#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- llvm/BasicBlock.h - Represent a basic block in the VM ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declaration of the BasicBlock class. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_BASICBLOCK_H #define LLVM_IR_BASICBLOCK_H #include "llvm-c/Types.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/SymbolTableListTraits.h" #include "llvm/IR/Value.h" #include #include #include namespace llvm { class AssemblyAnnotationWriter; class CallInst; class Function; class LandingPadInst; class LLVMContext; class Module; class PHINode; class ValueSymbolTable; /// LLVM Basic Block Representation /// /// This represents a single basic block in LLVM. A basic block is simply a /// container of instructions that execute sequentially. Basic blocks are Values /// because they are referenced by instructions such as branches and switch /// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block /// represents a label to which a branch can jump. /// /// A well formed basic block is formed of a list of non-terminating /// instructions followed by a single terminator instruction. Terminator /// instructions may not occur in the middle of basic blocks, and must terminate /// the blocks. The BasicBlock class allows malformed basic blocks to occur /// because it may be useful in the intermediate stage of constructing or /// modifying a program. However, the verifier will ensure that basic blocks are /// "well formed". class BasicBlock final : public Value, // Basic blocks are data objects also public ilist_node_with_parent { public: using InstListType = SymbolTableList; private: friend class BlockAddress; friend class SymbolTableListTraits; InstListType InstList; Function *Parent; void setParent(Function *parent); /// Constructor. /// /// If the function parameter is specified, the basic block is automatically /// inserted at either the end of the function (if InsertBefore is null), or /// before the specified basic block. explicit BasicBlock(LLVMContext &C, const Twine &Name = "", Function *Parent = nullptr, BasicBlock *InsertBefore = nullptr); public: BasicBlock(const BasicBlock &) = delete; BasicBlock &operator=(const BasicBlock &) = delete; ~BasicBlock(); /// Get the context in which this basic block lives. LLVMContext &getContext() const; /// Instruction iterators... using iterator = InstListType::iterator; using const_iterator = InstListType::const_iterator; using reverse_iterator = InstListType::reverse_iterator; using const_reverse_iterator = InstListType::const_reverse_iterator; // These functions and classes need access to the instruction list. friend void Instruction::removeFromParent(); friend iplist::iterator Instruction::eraseFromParent(); friend BasicBlock::iterator Instruction::insertInto(BasicBlock *BB, BasicBlock::iterator It); friend class llvm::SymbolTableListTraits; friend class llvm::ilist_node_with_parent; /// Creates a new BasicBlock. /// /// If the Parent parameter is specified, the basic block is automatically /// inserted at either the end of the function (if InsertBefore is 0), or /// before the specified basic block. static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "", Function *Parent = nullptr, BasicBlock *InsertBefore = nullptr) { return new BasicBlock(Context, Name, Parent, InsertBefore); } /// Return the enclosing method, or null if none. const Function *getParent() const { return Parent; } Function *getParent() { return Parent; } /// Return the module owning the function this basic block belongs to, or /// nullptr if the function does not have a module. /// /// Note: this is undefined behavior if the block does not have a parent. const Module *getModule() const; Module *getModule() { return const_cast( static_cast(this)->getModule()); } /// Returns the terminator instruction if the block is well formed or null /// if the block is not well formed. const Instruction *getTerminator() const LLVM_READONLY { if (InstList.empty() || !InstList.back().isTerminator()) return nullptr; return &InstList.back(); } Instruction *getTerminator() { return const_cast( static_cast(this)->getTerminator()); } /// Returns the call instruction calling \@llvm.experimental.deoptimize /// prior to the terminating return instruction of this basic block, if such /// a call is present. Otherwise, returns null. const CallInst *getTerminatingDeoptimizeCall() const; CallInst *getTerminatingDeoptimizeCall() { return const_cast( static_cast(this)->getTerminatingDeoptimizeCall()); } /// Returns the call instruction calling \@llvm.experimental.deoptimize /// that is present either in current basic block or in block that is a unique /// successor to current block, if such call is present. Otherwise, returns null. const CallInst *getPostdominatingDeoptimizeCall() const; CallInst *getPostdominatingDeoptimizeCall() { return const_cast( static_cast(this)->getPostdominatingDeoptimizeCall()); } /// Returns the call instruction marked 'musttail' prior to the terminating /// return instruction of this basic block, if such a call is present. /// Otherwise, returns null. const CallInst *getTerminatingMustTailCall() const; CallInst *getTerminatingMustTailCall() { return const_cast( static_cast(this)->getTerminatingMustTailCall()); } /// Returns a pointer to the first instruction in this block that is not a /// PHINode instruction. /// /// When adding instructions to the beginning of the basic block, they should /// be added before the returned value, not before the first instruction, /// which might be PHI. Returns 0 is there's no non-PHI instruction. const Instruction* getFirstNonPHI() const; Instruction* getFirstNonPHI() { return const_cast( static_cast(this)->getFirstNonPHI()); } /// Returns a pointer to the first instruction in this block that is not a /// PHINode or a debug intrinsic, or any pseudo operation if \c SkipPseudoOp /// is true. const Instruction *getFirstNonPHIOrDbg(bool SkipPseudoOp = true) const; Instruction *getFirstNonPHIOrDbg(bool SkipPseudoOp = true) { return const_cast( static_cast(this)->getFirstNonPHIOrDbg( SkipPseudoOp)); } /// Returns a pointer to the first instruction in this block that is not a /// PHINode, a debug intrinsic, or a lifetime intrinsic, or any pseudo /// operation if \c SkipPseudoOp is true. const Instruction * getFirstNonPHIOrDbgOrLifetime(bool SkipPseudoOp = true) const; Instruction *getFirstNonPHIOrDbgOrLifetime(bool SkipPseudoOp = true) { return const_cast( static_cast(this)->getFirstNonPHIOrDbgOrLifetime( SkipPseudoOp)); } /// Returns an iterator to the first instruction in this block that is /// suitable for inserting a non-PHI instruction. /// /// In particular, it skips all PHIs and LandingPad instructions. const_iterator getFirstInsertionPt() const; iterator getFirstInsertionPt() { return static_cast(this) ->getFirstInsertionPt().getNonConst(); } /// Returns an iterator to the first instruction in this block that is /// not a PHINode, a debug intrinsic, a static alloca or any pseudo operation. const_iterator getFirstNonPHIOrDbgOrAlloca() const; iterator getFirstNonPHIOrDbgOrAlloca() { return static_cast(this) ->getFirstNonPHIOrDbgOrAlloca() .getNonConst(); } /// Return a const iterator range over the instructions in the block, skipping /// any debug instructions. Skip any pseudo operations as well if \c /// SkipPseudoOp is true. iterator_range>> instructionsWithoutDebug(bool SkipPseudoOp = true) const; /// Return an iterator range over the instructions in the block, skipping any /// debug instructions. Skip and any pseudo operations as well if \c /// SkipPseudoOp is true. iterator_range< filter_iterator>> instructionsWithoutDebug(bool SkipPseudoOp = true); /// Return the size of the basic block ignoring debug instructions filter_iterator>::difference_type sizeWithoutDebug() const; /// Unlink 'this' from the containing function, but do not delete it. void removeFromParent(); /// Unlink 'this' from the containing function and delete it. /// // \returns an iterator pointing to the element after the erased one. SymbolTableList::iterator eraseFromParent(); /// Unlink this basic block from its current function and insert it into /// the function that \p MovePos lives in, right before \p MovePos. void moveBefore(BasicBlock *MovePos); /// Unlink this basic block from its current function and insert it /// right after \p MovePos in the function \p MovePos lives in. void moveAfter(BasicBlock *MovePos); /// Insert unlinked basic block into a function. /// /// Inserts an unlinked basic block into \c Parent. If \c InsertBefore is /// provided, inserts before that basic block, otherwise inserts at the end. /// /// \pre \a getParent() is \c nullptr. void insertInto(Function *Parent, BasicBlock *InsertBefore = nullptr); /// Return the predecessor of this block if it has a single predecessor /// block. Otherwise return a null pointer. const BasicBlock *getSinglePredecessor() const; BasicBlock *getSinglePredecessor() { return const_cast( static_cast(this)->getSinglePredecessor()); } /// Return the predecessor of this block if it has a unique predecessor /// block. Otherwise return a null pointer. /// /// Note that unique predecessor doesn't mean single edge, there can be /// multiple edges from the unique predecessor to this block (for example a /// switch statement with multiple cases having the same destination). const BasicBlock *getUniquePredecessor() const; BasicBlock *getUniquePredecessor() { return const_cast( static_cast(this)->getUniquePredecessor()); } /// Return true if this block has exactly N predecessors. bool hasNPredecessors(unsigned N) const; /// Return true if this block has N predecessors or more. bool hasNPredecessorsOrMore(unsigned N) const; /// Return the successor of this block if it has a single successor. /// Otherwise return a null pointer. /// /// This method is analogous to getSinglePredecessor above. const BasicBlock *getSingleSuccessor() const; BasicBlock *getSingleSuccessor() { return const_cast( static_cast(this)->getSingleSuccessor()); } /// Return the successor of this block if it has a unique successor. /// Otherwise return a null pointer. /// /// This method is analogous to getUniquePredecessor above. const BasicBlock *getUniqueSuccessor() const; BasicBlock *getUniqueSuccessor() { return const_cast( static_cast(this)->getUniqueSuccessor()); } /// Print the basic block to an output stream with an optional /// AssemblyAnnotationWriter. void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW = nullptr, bool ShouldPreserveUseListOrder = false, bool IsForDebug = false) const; //===--------------------------------------------------------------------===// /// Instruction iterator methods /// inline iterator begin() { return InstList.begin(); } inline const_iterator begin() const { return InstList.begin(); } inline iterator end () { return InstList.end(); } inline const_iterator end () const { return InstList.end(); } inline reverse_iterator rbegin() { return InstList.rbegin(); } inline const_reverse_iterator rbegin() const { return InstList.rbegin(); } inline reverse_iterator rend () { return InstList.rend(); } inline const_reverse_iterator rend () const { return InstList.rend(); } inline size_t size() const { return InstList.size(); } inline bool empty() const { return InstList.empty(); } inline const Instruction &front() const { return InstList.front(); } inline Instruction &front() { return InstList.front(); } inline const Instruction &back() const { return InstList.back(); } inline Instruction &back() { return InstList.back(); } /// Iterator to walk just the phi nodes in the basic block. template class phi_iterator_impl : public iterator_facade_base, std::forward_iterator_tag, PHINodeT> { friend BasicBlock; PHINodeT *PN; phi_iterator_impl(PHINodeT *PN) : PN(PN) {} public: // Allow default construction to build variables, but this doesn't build // a useful iterator. phi_iterator_impl() = default; // Allow conversion between instantiations where valid. template ::value>> phi_iterator_impl(const phi_iterator_impl &Arg) : PN(Arg.PN) {} bool operator==(const phi_iterator_impl &Arg) const { return PN == Arg.PN; } PHINodeT &operator*() const { return *PN; } using phi_iterator_impl::iterator_facade_base::operator++; phi_iterator_impl &operator++() { assert(PN && "Cannot increment the end iterator!"); PN = dyn_cast(std::next(BBIteratorT(PN))); return *this; } }; using phi_iterator = phi_iterator_impl<>; using const_phi_iterator = phi_iterator_impl; /// Returns a range that iterates over the phis in the basic block. /// /// Note that this cannot be used with basic blocks that have no terminator. iterator_range phis() const { return const_cast(this)->phis(); } iterator_range phis(); private: /// Return the underlying instruction list container. /// This is deliberately private because we have implemented an adequate set /// of functions to modify the list, including BasicBlock::splice(), /// BasicBlock::erase(), Instruction::insertInto() etc. const InstListType &getInstList() const { return InstList; } InstListType &getInstList() { return InstList; } /// Returns a pointer to a member of the instruction list. /// This is private on purpose, just like `getInstList()`. static InstListType BasicBlock::*getSublistAccess(Instruction *) { return &BasicBlock::InstList; } public: /// Returns a pointer to the symbol table if one exists. ValueSymbolTable *getValueSymbolTable(); /// Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() == Value::BasicBlockVal; } /// Cause all subinstructions to "let go" of all the references that said /// subinstructions are maintaining. /// /// This allows one to 'delete' a whole class at a time, even though there may /// be circular references... first all references are dropped, and all use /// counts go to zero. Then everything is delete'd for real. Note that no /// operations are valid on an object that has "dropped all references", /// except operator delete. void dropAllReferences(); /// Update PHI nodes in this BasicBlock before removal of predecessor \p Pred. /// Note that this function does not actually remove the predecessor. /// /// If \p KeepOneInputPHIs is true then don't remove PHIs that are left with /// zero or one incoming values, and don't simplify PHIs with all incoming /// values the same. void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs = false); bool canSplitPredecessors() const; /// Split the basic block into two basic blocks at the specified instruction. /// /// If \p Before is true, splitBasicBlockBefore handles the /// block splitting. Otherwise, execution proceeds as described below. /// /// Note that all instructions BEFORE the specified iterator /// stay as part of the original basic block, an unconditional branch is added /// to the original BB, and the rest of the instructions in the BB are moved /// to the new BB, including the old terminator. The newly formed basic block /// is returned. This function invalidates the specified iterator. /// /// Note that this only works on well formed basic blocks (must have a /// terminator), and \p 'I' must not be the end of instruction list (which /// would cause a degenerate basic block to be formed, having a terminator /// inside of the basic block). /// /// Also note that this doesn't preserve any passes. To split blocks while /// keeping loop information consistent, use the SplitBlock utility function. BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "", bool Before = false); BasicBlock *splitBasicBlock(Instruction *I, const Twine &BBName = "", bool Before = false) { return splitBasicBlock(I->getIterator(), BBName, Before); } /// Split the basic block into two basic blocks at the specified instruction /// and insert the new basic blocks as the predecessor of the current block. /// /// This function ensures all instructions AFTER and including the specified /// iterator \p I are part of the original basic block. All Instructions /// BEFORE the iterator \p I are moved to the new BB and an unconditional /// branch is added to the new BB. The new basic block is returned. /// /// Note that this only works on well formed basic blocks (must have a /// terminator), and \p 'I' must not be the end of instruction list (which /// would cause a degenerate basic block to be formed, having a terminator /// inside of the basic block). \p 'I' cannot be a iterator for a PHINode /// with multiple incoming blocks. /// /// Also note that this doesn't preserve any passes. To split blocks while /// keeping loop information consistent, use the SplitBlockBefore utility /// function. BasicBlock *splitBasicBlockBefore(iterator I, const Twine &BBName = ""); BasicBlock *splitBasicBlockBefore(Instruction *I, const Twine &BBName = "") { return splitBasicBlockBefore(I->getIterator(), BBName); } /// Transfer all instructions from \p FromBB to this basic block at \p ToIt. void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB) { splice(ToIt, FromBB, FromBB->begin(), FromBB->end()); } /// Transfer one instruction from \p FromBB at \p FromIt to this basic block /// at \p ToIt. void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB, BasicBlock::iterator FromIt) { auto FromItNext = std::next(FromIt); // Single-element splice is a noop if destination == source. if (ToIt == FromIt || ToIt == FromItNext) return; splice(ToIt, FromBB, FromIt, FromItNext); } /// Transfer a range of instructions that belong to \p FromBB from \p /// FromBeginIt to \p FromEndIt, to this basic block at \p ToIt. void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB, BasicBlock::iterator FromBeginIt, BasicBlock::iterator FromEndIt); /// Erases a range of instructions from \p FromIt to (not including) \p ToIt. /// \Returns \p ToIt. BasicBlock::iterator erase(BasicBlock::iterator FromIt, BasicBlock::iterator ToIt); /// Returns true if there are any uses of this basic block other than /// direct branches, switches, etc. to it. bool hasAddressTaken() const { return getBasicBlockBits().BlockAddressRefCount != 0; } /// Update all phi nodes in this basic block to refer to basic block \p New /// instead of basic block \p Old. void replacePhiUsesWith(BasicBlock *Old, BasicBlock *New); /// Update all phi nodes in this basic block's successors to refer to basic /// block \p New instead of basic block \p Old. void replaceSuccessorsPhiUsesWith(BasicBlock *Old, BasicBlock *New); /// Update all phi nodes in this basic block's successors to refer to basic /// block \p New instead of to it. void replaceSuccessorsPhiUsesWith(BasicBlock *New); /// Return true if this basic block is an exception handling block. bool isEHPad() const { return getFirstNonPHI()->isEHPad(); } /// Return true if this basic block is a landing pad. /// /// Being a ``landing pad'' means that the basic block is the destination of /// the 'unwind' edge of an invoke instruction. bool isLandingPad() const; /// Return the landingpad instruction associated with the landing pad. const LandingPadInst *getLandingPadInst() const; LandingPadInst *getLandingPadInst() { return const_cast( static_cast(this)->getLandingPadInst()); } /// Return true if it is legal to hoist instructions into this block. bool isLegalToHoistInto() const; /// Return true if this is the entry block of the containing function. /// This method can only be used on blocks that have a parent function. bool isEntryBlock() const; std::optional getIrrLoopHeaderWeight() const; /// Returns true if the Order field of child Instructions is valid. bool isInstrOrderValid() const { return getBasicBlockBits().InstrOrderValid; } /// Mark instruction ordering invalid. Done on every instruction insert. void invalidateOrders() { validateInstrOrdering(); BasicBlockBits Bits = getBasicBlockBits(); Bits.InstrOrderValid = false; setBasicBlockBits(Bits); } /// Renumber instructions and mark the ordering as valid. void renumberInstructions(); /// Asserts that instruction order numbers are marked invalid, or that they /// are in ascending order. This is constant time if the ordering is invalid, /// and linear in the number of instructions if the ordering is valid. Callers /// should be careful not to call this in ways that make common operations /// O(n^2). For example, it takes O(n) time to assign order numbers to /// instructions, so the order should be validated no more than once after /// each ordering to ensure that transforms have the same algorithmic /// complexity when asserts are enabled as when they are disabled. void validateInstrOrdering() const; private: #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__)) // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words // and give the `pack` pragma push semantics. #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)") #define END_TWO_BYTE_PACK() _Pragma("pack(pop)") #else #define BEGIN_TWO_BYTE_PACK() #define END_TWO_BYTE_PACK() #endif BEGIN_TWO_BYTE_PACK() /// Bitfield to help interpret the bits in Value::SubclassData. struct BasicBlockBits { unsigned short BlockAddressRefCount : 15; unsigned short InstrOrderValid : 1; }; END_TWO_BYTE_PACK() #undef BEGIN_TWO_BYTE_PACK #undef END_TWO_BYTE_PACK /// Safely reinterpret the subclass data bits to a more useful form. BasicBlockBits getBasicBlockBits() const { static_assert(sizeof(BasicBlockBits) == sizeof(unsigned short), "too many bits for Value::SubclassData"); unsigned short ValueData = getSubclassDataFromValue(); BasicBlockBits AsBits; memcpy(&AsBits, &ValueData, sizeof(AsBits)); return AsBits; } /// Reinterpret our subclass bits and store them back into Value. void setBasicBlockBits(BasicBlockBits AsBits) { unsigned short D; memcpy(&D, &AsBits, sizeof(D)); Value::setValueSubclassData(D); } /// Increment the internal refcount of the number of BlockAddresses /// referencing this BasicBlock by \p Amt. /// /// This is almost always 0, sometimes one possibly, but almost never 2, and /// inconceivably 3 or more. void AdjustBlockAddressRefCount(int Amt) { BasicBlockBits Bits = getBasicBlockBits(); Bits.BlockAddressRefCount += Amt; setBasicBlockBits(Bits); assert(Bits.BlockAddressRefCount < 255 && "Refcount wrap-around"); } /// Shadow Value::setValueSubclassData with a private forwarding method so /// that any future subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef) /// Advance \p It while it points to a debug instruction and return the result. /// This assumes that \p It is not at the end of a block. BasicBlock::iterator skipDebugIntrinsics(BasicBlock::iterator It); #ifdef NDEBUG /// In release builds, this is a no-op. For !NDEBUG builds, the checks are /// implemented in the .cpp file to avoid circular header deps. inline void BasicBlock::validateInstrOrdering() const {} #endif } // end namespace llvm #endif // LLVM_IR_BASICBLOCK_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif