#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the TargetMachine and LLVMTargetMachine classes. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETMACHINE_H #define LLVM_TARGET_TARGETMACHINE_H #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Error.h" #include "llvm/Support/PGOOptions.h" #include "llvm/Target/CGPassBuilderOption.h" #include "llvm/Target/TargetOptions.h" #include #include #include namespace llvm { class AAManager; using ModulePassManager = PassManager; class Function; class GlobalValue; class MachineFunctionPassManager; class MachineFunctionAnalysisManager; class MachineModuleInfoWrapperPass; class Mangler; class MCAsmInfo; class MCContext; class MCInstrInfo; class MCRegisterInfo; class MCStreamer; class MCSubtargetInfo; class MCSymbol; class raw_pwrite_stream; class PassBuilder; struct PerFunctionMIParsingState; class SMDiagnostic; class SMRange; class Target; class TargetIntrinsicInfo; class TargetIRAnalysis; class TargetTransformInfo; class TargetLoweringObjectFile; class TargetPassConfig; class TargetSubtargetInfo; // The old pass manager infrastructure is hidden in a legacy namespace now. namespace legacy { class PassManagerBase; } using legacy::PassManagerBase; struct MachineFunctionInfo; namespace yaml { struct MachineFunctionInfo; } //===----------------------------------------------------------------------===// /// /// Primary interface to the complete machine description for the target /// machine. All target-specific information should be accessible through this /// interface. /// class TargetMachine { protected: // Can only create subclasses. TargetMachine(const Target &T, StringRef DataLayoutString, const Triple &TargetTriple, StringRef CPU, StringRef FS, const TargetOptions &Options); /// The Target that this machine was created for. const Target &TheTarget; /// DataLayout for the target: keep ABI type size and alignment. /// /// The DataLayout is created based on the string representation provided /// during construction. It is kept here only to avoid reparsing the string /// but should not really be used during compilation, because it has an /// internal cache that is context specific. const DataLayout DL; /// Triple string, CPU name, and target feature strings the TargetMachine /// instance is created with. Triple TargetTriple; std::string TargetCPU; std::string TargetFS; Reloc::Model RM = Reloc::Static; CodeModel::Model CMModel = CodeModel::Small; CodeGenOpt::Level OptLevel = CodeGenOpt::Default; /// Contains target specific asm information. std::unique_ptr AsmInfo; std::unique_ptr MRI; std::unique_ptr MII; std::unique_ptr STI; unsigned RequireStructuredCFG : 1; unsigned O0WantsFastISel : 1; // PGO related tunables. std::optional PGOOption; public: const TargetOptions DefaultOptions; mutable TargetOptions Options; TargetMachine(const TargetMachine &) = delete; void operator=(const TargetMachine &) = delete; virtual ~TargetMachine(); const Target &getTarget() const { return TheTarget; } const Triple &getTargetTriple() const { return TargetTriple; } StringRef getTargetCPU() const { return TargetCPU; } StringRef getTargetFeatureString() const { return TargetFS; } void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); } /// Virtual method implemented by subclasses that returns a reference to that /// target's TargetSubtargetInfo-derived member variable. virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const { return nullptr; } virtual TargetLoweringObjectFile *getObjFileLowering() const { return nullptr; } /// Create the target's instance of MachineFunctionInfo virtual MachineFunctionInfo * createMachineFunctionInfo(BumpPtrAllocator &Allocator, const Function &F, const TargetSubtargetInfo *STI) const { return nullptr; } /// Allocate and return a default initialized instance of the YAML /// representation for the MachineFunctionInfo. virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const { return nullptr; } /// Allocate and initialize an instance of the YAML representation of the /// MachineFunctionInfo. virtual yaml::MachineFunctionInfo * convertFuncInfoToYAML(const MachineFunction &MF) const { return nullptr; } /// Parse out the target's MachineFunctionInfo from the YAML reprsentation. virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &, PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) const { return false; } /// This method returns a pointer to the specified type of /// TargetSubtargetInfo. In debug builds, it verifies that the object being /// returned is of the correct type. template const STC &getSubtarget(const Function &F) const { return *static_cast(getSubtargetImpl(F)); } /// Create a DataLayout. const DataLayout createDataLayout() const { return DL; } /// Test if a DataLayout if compatible with the CodeGen for this target. /// /// The LLVM Module owns a DataLayout that is used for the target independent /// optimizations and code generation. This hook provides a target specific /// check on the validity of this DataLayout. bool isCompatibleDataLayout(const DataLayout &Candidate) const { return DL == Candidate; } /// Get the pointer size for this target. /// /// This is the only time the DataLayout in the TargetMachine is used. unsigned getPointerSize(unsigned AS) const { return DL.getPointerSize(AS); } unsigned getPointerSizeInBits(unsigned AS) const { return DL.getPointerSizeInBits(AS); } unsigned getProgramPointerSize() const { return DL.getPointerSize(DL.getProgramAddressSpace()); } unsigned getAllocaPointerSize() const { return DL.getPointerSize(DL.getAllocaAddrSpace()); } /// Reset the target options based on the function's attributes. // FIXME: Remove TargetOptions that affect per-function code generation // from TargetMachine. void resetTargetOptions(const Function &F) const; /// Return target specific asm information. const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); } const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); } const MCInstrInfo *getMCInstrInfo() const { return MII.get(); } const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); } /// If intrinsic information is available, return it. If not, return null. virtual const TargetIntrinsicInfo *getIntrinsicInfo() const { return nullptr; } bool requiresStructuredCFG() const { return RequireStructuredCFG; } void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; } /// Returns the code generation relocation model. The choices are static, PIC, /// and dynamic-no-pic, and target default. Reloc::Model getRelocationModel() const; /// Returns the code model. The choices are small, kernel, medium, large, and /// target default. CodeModel::Model getCodeModel() const { return CMModel; } /// Set the code model. void setCodeModel(CodeModel::Model CM) { CMModel = CM; } bool isPositionIndependent() const; bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const; /// Returns true if this target uses emulated TLS. bool useEmulatedTLS() const; /// Returns the TLS model which should be used for the given global variable. TLSModel::Model getTLSModel(const GlobalValue *GV) const; /// Returns the optimization level: None, Less, Default, or Aggressive. CodeGenOpt::Level getOptLevel() const; /// Overrides the optimization level. void setOptLevel(CodeGenOpt::Level Level); void setFastISel(bool Enable) { Options.EnableFastISel = Enable; } bool getO0WantsFastISel() { return O0WantsFastISel; } void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; } void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; } void setGlobalISelAbort(GlobalISelAbortMode Mode) { Options.GlobalISelAbort = Mode; } void setMachineOutliner(bool Enable) { Options.EnableMachineOutliner = Enable; } void setSupportsDefaultOutlining(bool Enable) { Options.SupportsDefaultOutlining = Enable; } void setSupportsDebugEntryValues(bool Enable) { Options.SupportsDebugEntryValues = Enable; } void setCFIFixup(bool Enable) { Options.EnableCFIFixup = Enable; } bool getAIXExtendedAltivecABI() const { return Options.EnableAIXExtendedAltivecABI; } bool getUniqueSectionNames() const { return Options.UniqueSectionNames; } /// Return true if unique basic block section names must be generated. bool getUniqueBasicBlockSectionNames() const { return Options.UniqueBasicBlockSectionNames; } /// Return true if data objects should be emitted into their own section, /// corresponds to -fdata-sections. bool getDataSections() const { return Options.DataSections; } /// Return true if functions should be emitted into their own section, /// corresponding to -ffunction-sections. bool getFunctionSections() const { return Options.FunctionSections; } /// Return true if visibility attribute should not be emitted in XCOFF, /// corresponding to -mignore-xcoff-visibility. bool getIgnoreXCOFFVisibility() const { return Options.IgnoreXCOFFVisibility; } /// Return true if XCOFF traceback table should be emitted, /// corresponding to -xcoff-traceback-table. bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; } /// If basic blocks should be emitted into their own section, /// corresponding to -fbasic-block-sections. llvm::BasicBlockSection getBBSectionsType() const { return Options.BBSections; } /// Get the list of functions and basic block ids that need unique sections. const MemoryBuffer *getBBSectionsFuncListBuf() const { return Options.BBSectionsFuncListBuf.get(); } /// Returns true if a cast between SrcAS and DestAS is a noop. virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return false; } void setPGOOption(std::optional PGOOpt) { PGOOption = PGOOpt; } const std::optional &getPGOOption() const { return PGOOption; } /// If the specified generic pointer could be assumed as a pointer to a /// specific address space, return that address space. /// /// Under offloading programming, the offloading target may be passed with /// values only prepared on the host side and could assume certain /// properties. virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; } /// If the specified predicate checks whether a generic pointer falls within /// a specified address space, return that generic pointer and the address /// space being queried. /// /// Such predicates could be specified in @llvm.assume intrinsics for the /// optimizer to assume that the given generic pointer always falls within /// the address space based on that predicate. virtual std::pair getPredicatedAddrSpace(const Value *V) const { return std::make_pair(nullptr, -1); } /// Get a \c TargetIRAnalysis appropriate for the target. /// /// This is used to construct the new pass manager's target IR analysis pass, /// set up appropriately for this target machine. Even the old pass manager /// uses this to answer queries about the IR. TargetIRAnalysis getTargetIRAnalysis() const; /// Return a TargetTransformInfo for a given function. /// /// The returned TargetTransformInfo is specialized to the subtarget /// corresponding to \p F. virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const; /// Allow the target to modify the pass pipeline. virtual void registerPassBuilderCallbacks(PassBuilder &) {} /// Allow the target to register alias analyses with the AAManager for use /// with the new pass manager. Only affects the "default" AAManager. virtual void registerDefaultAliasAnalyses(AAManager &) {} /// Add passes to the specified pass manager to get the specified file /// emitted. Typically this will involve several steps of code generation. /// This method should return true if emission of this file type is not /// supported, or false on success. /// \p MMIWP is an optional parameter that, if set to non-nullptr, /// will be used to set the MachineModuloInfo for this PM. virtual bool addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &, raw_pwrite_stream *, CodeGenFileType, bool /*DisableVerify*/ = true, MachineModuleInfoWrapperPass *MMIWP = nullptr) { return true; } /// Add passes to the specified pass manager to get machine code emitted with /// the MCJIT. This method returns true if machine code is not supported. It /// fills the MCContext Ctx pointer which can be used to build custom /// MCStreamer. /// virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&, raw_pwrite_stream &, bool /*DisableVerify*/ = true) { return true; } /// True if subtarget inserts the final scheduling pass on its own. /// /// Branch relaxation, which must happen after block placement, can /// on some targets (e.g. SystemZ) expose additional post-RA /// scheduling opportunities. virtual bool targetSchedulesPostRAScheduling() const { return false; }; void getNameWithPrefix(SmallVectorImpl &Name, const GlobalValue *GV, Mangler &Mang, bool MayAlwaysUsePrivate = false) const; MCSymbol *getSymbol(const GlobalValue *GV) const; /// The integer bit size to use for SjLj based exception handling. static constexpr unsigned DefaultSjLjDataSize = 32; virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; } static std::pair parseBinutilsVersion(StringRef Version); /// getAddressSpaceForPseudoSourceKind - Given the kind of memory /// (e.g. stack) the target returns the corresponding address space. virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind) const { return 0; } }; /// This class describes a target machine that is implemented with the LLVM /// target-independent code generator. /// class LLVMTargetMachine : public TargetMachine { protected: // Can only create subclasses. LLVMTargetMachine(const Target &T, StringRef DataLayoutString, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL); void initAsmInfo(); public: /// Get a TargetTransformInfo implementation for the target. /// /// The TTI returned uses the common code generator to answer queries about /// the IR. TargetTransformInfo getTargetTransformInfo(const Function &F) const override; /// Create a pass configuration object to be used by addPassToEmitX methods /// for generating a pipeline of CodeGen passes. virtual TargetPassConfig *createPassConfig(PassManagerBase &PM); /// Add passes to the specified pass manager to get the specified file /// emitted. Typically this will involve several steps of code generation. /// \p MMIWP is an optional parameter that, if set to non-nullptr, /// will be used to set the MachineModuloInfo for this PM. bool addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut, CodeGenFileType FileType, bool DisableVerify = true, MachineModuleInfoWrapperPass *MMIWP = nullptr) override; virtual Error buildCodeGenPipeline(ModulePassManager &, MachineFunctionPassManager &, MachineFunctionAnalysisManager &, raw_pwrite_stream &, raw_pwrite_stream *, CodeGenFileType, CGPassBuilderOption, PassInstrumentationCallbacks *) { return make_error("buildCodeGenPipeline is not overridden", inconvertibleErrorCode()); } virtual std::pair getPassNameFromLegacyName(StringRef) { llvm_unreachable( "getPassNameFromLegacyName parseMIRPipeline is not overridden"); } /// Add passes to the specified pass manager to get machine code emitted with /// the MCJIT. This method returns true if machine code is not supported. It /// fills the MCContext Ctx pointer which can be used to build custom /// MCStreamer. bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx, raw_pwrite_stream &Out, bool DisableVerify = true) override; /// Returns true if the target is expected to pass all machine verifier /// checks. This is a stopgap measure to fix targets one by one. We will /// remove this at some point and always enable the verifier when /// EXPENSIVE_CHECKS is enabled. virtual bool isMachineVerifierClean() const { return true; } /// Adds an AsmPrinter pass to the pipeline that prints assembly or /// machine code from the MI representation. bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut, CodeGenFileType FileType, MCContext &Context); Expected> createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut, CodeGenFileType FileType, MCContext &Ctx); /// True if the target uses physical regs (as nearly all targets do). False /// for stack machines such as WebAssembly and other virtual-register /// machines. If true, all vregs must be allocated before PEI. If false, then /// callee-save register spilling and scavenging are not needed or used. If /// false, implicitly defined registers will still be assumed to be physical /// registers, except that variadic defs will be allocated vregs. virtual bool usesPhysRegsForValues() const { return true; } /// True if the target wants to use interprocedural register allocation by /// default. The -enable-ipra flag can be used to override this. virtual bool useIPRA() const { return false; } /// The default variant to use in unqualified `asm` instructions. /// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`. virtual int unqualifiedInlineAsmVariant() const { return 0; } }; /// Helper method for getting the code model, returning Default if /// CM does not have a value. The tiny and kernel models will produce /// an error, so targets that support them or require more complex codemodel /// selection logic should implement and call their own getEffectiveCodeModel. inline CodeModel::Model getEffectiveCodeModel(std::optional CM, CodeModel::Model Default) { if (CM) { // By default, targets do not support the tiny and kernel models. if (*CM == CodeModel::Tiny) report_fatal_error("Target does not support the tiny CodeModel", false); if (*CM == CodeModel::Kernel) report_fatal_error("Target does not support the kernel CodeModel", false); return *CM; } return Default; } } // end namespace llvm #endif // LLVM_TARGET_TARGETMACHINE_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif