#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- TensorSpec.h - type descriptor for a tensor --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // #ifndef LLVM_ANALYSIS_TENSORSPEC_H #define LLVM_ANALYSIS_TENSORSPEC_H #include "llvm/Config/llvm-config.h" #include "llvm/ADT/StringMap.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/JSON.h" #include #include #include namespace llvm { /// TensorSpec encapsulates the specification of a tensor: its dimensions, or /// "shape" (row-major), its type (see TensorSpec::getDataType specializations /// for supported types), its name and port (see "TensorFlow: Large-Scale /// Machine Learning on Heterogeneous Distributed Systems", section 4.2, para 2: /// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf) /// /// Known tensor types. The left part is the C type, the right is a name we /// can use to identify the type (to implement TensorSpec equality checks), and /// to use, if needed, when mapping to an underlying evaluator's type system. /// The main requirement is that the C type we use has the same size and /// encoding (e.g. endian-ness) as the one used by the evaluator. #define SUPPORTED_TENSOR_TYPES(M) \ M(float, Float) \ M(double, Double) \ M(int8_t, Int8) \ M(uint8_t, UInt8) \ M(int16_t, Int16) \ M(uint16_t, UInt16) \ M(int32_t, Int32) \ M(uint32_t, UInt32) \ M(int64_t, Int64) \ M(uint64_t, UInt64) enum class TensorType { Invalid, #define _TENSOR_TYPE_ENUM_MEMBERS(_, Name) Name, SUPPORTED_TENSOR_TYPES(_TENSOR_TYPE_ENUM_MEMBERS) #undef _TENSOR_TYPE_ENUM_MEMBERS Total }; class TensorSpec final { public: template static TensorSpec createSpec(const std::string &Name, const std::vector &Shape, int Port = 0) { return TensorSpec(Name, Port, getDataType(), sizeof(T), Shape); } const std::string &name() const { return Name; } int port() const { return Port; } TensorType type() const { return Type; } const std::vector &shape() const { return Shape; } bool operator==(const TensorSpec &Other) const { return Name == Other.Name && Port == Other.Port && Type == Other.Type && Shape == Other.Shape; } bool operator!=(const TensorSpec &Other) const { return !(*this == Other); } /// Get the number of elements in a tensor with this shape. size_t getElementCount() const { return ElementCount; } /// Get the size, in bytes, of one element. size_t getElementByteSize() const { return ElementSize; } /// Get the total size of a memory buffer needed to store the whole tensor. size_t getTotalTensorBufferSize() const { return ElementCount * ElementSize; } template bool isElementType() const { return getDataType() == Type; } TensorSpec(const std::string &NewName, const TensorSpec &Other) : TensorSpec(NewName, Other.Port, Other.Type, Other.ElementSize, Other.Shape) {} void toJSON(json::OStream &OS) const; private: TensorSpec(const std::string &Name, int Port, TensorType Type, size_t ElementSize, const std::vector &Shape); template static TensorType getDataType(); std::string Name; int Port = 0; TensorType Type = TensorType::Invalid; std::vector Shape; size_t ElementCount = 0; size_t ElementSize = 0; }; /// Construct a TensorSpec from a JSON dictionary of the form: /// { "name": , /// "port": , /// "type": , /// "shape": } /// For the "type" field, see the C++ primitive types used in /// TFUTILS_SUPPORTED_TYPES. std::optional getTensorSpecFromJSON(LLVMContext &Ctx, const json::Value &Value); #define TFUTILS_GETDATATYPE_DEF(T, Name) \ template <> TensorType TensorSpec::getDataType(); SUPPORTED_TENSOR_TYPES(TFUTILS_GETDATATYPE_DEF) #undef TFUTILS_GETDATATYPE_DEF } // namespace llvm #endif // LLVM_ANALYSIS_TENSORSPEC_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif