#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- InstCombiner.h - InstCombine implementation --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file provides the interface for the instcombine pass implementation. /// The interface is used for generic transformations in this folder and /// target specific combinations in the targets. /// The visitor implementation is in \c InstCombinerImpl in /// \c InstCombineInternal.h. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H #define LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include #define DEBUG_TYPE "instcombine" #include "llvm/Transforms/Utils/InstructionWorklist.h" namespace llvm { class AAResults; class AssumptionCache; class ProfileSummaryInfo; class TargetLibraryInfo; class TargetTransformInfo; /// The core instruction combiner logic. /// /// This class provides both the logic to recursively visit instructions and /// combine them. class LLVM_LIBRARY_VISIBILITY InstCombiner { /// Only used to call target specific intrinsic combining. /// It must **NOT** be used for any other purpose, as InstCombine is a /// target-independent canonicalization transform. TargetTransformInfo &TTI; public: /// Maximum size of array considered when transforming. uint64_t MaxArraySizeForCombine = 0; /// An IRBuilder that automatically inserts new instructions into the /// worklist. using BuilderTy = IRBuilder; BuilderTy &Builder; protected: /// A worklist of the instructions that need to be simplified. InstructionWorklist &Worklist; // Mode in which we are running the combiner. const bool MinimizeSize; AAResults *AA; // Required analyses. AssumptionCache &AC; TargetLibraryInfo &TLI; DominatorTree &DT; const DataLayout &DL; const SimplifyQuery SQ; OptimizationRemarkEmitter &ORE; BlockFrequencyInfo *BFI; ProfileSummaryInfo *PSI; // Optional analyses. When non-null, these can both be used to do better // combining and will be updated to reflect any changes. LoopInfo *LI; bool MadeIRChange = false; public: InstCombiner(InstructionWorklist &Worklist, BuilderTy &Builder, bool MinimizeSize, AAResults *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI) : TTI(TTI), Builder(Builder), Worklist(Worklist), MinimizeSize(MinimizeSize), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {} virtual ~InstCombiner() = default; /// Return the source operand of a potentially bitcasted value while /// optionally checking if it has one use. If there is no bitcast or the one /// use check is not met, return the input value itself. static Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) { if (auto *BitCast = dyn_cast(V)) if (!OneUseOnly || BitCast->hasOneUse()) return BitCast->getOperand(0); // V is not a bitcast or V has more than one use and OneUseOnly is true. return V; } /// Assign a complexity or rank value to LLVM Values. This is used to reduce /// the amount of pattern matching needed for compares and commutative /// instructions. For example, if we have: /// icmp ugt X, Constant /// or /// xor (add X, Constant), cast Z /// /// We do not have to consider the commuted variants of these patterns because /// canonicalization based on complexity guarantees the above ordering. /// /// This routine maps IR values to various complexity ranks: /// 0 -> undef /// 1 -> Constants /// 2 -> Other non-instructions /// 3 -> Arguments /// 4 -> Cast and (f)neg/not instructions /// 5 -> Other instructions static unsigned getComplexity(Value *V) { if (isa(V)) { if (isa(V) || match(V, m_Neg(PatternMatch::m_Value())) || match(V, m_Not(PatternMatch::m_Value())) || match(V, m_FNeg(PatternMatch::m_Value()))) return 4; return 5; } if (isa(V)) return 3; return isa(V) ? (isa(V) ? 0 : 1) : 2; } /// Predicate canonicalization reduces the number of patterns that need to be /// matched by other transforms. For example, we may swap the operands of a /// conditional branch or select to create a compare with a canonical /// (inverted) predicate which is then more likely to be matched with other /// values. static bool isCanonicalPredicate(CmpInst::Predicate Pred) { switch (Pred) { case CmpInst::ICMP_NE: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SLE: case CmpInst::ICMP_UGE: case CmpInst::ICMP_SGE: // TODO: There are 16 FCMP predicates. Should others be (not) canonical? case CmpInst::FCMP_ONE: case CmpInst::FCMP_OLE: case CmpInst::FCMP_OGE: return false; default: return true; } } /// Given an exploded icmp instruction, return true if the comparison only /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if /// the result of the comparison is true when the input value is signed. static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned) { switch (Pred) { case ICmpInst::ICMP_SLT: // True if LHS s< 0 TrueIfSigned = true; return RHS.isZero(); case ICmpInst::ICMP_SLE: // True if LHS s<= -1 TrueIfSigned = true; return RHS.isAllOnes(); case ICmpInst::ICMP_SGT: // True if LHS s> -1 TrueIfSigned = false; return RHS.isAllOnes(); case ICmpInst::ICMP_SGE: // True if LHS s>= 0 TrueIfSigned = false; return RHS.isZero(); case ICmpInst::ICMP_UGT: // True if LHS u> RHS and RHS == sign-bit-mask - 1 TrueIfSigned = true; return RHS.isMaxSignedValue(); case ICmpInst::ICMP_UGE: // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) TrueIfSigned = true; return RHS.isMinSignedValue(); case ICmpInst::ICMP_ULT: // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) TrueIfSigned = false; return RHS.isMinSignedValue(); case ICmpInst::ICMP_ULE: // True if LHS u<= RHS and RHS == sign-bit-mask - 1 TrueIfSigned = false; return RHS.isMaxSignedValue(); default: return false; } } /// Add one to a Constant static Constant *AddOne(Constant *C) { return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); } /// Subtract one from a Constant static Constant *SubOne(Constant *C) { return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); } std::optional> static getFlippedStrictnessPredicateAndConstant(CmpInst:: Predicate Pred, Constant *C); static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI) { // a ? b : false and a ? true : b are the canonical form of logical and/or. // This includes !a ? b : false and !a ? true : b. Absorbing the not into // the select by swapping operands would break recognition of this pattern // in other analyses, so don't do that. return match(&SI, PatternMatch::m_LogicalAnd(PatternMatch::m_Value(), PatternMatch::m_Value())) || match(&SI, PatternMatch::m_LogicalOr(PatternMatch::m_Value(), PatternMatch::m_Value())); } /// Return true if the specified value is free to invert (apply ~ to). /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses /// is true, work under the assumption that the caller intends to remove all /// uses of V and only keep uses of ~V. /// /// See also: canFreelyInvertAllUsersOf() static bool isFreeToInvert(Value *V, bool WillInvertAllUses) { // ~(~(X)) -> X. if (match(V, m_Not(PatternMatch::m_Value()))) return true; // Constants can be considered to be not'ed values. if (match(V, PatternMatch::m_AnyIntegralConstant())) return true; // Compares can be inverted if all of their uses are being modified to use // the ~V. if (isa(V)) return WillInvertAllUses; // If `V` is of the form `A + Constant` then `-1 - V` can be folded into // `(-1 - Constant) - A` if we are willing to invert all of the uses. if (match(V, m_Add(PatternMatch::m_Value(), PatternMatch::m_ImmConstant()))) return WillInvertAllUses; // If `V` is of the form `Constant - A` then `-1 - V` can be folded into // `A + (-1 - Constant)` if we are willing to invert all of the uses. if (match(V, m_Sub(PatternMatch::m_ImmConstant(), PatternMatch::m_Value()))) return WillInvertAllUses; // Selects with invertible operands are freely invertible if (match(V, m_Select(PatternMatch::m_Value(), m_Not(PatternMatch::m_Value()), m_Not(PatternMatch::m_Value())))) return WillInvertAllUses; // Min/max may be in the form of intrinsics, so handle those identically // to select patterns. if (match(V, m_MaxOrMin(m_Not(PatternMatch::m_Value()), m_Not(PatternMatch::m_Value())))) return WillInvertAllUses; return false; } /// Given i1 V, can every user of V be freely adapted if V is changed to !V ? /// InstCombine's freelyInvertAllUsersOf() must be kept in sync with this fn. /// NOTE: for Instructions only! /// /// See also: isFreeToInvert() static bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser) { // Look at every user of V. for (Use &U : V->uses()) { if (U.getUser() == IgnoredUser) continue; // Don't consider this user. auto *I = cast(U.getUser()); switch (I->getOpcode()) { case Instruction::Select: if (U.getOperandNo() != 0) // Only if the value is used as select cond. return false; if (shouldAvoidAbsorbingNotIntoSelect(*cast(I))) return false; break; case Instruction::Br: assert(U.getOperandNo() == 0 && "Must be branching on that value."); break; // Free to invert by swapping true/false values/destinations. case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring // it. if (!match(I, m_Not(PatternMatch::m_Value()))) return false; // Not a 'not'. break; default: return false; // Don't know, likely not freely invertible. } // So far all users were free to invert... } return true; // Can freely invert all users! } /// Some binary operators require special handling to avoid poison and /// undefined behavior. If a constant vector has undef elements, replace those /// undefs with identity constants if possible because those are always safe /// to execute. If no identity constant exists, replace undef with some other /// safe constant. static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) { auto *InVTy = cast(In->getType()); Type *EltTy = InVTy->getElementType(); auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant); if (!SafeC) { // TODO: Should this be available as a constant utility function? It is // similar to getBinOpAbsorber(). if (IsRHSConstant) { switch (Opcode) { case Instruction::SRem: // X % 1 = 0 case Instruction::URem: // X %u 1 = 0 SafeC = ConstantInt::get(EltTy, 1); break; case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe) SafeC = ConstantFP::get(EltTy, 1.0); break; default: llvm_unreachable( "Only rem opcodes have no identity constant for RHS"); } } else { switch (Opcode) { case Instruction::Shl: // 0 << X = 0 case Instruction::LShr: // 0 >>u X = 0 case Instruction::AShr: // 0 >> X = 0 case Instruction::SDiv: // 0 / X = 0 case Instruction::UDiv: // 0 /u X = 0 case Instruction::SRem: // 0 % X = 0 case Instruction::URem: // 0 %u X = 0 case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe) case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe) case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe) case Instruction::FRem: // 0.0 % X = 0 SafeC = Constant::getNullValue(EltTy); break; default: llvm_unreachable("Expected to find identity constant for opcode"); } } } assert(SafeC && "Must have safe constant for binop"); unsigned NumElts = InVTy->getNumElements(); SmallVector Out(NumElts); for (unsigned i = 0; i != NumElts; ++i) { Constant *C = In->getAggregateElement(i); Out[i] = isa(C) ? SafeC : C; } return ConstantVector::get(Out); } void addToWorklist(Instruction *I) { Worklist.push(I); } AssumptionCache &getAssumptionCache() const { return AC; } TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } DominatorTree &getDominatorTree() const { return DT; } const DataLayout &getDataLayout() const { return DL; } const SimplifyQuery &getSimplifyQuery() const { return SQ; } OptimizationRemarkEmitter &getOptimizationRemarkEmitter() const { return ORE; } BlockFrequencyInfo *getBlockFrequencyInfo() const { return BFI; } ProfileSummaryInfo *getProfileSummaryInfo() const { return PSI; } LoopInfo *getLoopInfo() const { return LI; } // Call target specific combiners std::optional targetInstCombineIntrinsic(IntrinsicInst &II); std::optional targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed); std::optional targetSimplifyDemandedVectorEltsIntrinsic( IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp); /// Inserts an instruction \p New before instruction \p Old /// /// Also adds the new instruction to the worklist and returns \p New so that /// it is suitable for use as the return from the visitation patterns. Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { assert(New && !New->getParent() && "New instruction already inserted into a basic block!"); BasicBlock *BB = Old.getParent(); New->insertInto(BB, Old.getIterator()); // Insert inst Worklist.add(New); return New; } /// Same as InsertNewInstBefore, but also sets the debug loc. Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { New->setDebugLoc(Old.getDebugLoc()); return InsertNewInstBefore(New, Old); } /// A combiner-aware RAUW-like routine. /// /// This method is to be used when an instruction is found to be dead, /// replaceable with another preexisting expression. Here we add all uses of /// I to the worklist, replace all uses of I with the new value, then return /// I, so that the inst combiner will know that I was modified. Instruction *replaceInstUsesWith(Instruction &I, Value *V) { // If there are no uses to replace, then we return nullptr to indicate that // no changes were made to the program. if (I.use_empty()) return nullptr; Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist. // If we are replacing the instruction with itself, this must be in a // segment of unreachable code, so just clobber the instruction. if (&I == V) V = PoisonValue::get(I.getType()); LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n" << " with " << *V << '\n'); // If V is a new unnamed instruction, take the name from the old one. if (V->use_empty() && isa(V) && !V->hasName() && I.hasName()) V->takeName(&I); I.replaceAllUsesWith(V); return &I; } /// Replace operand of instruction and add old operand to the worklist. Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) { Worklist.addValue(I.getOperand(OpNum)); I.setOperand(OpNum, V); return &I; } /// Replace use and add the previously used value to the worklist. void replaceUse(Use &U, Value *NewValue) { Worklist.addValue(U); U = NewValue; } /// Combiner aware instruction erasure. /// /// When dealing with an instruction that has side effects or produces a void /// value, we can't rely on DCE to delete the instruction. Instead, visit /// methods should return the value returned by this function. virtual Instruction *eraseInstFromFunction(Instruction &I) = 0; void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const { llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT); } KnownBits computeKnownBits(const Value *V, unsigned Depth, const Instruction *CxtI) const { return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT); } bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false, unsigned Depth = 0, const Instruction *CxtI = nullptr) { return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT); } bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0, const Instruction *CxtI = nullptr) const { return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT); } unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0, const Instruction *CxtI = nullptr) const { return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); } unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth = 0, const Instruction *CxtI = nullptr) const { return llvm::ComputeMaxSignificantBits(Op, DL, Depth, &AC, CxtI, &DT); } OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT); } OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const { return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT); } virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo, const APInt &DemandedMask, KnownBits &Known, unsigned Depth = 0) = 0; virtual Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts, unsigned Depth = 0, bool AllowMultipleUsers = false) = 0; }; } // namespace llvm #undef DEBUG_TYPE #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif