaveUnitWeight = true; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { if (RegBank.getRegUnit(UnitIdx).Weight > 1) RegUnitsHaveUnitWeight = false; } OS << "/// Get the weight in units of pressure for this register unit.\n" << "unsigned " << ClassName << "::\n" << "getRegUnitWeight(unsigned RegUnit) const {\n" << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() << " && \"invalid register unit\");\n"; if (!RegUnitsHaveUnitWeight) { OS << " static const uint8_t RUWeightTable[] = {\n "; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { const RegUnit &RU = RegBank.getRegUnit(UnitIdx); assert(RU.Weight < 256 && "RegUnit too heavy"); OS << RU.Weight << ", "; } OS << "};\n" << " return RUWeightTable[RegUnit];\n"; } else { OS << " // All register units have unit weight.\n" << " return 1;\n"; } OS << "}\n\n"; OS << "\n" << "// Get the number of dimensions of register pressure.\n" << "unsigned " << ClassName << "::getNumRegPressureSets() const {\n" << " return " << NumSets << ";\n}\n\n"; OS << "// Get the name of this register unit pressure set.\n" << "const char *" << ClassName << "::\n" << "getRegPressureSetName(unsigned Idx) const {\n" << " static const char *PressureNameTable[] = {\n"; unsigned MaxRegUnitWeight = 0; for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); MaxRegUnitWeight = std::max(MaxRegUnitWeight, RegUnits.Weight); OS << " \"" << RegUnits.Name << "\",\n"; } OS << " };\n" << " return PressureNameTable[Idx];\n" << "}\n\n"; OS << "// Get the register unit pressure limit for this dimension.\n" << "// This limit must be adjusted dynamically for reserved registers.\n" << "unsigned " << ClassName << "::\n" << "getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const " "{\n" << " static const " << getMinimalTypeForRange(MaxRegUnitWeight, 32) << " PressureLimitTable[] = {\n"; for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); OS << " " << RegUnits.Weight << ", \t// " << i << ": " << RegUnits.Name << "\n"; } OS << " };\n" << " return PressureLimitTable[Idx];\n" << "}\n\n"; SequenceToOffsetTable> PSetsSeqs; // This table may be larger than NumRCs if some register units needed a list // of unit sets that did not correspond to a register class. unsigned NumRCUnitSets = RegBank.getNumRegClassPressureSetLists(); std::vector> PSets(NumRCUnitSets); for (unsigned i = 0, e = NumRCUnitSets; i != e; ++i) { ArrayRef PSetIDs = RegBank.getRCPressureSetIDs(i); PSets[i].reserve(PSetIDs.size()); for (unsigned PSetID : PSetIDs) { PSets[i].push_back(RegBank.getRegPressureSet(PSetID).Order); } llvm::sort(PSets[i]); PSetsSeqs.add(PSets[i]); } PSetsSeqs.layout(); OS << "/// Table of pressure sets per register class or unit.\n" << "static const int RCSetsTable[] = {\n"; PSetsSeqs.emit(OS, printInt, "-1"); OS << "};\n\n"; OS << "/// Get the dimensions of register pressure impacted by this " << "register class.\n" << "/// Returns a -1 terminated array of pressure set IDs\n" << "const int *" << ClassName << "::\n" << "getRegClassPressureSets(const TargetRegisterClass *RC) const {\n"; OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size() - 1, 32) << " RCSetStartTable[] = {\n "; for (unsigned i = 0, e = NumRCs; i != e; ++i) { OS << PSetsSeqs.get(PSets[i]) << ","; } OS << "};\n" << " return &RCSetsTable[RCSetStartTable[RC->getID()]];\n" << "}\n\n"; OS << "/// Get the dimensions of register pressure impacted by this " << "register unit.\n" << "/// Returns a -1 terminated array of pressure set IDs\n" << "const int *" << ClassName << "::\n" << "getRegUnitPressureSets(unsigned RegUnit) const {\n" << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() << " && \"invalid register unit\");\n"; OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size() - 1, 32) << " RUSetStartTable[] = {\n "; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { OS << PSetsSeqs.get(PSets[RegBank.getRegUnit(UnitIdx).RegClassUnitSetsIdx]) << ","; } OS << "};\n" << " return &RCSetsTable[RUSetStartTable[RegUnit]];\n" << "}\n\n"; } using DwarfRegNumsMapPair = std::pair>; using DwarfRegNumsVecTy = std::vector; static void finalizeDwarfRegNumsKeys(DwarfRegNumsVecTy &DwarfRegNums) { // Sort and unique to get a map-like vector. We want the last assignment to // match previous behaviour. llvm::stable_sort(DwarfRegNums, on_first()); // Warn about duplicate assignments. const Record *LastSeenReg = nullptr; for (const auto &X : DwarfRegNums) { const auto &Reg = X.first; // The only way LessRecordRegister can return equal is if they're the same // string. Use simple equality instead. if (LastSeenReg && Reg->getName() == LastSeenReg->getName()) PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") + getQualifiedName(Reg) + "specified multiple times"); LastSeenReg = Reg; } auto Last = std::unique( DwarfRegNums.begin(), DwarfRegNums.end(), [](const DwarfRegNumsMapPair &A, const DwarfRegNumsMapPair &B) { return A.first->getName() == B.first->getName(); }); DwarfRegNums.erase(Last, DwarfRegNums.end()); } void RegisterInfoEmitter::EmitRegMappingTables( raw_ostream &OS, const std::deque &Regs, bool isCtor) { // Collect all information about dwarf register numbers DwarfRegNumsVecTy DwarfRegNums; // First, just pull all provided information to the map unsigned maxLength = 0; for (auto &RE : Regs) { Record *Reg = RE.TheDef; std::vector RegNums = Reg->getValueAsListOfInts("DwarfNumbers"); maxLength = std::max((size_t)maxLength, RegNums.size()); DwarfRegNums.emplace_back(Reg, std::move(RegNums)); } finalizeDwarfRegNumsKeys(DwarfRegNums); if (!maxLength) return; // Now we know maximal length of number list. Append -1's, where needed for (auto &DwarfRegNum : DwarfRegNums) for (unsigned I = DwarfRegNum.second.size(), E = maxLength; I != E; ++I) DwarfRegNum.second.push_back(-1); StringRef Namespace = Regs.front().TheDef->getValueAsString("Namespace"); OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n"; // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned I = 0, E = maxLength; I != E; ++I) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << I << "Dwarf2L[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the LLVM reg num so lookup can be done // with a binary search. std::map Dwarf2LMap; for (auto &DwarfRegNum : DwarfRegNums) { int DwarfRegNo = DwarfRegNum.second[I]; if (DwarfRegNo < 0) continue; Dwarf2LMap[DwarfRegNo] = DwarfRegNum.first; } for (auto &I : Dwarf2LMap) OS << " { " << I.first << "U, " << getQualifiedName(I.second) << " },\n"; OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << I << "Dwarf2LSize"; if (!isCtor) OS << " = std::size(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << I << "Dwarf2L);\n\n"; else OS << ";\n\n"; } } for (auto &RE : Regs) { Record *Reg = RE.TheDef; const RecordVal *V = Reg->getValue("DwarfAlias"); if (!V || !V->getValue()) continue; DefInit *DI = cast(V->getValue()); Record *Alias = DI->getDef(); const auto &AliasIter = llvm::lower_bound( DwarfRegNums, Alias, [](const DwarfRegNumsMapPair &A, const Record *B) { return LessRecordRegister()(A.first, B); }); assert(AliasIter != DwarfRegNums.end() && AliasIter->first == Alias && "Expected Alias to be present in map"); const auto &RegIter = llvm::lower_bound( DwarfRegNums, Reg, [](const DwarfRegNumsMapPair &A, const Record *B) { return LessRecordRegister()(A.first, B); }); assert(RegIter != DwarfRegNums.end() && RegIter->first == Reg && "Expected Reg to be present in map"); RegIter->second = AliasIter->second; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << i << "L2Dwarf[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the Dwarf reg num so lookup can be done // with a binary search. for (auto &DwarfRegNum : DwarfRegNums) { int RegNo = DwarfRegNum.second[i]; if (RegNo == -1) // -1 is the default value, don't emit a mapping. continue; OS << " { " << getQualifiedName(DwarfRegNum.first) << ", " << RegNo << "U },\n"; } OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize"; if (!isCtor) OS << " = std::size(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf);\n\n"; else OS << ";\n\n"; } } } void RegisterInfoEmitter::EmitRegMapping( raw_ostream &OS, const std::deque &Regs, bool isCtor) { // Emit the initializer so the tables from EmitRegMappingTables get wired up // to the MCRegisterInfo object. unsigned maxLength = 0; for (auto &RE : Regs) { Record *Reg = RE.TheDef; maxLength = std::max((size_t)maxLength, Reg->getValueAsListOfInts("DwarfNumbers").size()); } if (!maxLength) return; StringRef Namespace = Regs.front().TheDef->getValueAsString("Namespace"); // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2L"; OS << "mapDwarfRegsToLLVMRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf"; OS << "mapLLVMRegsToDwarfRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } } // Print a BitVector as a sequence of hex numbers using a little-endian mapping. // Width is the number of bits per hex number. static void printBitVectorAsHex(raw_ostream &OS, const BitVector &Bits, unsigned Width) { assert(Width <= 32 && "Width too large"); unsigned Digits = (Width + 3) / 4; for (unsigned i = 0, e = Bits.size(); i < e; i += Width) { unsigned Value = 0; for (unsigned j = 0; j != Width && i + j != e; ++j) Value |= Bits.test(i + j) << j; OS << format("0x%0*x, ", Digits, Value); } } // Helper to emit a set of bits into a constant byte array. class BitVectorEmitter { BitVector Values; public: void add(unsigned v) { if (v >= Values.size()) Values.resize(((v/8)+1)*8); // Round up to the next byte. Values[v] = true; } void print(raw_ostream &OS) { printBitVectorAsHex(OS, Values, 8); } }; static void printSimpleValueType(raw_ostream &OS, MVT::SimpleValueType VT) { OS << getEnumName(VT); } static void printSubRegIndex(raw_ostream &OS, const CodeGenSubRegIndex *Idx) { OS << Idx->EnumValue; } // Differentially encoded register and regunit lists allow for better // compression on regular register banks. The sequence is computed from the // differential list as: // // out[0] = InitVal; // out[n+1] = out[n] + diff[n]; // n = 0, 1, ... // // The initial value depends on the specific list. The list is terminated by a // 0 differential which means we can't encode repeated elements. typedef SmallVector DiffVec; typedef SmallVector MaskVec; // Differentially encode a sequence of numbers into V. The starting value and // terminating 0 are not added to V, so it will have the same size as List. static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, SparseBitVector<> List) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (uint16_t Cur : List) { V.push_back(Cur - Val); Val = Cur; } return V; } template static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, Iter Begin, Iter End) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (Iter I = Begin; I != End; ++I) { uint16_t Cur = (*I)->EnumValue; V.push_back(Cur - Val); Val = Cur; } return V; } static void printDiff16(raw_ostream &OS, uint16_t Val) { OS << Val; } static void printMask(raw_ostream &OS, LaneBitmask Val) { OS << "LaneBitmask(0x" << PrintLaneMask(Val) << ')'; } // Try to combine Idx's compose map into Vec if it is compatible. // Return false if it's not possible. static bool combine(const CodeGenSubRegIndex *Idx, SmallVectorImpl &Vec) { const CodeGenSubRegIndex::CompMap &Map = Idx->getComposites(); for (const auto &I : Map) { CodeGenSubRegIndex *&Entry = Vec[I.first->EnumValue - 1]; if (Entry && Entry != I.second) return false; } // All entries are compatible. Make it so. for (const auto &I : Map) { auto *&Entry = Vec[I.first->EnumValue - 1]; assert((!Entry || Entry == I.second) && "Expected EnumValue to be unique"); Entry = I.second; } return true; } void RegisterInfoEmitter::emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClName) { const auto &SubRegIndices = RegBank.getSubRegIndices(); OS << "unsigned " << ClName << "::composeSubRegIndicesImpl(unsigned IdxA, unsigned IdxB) const {\n"; // Many sub-register indexes are composition-compatible, meaning that // // compose(IdxA, IdxB) == compose(IdxA', IdxB) // // for many IdxA, IdxA' pairs. Not all sub-register indexes can be composed. // The illegal entries can be use as wildcards to compress the table further. // Map each Sub-register index to a compatible table row. SmallVector RowMap; SmallVector, 4> Rows; auto SubRegIndicesSize = std::distance(SubRegIndices.begin(), SubRegIndices.end()); for (const auto &Idx : SubRegIndices) { unsigned Found = ~0u; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { if (combine(&Idx, Rows[r])) { Found = r; break; } } if (Found == ~0u) { Found = Rows.size(); Rows.resize(Found + 1); Rows.back().resize(SubRegIndicesSize); combine(&Idx, Rows.back()); } RowMap.push_back(Found); } // Output the row map if there is multiple rows. if (Rows.size() > 1) { OS << " static const " << getMinimalTypeForRange(Rows.size(), 32) << " RowMap[" << SubRegIndicesSize << "] = {\n "; for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) OS << RowMap[i] << ", "; OS << "\n };\n"; } // Output the rows. OS << " static const " << getMinimalTypeForRange(SubRegIndicesSize + 1, 32) << " Rows[" << Rows.size() << "][" << SubRegIndicesSize << "] = {\n"; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { OS << " { "; for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) if (Rows[r][i]) OS << Rows[r][i]->getQualifiedName() << ", "; else OS << "0, "; OS << "},\n"; } OS << " };\n\n"; OS << " --IdxA; assert(IdxA < " << SubRegIndicesSize << "); (void) IdxA;\n" << " --IdxB; assert(IdxB < " << SubRegIndicesSize << ");\n"; if (Rows.size() > 1) OS << " return Rows[RowMap[IdxA]][IdxB];\n"; else OS << " return Rows[0][IdxB];\n"; OS << "}\n\n"; } void RegisterInfoEmitter::emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClName) { // See the comments in computeSubRegLaneMasks() for our goal here. const auto &SubRegIndices = RegBank.getSubRegIndices(); // Create a list of Mask+Rotate operations, with equivalent entries merged. SmallVector SubReg2SequenceIndexMap; SmallVector, 4> Sequences; for (const auto &Idx : SubRegIndices) { const SmallVector &IdxSequence = Idx.CompositionLaneMaskTransform; unsigned Found = ~0u; unsigned SIdx = 0; unsigned NextSIdx; for (size_t s = 0, se = Sequences.size(); s != se; ++s, SIdx = NextSIdx) { SmallVectorImpl &Sequence = Sequences[s]; NextSIdx = SIdx + Sequence.size() + 1; if (Sequence == IdxSequence) { Found = SIdx; break; } } if (Found == ~0u) { Sequences.push_back(IdxSequence); Found = SIdx; } SubReg2SequenceIndexMap.push_back(Found); } OS << " struct MaskRolOp {\n" " LaneBitmask Mask;\n" " uint8_t RotateLeft;\n" " };\n" " static const MaskRolOp LaneMaskComposeSequences[] = {\n"; unsigned Idx = 0; for (size_t s = 0, se = Sequences.size(); s != se; ++s) { OS << " "; const SmallVectorImpl &Sequence = Sequences[s]; for (size_t p = 0, pe = Sequence.size(); p != pe; ++p) { const MaskRolPair &P = Sequence[p]; printMask(OS << "{ ", P.Mask); OS << format(", %2u }, ", P.RotateLeft); } OS << "{ LaneBitmask::getNone(), 0 }"; if (s+1 != se) OS << ", "; OS << " // Sequence " << Idx << "\n"; Idx += Sequence.size() + 1; } auto *IntType = getMinimalTypeForRange(*std::max_element( SubReg2SequenceIndexMap.begin(), SubReg2SequenceIndexMap.end())); OS << " };\n" " static const " << IntType << " CompositeSequences[] = {\n"; for (size_t i = 0, e = SubRegIndices.size(); i != e; ++i) { OS << " "; OS << SubReg2SequenceIndexMap[i]; if (i+1 != e) OS << ","; OS << " // to " << SubRegIndices[i].getName() << "\n"; } OS << " };\n\n"; OS << "LaneBitmask " << ClName << "::composeSubRegIndexLaneMaskImpl(unsigned IdxA, LaneBitmask LaneMask)" " const {\n" " --IdxA; assert(IdxA < " << SubRegIndices.size() << " && \"Subregister index out of bounds\");\n" " LaneBitmask Result;\n" " for (const MaskRolOp *Ops =\n" " &LaneMaskComposeSequences[CompositeSequences[IdxA]];\n" " Ops->Mask.any(); ++Ops) {\n" " LaneBitmask::Type M = LaneMask.getAsInteger() & Ops->Mask.getAsInteger();\n" " if (unsigned S = Ops->RotateLeft)\n" " Result |= LaneBitmask((M << S) | (M >> (LaneBitmask::BitWidth - S)));\n" " else\n" " Result |= LaneBitmask(M);\n" " }\n" " return Result;\n" "}\n\n"; OS << "LaneBitmask " << ClName << "::reverseComposeSubRegIndexLaneMaskImpl(unsigned IdxA, " " LaneBitmask LaneMask) const {\n" " LaneMask &= getSubRegIndexLaneMask(IdxA);\n" " --IdxA; assert(IdxA < " << SubRegIndices.size() << " && \"Subregister index out of bounds\");\n" " LaneBitmask Result;\n" " for (const MaskRolOp *Ops =\n" " &LaneMaskComposeSequences[CompositeSequences[IdxA]];\n" " Ops->Mask.any(); ++Ops) {\n" " LaneBitmask::Type M = LaneMask.getAsInteger();\n" " if (unsigned S = Ops->RotateLeft)\n" " Result |= LaneBitmask((M >> S) | (M << (LaneBitmask::BitWidth - S)));\n" " else\n" " Result |= LaneBitmask(M);\n" " }\n" " return Result;\n" "}\n\n"; } // // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n\n"; const auto &Regs = RegBank.getRegisters(); auto &SubRegIndices = RegBank.getSubRegIndices(); // The lists of sub-registers and super-registers go in the same array. That // allows us to share suffixes. typedef std::vector RegVec; // Differentially encoded lists. SequenceToOffsetTable DiffSeqs; SmallVector SubRegLists(Regs.size()); SmallVector SuperRegLists(Regs.size()); SmallVector RegUnitLists(Regs.size()); SmallVector RegUnitInitScale(Regs.size()); // List of lane masks accompanying register unit sequences. SequenceToOffsetTable LaneMaskSeqs; SmallVector RegUnitLaneMasks(Regs.size()); // Keep track of sub-register names as well. These are not differentially // encoded. typedef SmallVector SubRegIdxVec; SequenceToOffsetTable>> SubRegIdxSeqs; SmallVector SubRegIdxLists(Regs.size()); SequenceToOffsetTable RegStrings; // Precompute register lists for the SequenceToOffsetTable. unsigned i = 0; for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I, ++i) { const auto &Reg = *I; RegStrings.add(std::string(Reg.getName())); // Compute the ordered sub-register list. SetVector SR; Reg.addSubRegsPreOrder(SR, RegBank); diffEncode(SubRegLists[i], Reg.EnumValue, SR.begin(), SR.end()); DiffSeqs.add(SubRegLists[i]); // Compute the corresponding sub-register indexes. SubRegIdxVec &SRIs = SubRegIdxLists[i]; for (const CodeGenRegister *S : SR) SRIs.push_back(Reg.getSubRegIndex(S)); SubRegIdxSeqs.add(SRIs); // Super-registers are already computed. const RegVec &SuperRegList = Reg.getSuperRegs(); diffEncode(SuperRegLists[i], Reg.EnumValue, SuperRegList.begin(), SuperRegList.end()); DiffSeqs.add(SuperRegLists[i]); // Differentially encode the register unit list, seeded by register number. // First compute a scale factor that allows more diff-lists to be reused: // // D0 -> (S0, S1) // D1 -> (S2, S3) // // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial // value for the differential decoder is the register number multiplied by // the scale. // // Check the neighboring registers for arithmetic progressions. unsigned ScaleA = ~0u, ScaleB = ~0u; SparseBitVector<> RUs = Reg.getNativeRegUnits(); if (I != Regs.begin() && std::prev(I)->getNativeRegUnits().count() == RUs.count()) ScaleB = *RUs.begin() - *std::prev(I)->getNativeRegUnits().begin(); if (std::next(I) != Regs.end() && std::next(I)->getNativeRegUnits().count() == RUs.count()) ScaleA = *std::next(I)->getNativeRegUnits().begin() - *RUs.begin(); unsigned Scale = std::min(ScaleB, ScaleA); // Default the scale to 0 if it can't be encoded in 4 bits. if (Scale >= 16) Scale = 0; RegUnitInitScale[i] = Scale; DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg.EnumValue, RUs)); const auto &RUMasks = Reg.getRegUnitLaneMasks(); MaskVec &LaneMaskVec = RegUnitLaneMasks[i]; assert(LaneMaskVec.empty()); llvm::append_range(LaneMaskVec, RUMasks); // Terminator mask should not be used inside of the list. #ifndef NDEBUG for (LaneBitmask M : LaneMaskVec) { assert(!M.all() && "terminator mask should not be part of the list"); } #endif LaneMaskSeqs.add(LaneMaskVec); } // Compute the final layout of the sequence table. DiffSeqs.layout(); LaneMaskSeqs.layout(); SubRegIdxSeqs.layout(); OS << "namespace llvm {\n\n"; const std::string &TargetName = std::string(Target.getName()); // Emit the shared table of differential lists. OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[] = {\n"; DiffSeqs.emit(OS, printDiff16); OS << "};\n\n"; // Emit the shared table of regunit lane mask sequences. OS << "extern const LaneBitmask " << TargetName << "LaneMaskLists[] = {\n"; LaneMaskSeqs.emit(OS, printMask, "LaneBitmask::getAll()"); OS << "};\n\n"; // Emit the table of sub-register indexes. OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n"; SubRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit the table of sub-register index sizes. OS << "extern const MCRegisterInfo::SubRegCoveredBits " << TargetName << "SubRegIdxRanges[] = {\n"; OS << " { " << (uint16_t)-1 << ", " << (uint16_t)-1 << " },\n"; for (const auto &Idx : SubRegIndices) { OS << " { " << Idx.Offset << ", " << Idx.Size << " },\t// " << Idx.getName() << "\n"; } OS << "};\n\n"; // Emit the string table. RegStrings.layout(); RegStrings.emitStringLiteralDef(OS, Twine("extern const char ") + TargetName + "RegStrings[]"); OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n"; // Emit the register descriptors now. i = 0; for (const auto &Reg : Regs) { OS << " { " << RegStrings.get(std::string(Reg.getName())) << ", " << DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i]) << ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", " << (DiffSeqs.get(RegUnitLists[i]) * 16 + RegUnitInitScale[i]) << ", " << LaneMaskSeqs.get(RegUnitLaneMasks[i]) << " },\n"; ++i; } OS << "};\n\n"; // End of register descriptors... // Emit the table of register unit roots. Each regunit has one or two root // registers. OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2] = {\n"; for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) { ArrayRef Roots = RegBank.getRegUnit(i).getRoots(); assert(!Roots.empty() && "All regunits must have a root register."); assert(Roots.size() <= 2 && "More than two roots not supported yet."); OS << " { "; ListSeparator LS; for (const CodeGenRegister *R : Roots) OS << LS << getQualifiedName(R->TheDef); OS << " },\n"; } OS << "};\n\n"; const auto &RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; SequenceToOffsetTable RegClassStrings; // Emit the register enum value arrays for each RegisterClass for (const auto &RC : RegisterClasses) { ArrayRef Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. const std::string &Name = RC.getName(); RegClassStrings.add(Name); // Emit the register list now (unless it would be a zero-length array). if (!Order.empty()) { OS << " // " << Name << " Register Class...\n" << " const MCPhysReg " << Name << "[] = {\n "; for (Record *Reg : Order) { OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " const uint8_t " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (Record *Reg : Order) { BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } } OS << "} // end anonymous namespace\n\n"; RegClassStrings.layout(); RegClassStrings.emitStringLiteralDef( OS, Twine("extern const char ") + TargetName + "RegClassStrings[]"); OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (const auto &RC : RegisterClasses) { ArrayRef Order = RC.getOrder(); std::string RCName = Order.empty() ? "nullptr" : RC.getName(); std::string RCBitsName = Order.empty() ? "nullptr" : RC.getName() + "Bits"; std::string RCBitsSize = Order.empty() ? "0" : "sizeof(" + RCBitsName + ")"; assert(isInt<8>(RC.CopyCost) && "Copy cost too large."); uint32_t RegSize = 0; if (RC.RSI.isSimple()) RegSize = RC.RSI.getSimple().RegSize; OS << " { " << RCName << ", " << RCBitsName << ", " << RegClassStrings.get(RC.getName()) << ", " << RC.getOrder().size() << ", " << RCBitsSize << ", " << RC.getQualifiedName() + "RegClassID" << ", " << RegSize << ", " << RC.CopyCost << ", " << (RC.Allocatable ? "true" : "false") << " },\n"; } OS << "};\n\n"; EmitRegMappingTables(OS, Regs, false); // Emit Reg encoding table OS << "extern const uint16_t " << TargetName; OS << "RegEncodingTable[] = {\n"; // Add entry for NoRegister OS << " 0,\n"; for (const auto &RE : Regs) { Record *Reg = RE.TheDef; BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding"); uint64_t Value = 0; for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) { if (BitInit *B = dyn_cast(BI->getBit(b))) Value |= (uint64_t)B->getValue() << b; } OS << " " << Value << ",\n"; } OS << "};\n"; // End of HW encoding table // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0, unsigned PC = 0) " "{\n" << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1 << ", RA, PC, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, " << RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, " << TargetName << "LaneMaskLists, " << TargetName << "RegStrings, " << TargetName << "RegClassStrings, " << TargetName << "SubRegIdxLists, " << (std::distance(SubRegIndices.begin(), SubRegIndices.end()) + 1) << ",\n" << TargetName << "SubRegIdxRanges, " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; } void RegisterInfoEmitter::runTargetHeader(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("Register Information Header Fragment", OS); OS << "\n#ifdef GET_REGINFO_HEADER\n"; OS << "#undef GET_REGINFO_HEADER\n\n"; const std::string &TargetName = std::string(Target.getName()); std::string ClassName = TargetName + "GenRegisterInfo"; OS << "#include \"llvm/CodeGen/TargetRegisterInfo.h\"\n\n"; OS << "namespace llvm {\n\n"; OS << "class " << TargetName << "FrameLowering;\n\n"; OS << "struct " << ClassName << " : public TargetRegisterInfo {\n" << " explicit " << ClassName << "(unsigned RA, unsigned D = 0, unsigned E = 0,\n" << " unsigned PC = 0, unsigned HwMode = 0);\n"; if (!RegBank.getSubRegIndices().empty()) { OS << " unsigned composeSubRegIndicesImpl" << "(unsigned, unsigned) const override;\n" << " LaneBitmask composeSubRegIndexLaneMaskImpl" << "(unsigned, LaneBitmask) const override;\n" << " LaneBitmask reverseComposeSubRegIndexLaneMaskImpl" << "(unsigned, LaneBitmask) const override;\n" << " const TargetRegisterClass *getSubClassWithSubReg" << "(const TargetRegisterClass *, unsigned) const override;\n" << " const TargetRegisterClass *getSubRegisterClass" << "(const TargetRegisterClass *, unsigned) const override;\n"; } OS << " const RegClassWeight &getRegClassWeight(" << "const TargetRegisterClass *RC) const override;\n" << " unsigned getRegUnitWeight(unsigned RegUnit) const override;\n" << " unsigned getNumRegPressureSets() const override;\n" << " const char *getRegPressureSetName(unsigned Idx) const override;\n" << " unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned " "Idx) const override;\n" << " const int *getRegClassPressureSets(" << "const TargetRegisterClass *RC) const override;\n" << " const int *getRegUnitPressureSets(" << "unsigned RegUnit) const override;\n" << " ArrayRef getRegMaskNames() const override;\n" << " ArrayRef getRegMasks() const override;\n" << " bool isGeneralPurposeRegister(const MachineFunction &, " << "MCRegister) const override;\n" << " bool isFixedRegister(const MachineFunction &, " << "MCRegister) const override;\n" << " bool isArgumentRegister(const MachineFunction &, " << "MCRegister) const override;\n" << " bool isConstantPhysReg(MCRegister PhysReg) const override final;\n" << " /// Devirtualized TargetFrameLowering.\n" << " static const " << TargetName << "FrameLowering *getFrameLowering(\n" << " const MachineFunction &MF);\n"; const auto &RegisterClasses = RegBank.getRegClasses(); if (llvm::any_of(RegisterClasses, [](const auto &RC) { return RC.getBaseClassOrder(); })) { OS << " const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const override;\n"; } OS << "};\n\n"; if (!RegisterClasses.empty()) { OS << "namespace " << RegisterClasses.front().Namespace << " { // Register classes\n"; for (const auto &RC : RegisterClasses) { const std::string &Name = RC.getName(); // Output the extern for the instance. OS << " extern const TargetRegisterClass " << Name << "RegClass;\n"; } OS << "} // end namespace " << RegisterClasses.front().Namespace << "\n\n"; } OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_REGINFO_HEADER\n\n"; } // // runTargetDesc - Output the target register and register file descriptions. // void RegisterInfoEmitter::runTargetDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank){ emitSourceFileHeader("Target Register and Register Classes Information", OS); OS << "\n#ifdef GET_REGINFO_TARGET_DESC\n"; OS << "#undef GET_REGINFO_TARGET_DESC\n\n"; OS << "namespace llvm {\n\n"; // Get access to MCRegisterClass data. OS << "extern const MCRegisterClass " << Target.getName() << "MCRegisterClasses[];\n"; // Start out by emitting each of the register classes. const auto &RegisterClasses = RegBank.getRegClasses(); const auto &SubRegIndices = RegBank.getSubRegIndices(); // Collect all registers belonging to any allocatable class. std::set AllocatableRegs; // Collect allocatable registers. for (const auto &RC : RegisterClasses) { ArrayRef Order = RC.getOrder(); if (RC.Allocatable) AllocatableRegs.insert(Order.begin(), Order.end()); } const CodeGenHwModes &CGH = Target.getHwModes(); unsigned NumModes = CGH.getNumModeIds(); // Build a shared array of value types. SequenceToOffsetTable> VTSeqs; for (unsigned M = 0; M < NumModes; ++M) { for (const auto &RC : RegisterClasses) { std::vector S; for (const ValueTypeByHwMode &VVT : RC.VTs) S.push_back(VVT.get(M).SimpleTy); VTSeqs.add(S); } } VTSeqs.layout(); OS << "\nstatic const MVT::SimpleValueType VTLists[] = {\n"; VTSeqs.emit(OS, printSimpleValueType, "MVT::Other"); OS << "};\n"; // Emit SubRegIndex names, skipping 0. OS << "\nstatic const char *SubRegIndexNameTable[] = { \""; for (const auto &Idx : SubRegIndices) { OS << Idx.getName(); OS << "\", \""; } OS << "\" };\n\n"; // Emit SubRegIndex lane masks, including 0. OS << "\nstatic const LaneBitmask SubRegIndexLaneMaskTable[] = {\n " "LaneBitmask::getAll(),\n"; for (const auto &Idx : SubRegIndices) { printMask(OS << " ", Idx.LaneMask); OS << ", // " << Idx.getName() << '\n'; } OS << " };\n\n"; OS << "\n"; // Now that all of the structs have been emitted, emit the instances. if (!RegisterClasses.empty()) { OS << "\nstatic const TargetRegisterInfo::RegClassInfo RegClassInfos[]" << " = {\n"; for (unsigned M = 0; M < NumModes; ++M) { unsigned EV = 0; OS << " // Mode = " << M << " ("; if (M == 0) OS << "Default"; else OS << CGH.getMode(M).Name; OS << ")\n"; for (const auto &RC : RegisterClasses) { assert(RC.EnumValue == EV && "Unexpected order of register classes"); ++EV; (void)EV; const RegSizeInfo &RI = RC.RSI.get(M); OS << " { " << RI.RegSize << ", " << RI.SpillSize << ", " << RI.SpillAlignment; std::vector VTs; for (const ValueTypeByHwMode &VVT : RC.VTs) VTs.push_back(VVT.get(M).SimpleTy); OS << ", VTLists+" << VTSeqs.get(VTs) << " }, // " << RC.getName() << '\n'; } } OS << "};\n"; OS << "\nstatic const TargetRegisterClass *const " << "NullRegClasses[] = { nullptr };\n\n"; // Emit register class bit mask tables. The first bit mask emitted for a // register class, RC, is the set of sub-classes, including RC itself. // // If RC has super-registers, also create a list of subreg indices and bit // masks, (Idx, Mask). The bit mask has a bit for every superreg regclass, // SuperRC, that satisfies: // // For all SuperReg in SuperRC: SuperReg:Idx in RC // // The 0-terminated list of subreg indices starts at: // // RC->getSuperRegIndices() = SuperRegIdxSeqs + ... // // The corresponding bitmasks follow the sub-class mask in memory. Each // mask has RCMaskWords uint32_t entries. // // Every bit mask present in the list has at least one bit set. // Compress the sub-reg index lists. typedef std::vector IdxList; SmallVector SuperRegIdxLists(RegisterClasses.size()); SequenceToOffsetTable>> SuperRegIdxSeqs; BitVector MaskBV(RegisterClasses.size()); for (const auto &RC : RegisterClasses) { OS << "static const uint32_t " << RC.getName() << "SubClassMask[] = {\n "; printBitVectorAsHex(OS, RC.getSubClasses(), 32); // Emit super-reg class masks for any relevant SubRegIndices that can // project into RC. IdxList &SRIList = SuperRegIdxLists[RC.EnumValue]; for (auto &Idx : SubRegIndices) { MaskBV.reset(); RC.getSuperRegClasses(&Idx, MaskBV); if (MaskBV.none()) continue; SRIList.push_back(&Idx); OS << "\n "; printBitVectorAsHex(OS, MaskBV, 32); OS << "// " << Idx.getName(); } SuperRegIdxSeqs.add(SRIList); OS << "\n};\n\n"; } OS << "static const uint16_t SuperRegIdxSeqs[] = {\n"; SuperRegIdxSeqs.layout(); SuperRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit NULL terminated super-class lists. for (const auto &RC : RegisterClasses) { ArrayRef Supers = RC.getSuperClasses(); // Skip classes without supers. We can reuse NullRegClasses. if (Supers.empty()) continue; OS << "static const TargetRegisterClass *const " << RC.getName() << "Superclasses[] = {\n"; for (const auto *Super : Supers) OS << " &" << Super->getQualifiedName() << "RegClass,\n"; OS << " nullptr\n};\n\n"; } // Emit methods. for (const auto &RC : RegisterClasses) { if (!RC.AltOrderSelect.empty()) { OS << "\nstatic inline unsigned " << RC.getName() << "AltOrderSelect(const MachineFunction &MF) {" << RC.AltOrderSelect << "}\n\n" << "static ArrayRef " << RC.getName() << "GetRawAllocationOrder(const MachineFunction &MF) {\n"; for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) { ArrayRef Elems = RC.getOrder(oi); if (!Elems.empty()) { OS << " static const MCPhysReg AltOrder" << oi << "[] = {"; for (unsigned elem = 0; elem != Elems.size(); ++elem) OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]); OS << " };\n"; } } OS << " const MCRegisterClass &MCR = " << Target.getName() << "MCRegisterClasses[" << RC.getQualifiedName() + "RegClassID];\n" << " const ArrayRef Order[] = {\n" << " ArrayRef(MCR.begin(), MCR.getNumRegs()"; for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi) if (RC.getOrder(oi).empty()) OS << "),\n ArrayRef("; else OS << "),\n ArrayRef(AltOrder" << oi; OS << ")\n };\n const unsigned Select = " << RC.getName() << "AltOrderSelect(MF);\n assert(Select < " << RC.getNumOrders() << ");\n return Order[Select];\n}\n"; } } // Now emit the actual value-initialized register class instances. OS << "\nnamespace " << RegisterClasses.front().Namespace << " { // Register class instances\n"; for (const auto &RC : RegisterClasses) { OS << " extern const TargetRegisterClass " << RC.getName() << "RegClass = {\n " << '&' << Target.getName() << "MCRegisterClasses[" << RC.getName() << "RegClassID],\n " << RC.getName() << "SubClassMask,\n SuperRegIdxSeqs + " << SuperRegIdxSeqs.get(SuperRegIdxLists[RC.EnumValue]) << ",\n "; printMask(OS, RC.LaneMask); OS << ",\n " << (unsigned)RC.AllocationPriority << ",\n " << (RC.GlobalPriority ? "true" : "false") << ",\n " << format("0x%02x", RC.TSFlags) << ", /* TSFlags */\n " << (RC.HasDisjunctSubRegs ? "true" : "false") << ", /* HasDisjunctSubRegs */\n " << (RC.CoveredBySubRegs ? "true" : "false") << ", /* CoveredBySubRegs */\n "; if (RC.getSuperClasses().empty()) OS << "NullRegClasses,\n "; else OS << RC.getName() << "Superclasses,\n "; if (RC.AltOrderSelect.empty()) OS << "nullptr\n"; else OS << RC.getName() << "GetRawAllocationOrder\n"; OS << " };\n\n"; } OS << "} // end namespace " << RegisterClasses.front().Namespace << "\n"; } OS << "\nnamespace {\n"; OS << " const TargetRegisterClass *const RegisterClasses[] = {\n"; for (const auto &RC : RegisterClasses) OS << " &" << RC.getQualifiedName() << "RegClass,\n"; OS << " };\n"; OS << "} // end anonymous namespace\n"; // Emit extra information about registers. const std::string &TargetName = std::string(Target.getName()); const auto &Regs = RegBank.getRegisters(); unsigned NumRegCosts = 1; for (const auto &Reg : Regs) NumRegCosts = std::max((size_t)NumRegCosts, Reg.CostPerUse.size()); std::vector AllRegCostPerUse; llvm::BitVector InAllocClass(Regs.size() + 1, false); AllRegCostPerUse.insert(AllRegCostPerUse.end(), NumRegCosts, 0); // Populate the vector RegCosts with the CostPerUse list of the registers // in the order they are read. Have at most NumRegCosts entries for // each register. Fill with zero for values which are not explicitly given. for (const auto &Reg : Regs) { auto Costs = Reg.CostPerUse; AllRegCostPerUse.insert(AllRegCostPerUse.end(), Costs.begin(), Costs.end()); if (NumRegCosts > Costs.size()) AllRegCostPerUse.insert(AllRegCostPerUse.end(), NumRegCosts - Costs.size(), 0); if (AllocatableRegs.count(Reg.TheDef)) InAllocClass.set(Reg.EnumValue); } // Emit the cost values as a 1D-array after grouping them by their indices, // i.e. the costs for all registers corresponds to index 0, 1, 2, etc. // Size of the emitted array should be NumRegCosts * (Regs.size() + 1). OS << "\nstatic const uint8_t " << "CostPerUseTable[] = { \n"; for (unsigned int I = 0; I < NumRegCosts; ++I) { for (unsigned J = I, E = AllRegCostPerUse.size(); J < E; J += NumRegCosts) OS << AllRegCostPerUse[J] << ", "; } OS << "};\n\n"; OS << "\nstatic const bool " << "InAllocatableClassTable[] = { \n"; for (unsigned I = 0, E = InAllocClass.size(); I < E; ++I) { OS << (InAllocClass[I] ? "true" : "false") << ", "; } OS << "};\n\n"; OS << "\nstatic const TargetRegisterInfoDesc " << TargetName << "RegInfoDesc = { // Extra Descriptors\n"; OS << "CostPerUseTable, " << NumRegCosts << ", " << "InAllocatableClassTable"; OS << "};\n\n"; // End of register descriptors... std::string ClassName = Target.getName().str() + "GenRegisterInfo"; auto SubRegIndicesSize = std::distance(SubRegIndices.begin(), SubRegIndices.end()); if (!SubRegIndices.empty()) { emitComposeSubRegIndices(OS, RegBank, ClassName); emitComposeSubRegIndexLaneMask(OS, RegBank, ClassName); } if (!SubRegIndices.empty()) { // Emit getSubClassWithSubReg. OS << "const TargetRegisterClass *" << ClassName << "::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx)" << " const {\n"; // Use the smallest type that can hold a regclass ID with room for a // sentinel. if (RegisterClasses.size() <= UINT8_MAX) OS << " static const uint8_t Table["; else if (RegisterClasses.size() <= UINT16_MAX) OS << " static const uint16_t Table["; else PrintFatalError("Too many register classes."); OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n"; for (const auto &RC : RegisterClasses) { OS << " {\t// " << RC.getName() << "\n"; for (auto &Idx : SubRegIndices) { if (CodeGenRegisterClass *SRC = RC.getSubClassWithSubReg(&Idx)) OS << " " << SRC->EnumValue + 1 << ",\t// " << Idx.getName() << " -> " << SRC->getName() << "\n"; else OS << " 0,\t// " << Idx.getName() << "\n"; } OS << " },\n"; } OS << " };\n assert(RC && \"Missing regclass\");\n" << " if (!Idx) return RC;\n --Idx;\n" << " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n" << " unsigned TV = Table[RC->getID()][Idx];\n" << " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n"; // Emit getSubRegisterClass OS << "const TargetRegisterClass *" << ClassName << "::getSubRegisterClass(const TargetRegisterClass *RC, unsigned Idx)" << " const {\n"; // Use the smallest type that can hold a regclass ID with room for a // sentinel. if (RegisterClasses.size() <= UINT8_MAX) OS << " static const uint8_t Table["; else if (RegisterClasses.size() <= UINT16_MAX) OS << " static const uint16_t Table["; else PrintFatalError("Too many register classes."); OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n"; for (const auto &RC : RegisterClasses) { OS << " {\t// " << RC.getName() << '\n'; for (auto &Idx : SubRegIndices) { std::optional> MatchingSubClass = RC.getMatchingSubClassWithSubRegs(RegBank, &Idx); unsigned EnumValue = 0; if (MatchingSubClass) { CodeGenRegisterClass *SubRegClass = MatchingSubClass->second; EnumValue = SubRegClass->EnumValue + 1; } OS << " " << EnumValue << ",\t// " << RC.getName() << ':' << Idx.getName(); if (MatchingSubClass) { CodeGenRegisterClass *SubRegClass = MatchingSubClass->second; OS << " -> " << SubRegClass->getName(); } OS << '\n'; } OS << " },\n"; } OS << " };\n assert(RC && \"Missing regclass\");\n" << " if (!Idx) return RC;\n --Idx;\n" << " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n" << " unsigned TV = Table[RC->getID()][Idx];\n" << " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n"; } EmitRegUnitPressure(OS, RegBank, ClassName); // Emit register base class mapper if (!RegisterClasses.empty()) { // Collect base classes SmallVector BaseClasses; for (const auto &RC : RegisterClasses) { if (RC.getBaseClassOrder()) BaseClasses.push_back(&RC); } if (!BaseClasses.empty()) { // Represent class indexes with uint8_t and allocate one index for nullptr assert(BaseClasses.size() <= UINT8_MAX && "Too many base register classes"); // Apply order struct BaseClassOrdering { bool operator()(const CodeGenRegisterClass *LHS, const CodeGenRegisterClass *RHS) const { return std::pair(*LHS->getBaseClassOrder(), LHS->EnumValue) < std::pair(*RHS->getBaseClassOrder(), RHS->EnumValue); } }; llvm::stable_sort(BaseClasses, BaseClassOrdering()); // Build mapping for Regs (+1 for NoRegister) std::vector Mapping(Regs.size() + 1, 0); for (int RCIdx = BaseClasses.size() - 1; RCIdx >= 0; --RCIdx) { for (const auto Reg : BaseClasses[RCIdx]->getMembers()) Mapping[Reg->EnumValue] = RCIdx + 1; } OS << "\n// Register to base register class mapping\n\n"; OS << "\n"; OS << "const TargetRegisterClass *" << ClassName << "::getPhysRegBaseClass(MCRegister Reg)" << " const {\n"; OS << " static const TargetRegisterClass *BaseClasses[" << (BaseClasses.size() + 1) << "] = {\n"; OS << " nullptr,\n"; for (const auto RC : BaseClasses) OS << " &" << RC->getQualifiedName() << "RegClass,\n"; OS << " };\n"; OS << " static const uint8_t Mapping[" << Mapping.size() << "] = {\n "; for (const uint8_t Value : Mapping) OS << (unsigned)Value << ","; OS << " };\n\n"; OS << " assert(Reg < sizeof(Mapping));\n"; OS << " return BaseClasses[Mapping[Reg]];\n"; OS << "}\n"; } } // Emit the constructor of the class... OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[];\n"; OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[];\n"; OS << "extern const LaneBitmask " << TargetName << "LaneMaskLists[];\n"; OS << "extern const char " << TargetName << "RegStrings[];\n"; OS << "extern const char " << TargetName << "RegClassStrings[];\n"; OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2];\n"; OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[];\n"; OS << "extern const MCRegisterInfo::SubRegCoveredBits " << TargetName << "SubRegIdxRanges[];\n"; OS << "extern const uint16_t " << TargetName << "RegEncodingTable[];\n"; EmitRegMappingTables(OS, Regs, true); OS << ClassName << "::\n" << ClassName << "(unsigned RA, unsigned DwarfFlavour, unsigned EHFlavour,\n" " unsigned PC, unsigned HwMode)\n" << " : TargetRegisterInfo(&" << TargetName << "RegInfoDesc" << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() << ",\n" << " SubRegIndexNameTable, SubRegIndexLaneMaskTable,\n" << " "; printMask(OS, RegBank.CoveringLanes); OS << ", RegClassInfos, HwMode) {\n" << " InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1 << ", RA, PC,\n " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ",\n" << " " << TargetName << "RegUnitRoots,\n" << " " << RegBank.getNumNativeRegUnits() << ",\n" << " " << TargetName << "RegDiffLists,\n" << " " << TargetName << "LaneMaskLists,\n" << " " << TargetName << "RegStrings,\n" << " " << TargetName << "RegClassStrings,\n" << " " << TargetName << "SubRegIdxLists,\n" << " " << SubRegIndicesSize + 1 << ",\n" << " " << TargetName << "SubRegIdxRanges,\n" << " " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, true); OS << "}\n\n"; // Emit CalleeSavedRegs information. std::vector CSRSets = Records.getAllDerivedDefinitions("CalleeSavedRegs"); for (unsigned i = 0, e = CSRSets.size(); i != e; ++i) { Record *CSRSet = CSRSets[i]; const SetTheory::RecVec *Regs = RegBank.getSets().expand(CSRSet); assert(Regs && "Cannot expand CalleeSavedRegs instance"); // Emit the *_SaveList list of callee-saved registers. OS << "static const MCPhysReg " << CSRSet->getName() << "_SaveList[] = { "; for (unsigned r = 0, re = Regs->size(); r != re; ++r) OS << getQualifiedName((*Regs)[r]) << ", "; OS << "0 };\n"; // Emit the *_RegMask bit mask of call-preserved registers. BitVector Covered = RegBank.computeCoveredRegisters(*Regs); // Check for an optional OtherPreserved set. // Add those registers to RegMask, but not to SaveList. if (DagInit *OPDag = dyn_cast(CSRSet->getValueInit("OtherPreserved"))) { SetTheory::RecSet OPSet; RegBank.getSets().evaluate(OPDag, OPSet, CSRSet->getLoc()); Covered |= RegBank.computeCoveredRegisters( ArrayRef(OPSet.begin(), OPSet.end())); } // Add all constant physical registers to the preserved mask: SetTheory::RecSet ConstantSet; for (auto &Reg : RegBank.getRegisters()) { if (Reg.Constant) ConstantSet.insert(Reg.TheDef); } Covered |= RegBank.computeCoveredRegisters( ArrayRef(ConstantSet.begin(), ConstantSet.end())); OS << "static const uint32_t " << CSRSet->getName() << "_RegMask[] = { "; printBitVectorAsHex(OS, Covered, 32); OS << "};\n"; } OS << "\n\n"; OS << "ArrayRef " << ClassName << "::getRegMasks() const {\n"; if (!CSRSets.empty()) { OS << " static const uint32_t *const Masks[] = {\n"; for (Record *CSRSet : CSRSets) OS << " " << CSRSet->getName() << "_RegMask,\n"; OS << " };\n"; OS << " return ArrayRef(Masks);\n"; } else { OS << " return std::nullopt;\n"; } OS << "}\n\n"; const std::list &RegCategories = RegBank.getRegCategories(); OS << "bool " << ClassName << "::\n" << "isGeneralPurposeRegister(const MachineFunction &MF, " << "MCRegister PhysReg) const {\n" << " return\n"; for (const CodeGenRegisterCategory &Category : RegCategories) if (Category.getName() == "GeneralPurposeRegisters") { for (const CodeGenRegisterClass *RC : Category.getClasses()) OS << " " << RC->getQualifiedName() << "RegClass.contains(PhysReg) ||\n"; break; } OS << " false;\n"; OS << "}\n\n"; OS << "bool " << ClassName << "::\n" << "isFixedRegister(const MachineFunction &MF, " << "MCRegister PhysReg) const {\n" << " return\n"; for (const CodeGenRegisterCategory &Category : RegCategories) if (Category.getName() == "FixedRegisters") { for (const CodeGenRegisterClass *RC : Category.getClasses()) OS << " " << RC->getQualifiedName() << "RegClass.contains(PhysReg) ||\n"; break; } OS << " false;\n"; OS << "}\n\n"; OS << "bool " << ClassName << "::\n" << "isArgumentRegister(const MachineFunction &MF, " << "MCRegister PhysReg) const {\n" << " return\n"; for (const CodeGenRegisterCategory &Category : RegCategories) if (Category.getName() == "ArgumentRegisters") { for (const CodeGenRegisterClass *RC : Category.getClasses()) OS << " " << RC->getQualifiedName() << "RegClass.contains(PhysReg) ||\n"; break; } OS << " false;\n"; OS << "}\n\n"; OS << "bool " << ClassName << "::\n" << "isConstantPhysReg(MCRegister PhysReg) const {\n" << " return\n"; for (const auto &Reg : Regs) if (Reg.Constant) OS << " PhysReg == " << getQualifiedName(Reg.TheDef) << " ||\n"; OS << " false;\n"; OS << "}\n\n"; OS << "ArrayRef " << ClassName << "::getRegMaskNames() const {\n"; if (!CSRSets.empty()) { OS << " static const char *Names[] = {\n"; for (Record *CSRSet : CSRSets) OS << " " << '"' << CSRSet->getName() << '"' << ",\n"; OS << " };\n"; OS << " return ArrayRef(Names);\n"; } else { OS << " return std::nullopt;\n"; } OS << "}\n\n"; OS << "const " << TargetName << "FrameLowering *\n" << TargetName << "GenRegisterInfo::getFrameLowering(const MachineFunction &MF) {\n" << " return static_cast(\n" << " MF.getSubtarget().getFrameLowering());\n" << "}\n\n"; OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_REGINFO_TARGET_DESC\n\n"; } void RegisterInfoEmitter::run(raw_ostream &OS) { CodeGenRegBank &RegBank = Target.getRegBank(); Records.startTimer("Print enums"); runEnums(OS, Target, RegBank); Records.startTimer("Print MC registers"); runMCDesc(OS, Target, RegBank); Records.startTimer("Print header fragment"); runTargetHeader(OS, Target, RegBank); Records.startTimer("Print target registers"); runTargetDesc(OS, Target, RegBank); if (RegisterInfoDebug) debugDump(errs()); } void RegisterInfoEmitter::debugDump(raw_ostream &OS) { CodeGenRegBank &RegBank = Target.getRegBank(); const CodeGenHwModes &CGH = Target.getHwModes(); unsigned NumModes = CGH.getNumModeIds(); auto getModeName = [CGH] (unsigned M) -> StringRef { if (M == 0) return "Default"; return CGH.getMode(M).Name; }; for (const CodeGenRegisterClass &RC : RegBank.getRegClasses()) { OS << "RegisterClass " << RC.getName() << ":\n"; OS << "\tSpillSize: {"; for (unsigned M = 0; M != NumModes; ++M) OS << ' ' << getModeName(M) << ':' << RC.RSI.get(M).SpillSize; OS << " }\n\tSpillAlignment: {"; for (unsigned M = 0; M != NumModes; ++M) OS << ' ' << getModeName(M) << ':' << RC.RSI.get(M).SpillAlignment; OS << " }\n\tNumRegs: " << RC.getMembers().size() << '\n'; OS << "\tLaneMask: " << PrintLaneMask(RC.LaneMask) << '\n'; OS << "\tHasDisjunctSubRegs: " << RC.HasDisjunctSubRegs << '\n'; OS << "\tCoveredBySubRegs: " << RC.CoveredBySubRegs << '\n'; OS << "\tAllocatable: " << RC.Allocatable << '\n'; OS << "\tAllocationPriority: " << unsigned(RC.AllocationPriority) << '\n'; OS << "\tRegs:"; for (const CodeGenRegister *R : RC.getMembers()) { OS << " " << R->getName(); } OS << '\n'; OS << "\tSubClasses:"; const BitVector &SubClasses = RC.getSubClasses(); for (const CodeGenRegisterClass &SRC : RegBank.getRegClasses()) { if (!SubClasses.test(SRC.EnumValue)) continue; OS << " " << SRC.getName(); } OS << '\n'; OS << "\tSuperClasses:"; for (const CodeGenRegisterClass *SRC : RC.getSuperClasses()) { OS << " " << SRC->getName(); } OS << '\n'; } for (const CodeGenSubRegIndex &SRI : RegBank.getSubRegIndices()) { OS << "SubRegIndex " << SRI.getName() << ":\n"; OS << "\tLaneMask: " << PrintLaneMask(SRI.LaneMask) << '\n'; OS << "\tAllSuperRegsCovered: " << SRI.AllSuperRegsCovered << '\n'; OS << "\tOffset, Size: " << SRI.Offset << ", " << SRI.Size << '\n'; } for (const CodeGenRegister &R : RegBank.getRegisters()) { OS << "Register " << R.getName() << ":\n"; OS << "\tCostPerUse: "; for (const auto &Cost : R.CostPerUse) OS << Cost << " "; OS << '\n'; OS << "\tCoveredBySubregs: " << R.CoveredBySubRegs << '\n'; OS << "\tHasDisjunctSubRegs: " << R.HasDisjunctSubRegs << '\n'; for (std::pair P : R.getSubRegs()) { OS << "\tSubReg " << P.first->getName() << " = " << P.second->getName() << '\n'; } } } namespace llvm { void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS) { RegisterInfoEmitter(RK).run(OS); } } // end namespace llvm