#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Shared implementation of BlockFrequency for IR and Machine Instructions. // See the documentation below for BlockFrequencyInfoImpl for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DOTGraphTraits.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/ScaledNumber.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_TYPE "block-freq" namespace llvm { extern llvm::cl::opt CheckBFIUnknownBlockQueries; extern llvm::cl::opt UseIterativeBFIInference; extern llvm::cl::opt IterativeBFIMaxIterationsPerBlock; extern llvm::cl::opt IterativeBFIPrecision; class BranchProbabilityInfo; class Function; class Loop; class LoopInfo; class MachineBasicBlock; class MachineBranchProbabilityInfo; class MachineFunction; class MachineLoop; class MachineLoopInfo; namespace bfi_detail { struct IrreducibleGraph; // This is part of a workaround for a GCC 4.7 crash on lambdas. template struct BlockEdgesAdder; /// Mass of a block. /// /// This class implements a sort of fixed-point fraction always between 0.0 and /// 1.0. getMass() == std::numeric_limits::max() indicates a value of /// 1.0. /// /// Masses can be added and subtracted. Simple saturation arithmetic is used, /// so arithmetic operations never overflow or underflow. /// /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses /// an inexpensive floating-point algorithm that's off-by-one (almost, but not /// quite, maximum precision). /// /// Masses can be scaled by \a BranchProbability at maximum precision. class BlockMass { uint64_t Mass = 0; public: BlockMass() = default; explicit BlockMass(uint64_t Mass) : Mass(Mass) {} static BlockMass getEmpty() { return BlockMass(); } static BlockMass getFull() { return BlockMass(std::numeric_limits::max()); } uint64_t getMass() const { return Mass; } bool isFull() const { return Mass == std::numeric_limits::max(); } bool isEmpty() const { return !Mass; } bool operator!() const { return isEmpty(); } /// Add another mass. /// /// Adds another mass, saturating at \a isFull() rather than overflowing. BlockMass &operator+=(BlockMass X) { uint64_t Sum = Mass + X.Mass; Mass = Sum < Mass ? std::numeric_limits::max() : Sum; return *this; } /// Subtract another mass. /// /// Subtracts another mass, saturating at \a isEmpty() rather than /// undeflowing. BlockMass &operator-=(BlockMass X) { uint64_t Diff = Mass - X.Mass; Mass = Diff > Mass ? 0 : Diff; return *this; } BlockMass &operator*=(BranchProbability P) { Mass = P.scale(Mass); return *this; } bool operator==(BlockMass X) const { return Mass == X.Mass; } bool operator!=(BlockMass X) const { return Mass != X.Mass; } bool operator<=(BlockMass X) const { return Mass <= X.Mass; } bool operator>=(BlockMass X) const { return Mass >= X.Mass; } bool operator<(BlockMass X) const { return Mass < X.Mass; } bool operator>(BlockMass X) const { return Mass > X.Mass; } /// Convert to scaled number. /// /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() /// gives slightly above 0.0. ScaledNumber toScaled() const; void dump() const; raw_ostream &print(raw_ostream &OS) const; }; inline BlockMass operator+(BlockMass L, BlockMass R) { return BlockMass(L) += R; } inline BlockMass operator-(BlockMass L, BlockMass R) { return BlockMass(L) -= R; } inline BlockMass operator*(BlockMass L, BranchProbability R) { return BlockMass(L) *= R; } inline BlockMass operator*(BranchProbability L, BlockMass R) { return BlockMass(R) *= L; } inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { return X.print(OS); } } // end namespace bfi_detail /// Base class for BlockFrequencyInfoImpl /// /// BlockFrequencyInfoImplBase has supporting data structures and some /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on /// the block type (or that call such algorithms) are skipped here. /// /// Nevertheless, the majority of the overall algorithm documentation lives with /// BlockFrequencyInfoImpl. See there for details. class BlockFrequencyInfoImplBase { public: using Scaled64 = ScaledNumber; using BlockMass = bfi_detail::BlockMass; /// Representative of a block. /// /// This is a simple wrapper around an index into the reverse-post-order /// traversal of the blocks. /// /// Unlike a block pointer, its order has meaning (location in the /// topological sort) and it's class is the same regardless of block type. struct BlockNode { using IndexType = uint32_t; IndexType Index; BlockNode() : Index(std::numeric_limits::max()) {} BlockNode(IndexType Index) : Index(Index) {} bool operator==(const BlockNode &X) const { return Index == X.Index; } bool operator!=(const BlockNode &X) const { return Index != X.Index; } bool operator<=(const BlockNode &X) const { return Index <= X.Index; } bool operator>=(const BlockNode &X) const { return Index >= X.Index; } bool operator<(const BlockNode &X) const { return Index < X.Index; } bool operator>(const BlockNode &X) const { return Index > X.Index; } bool isValid() const { return Index <= getMaxIndex(); } static size_t getMaxIndex() { return std::numeric_limits::max() - 1; } }; /// Stats about a block itself. struct FrequencyData { Scaled64 Scaled; uint64_t Integer; }; /// Data about a loop. /// /// Contains the data necessary to represent a loop as a pseudo-node once it's /// packaged. struct LoopData { using ExitMap = SmallVector, 4>; using NodeList = SmallVector; using HeaderMassList = SmallVector; LoopData *Parent; ///< The parent loop. bool IsPackaged = false; ///< Whether this has been packaged. uint32_t NumHeaders = 1; ///< Number of headers. ExitMap Exits; ///< Successor edges (and weights). NodeList Nodes; ///< Header and the members of the loop. HeaderMassList BackedgeMass; ///< Mass returned to each loop header. BlockMass Mass; Scaled64 Scale; LoopData(LoopData *Parent, const BlockNode &Header) : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {} template LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, It2 LastOther) : Parent(Parent), Nodes(FirstHeader, LastHeader) { NumHeaders = Nodes.size(); Nodes.insert(Nodes.end(), FirstOther, LastOther); BackedgeMass.resize(NumHeaders); } bool isHeader(const BlockNode &Node) const { if (isIrreducible()) return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, Node); return Node == Nodes[0]; } BlockNode getHeader() const { return Nodes[0]; } bool isIrreducible() const { return NumHeaders > 1; } HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { assert(isHeader(B) && "this is only valid on loop header blocks"); if (isIrreducible()) return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - Nodes.begin(); return 0; } NodeList::const_iterator members_begin() const { return Nodes.begin() + NumHeaders; } NodeList::const_iterator members_end() const { return Nodes.end(); } iterator_range members() const { return make_range(members_begin(), members_end()); } }; /// Index of loop information. struct WorkingData { BlockNode Node; ///< This node. LoopData *Loop = nullptr; ///< The loop this block is inside. BlockMass Mass; ///< Mass distribution from the entry block. WorkingData(const BlockNode &Node) : Node(Node) {} bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } bool isDoubleLoopHeader() const { return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && Loop->Parent->isHeader(Node); } LoopData *getContainingLoop() const { if (!isLoopHeader()) return Loop; if (!isDoubleLoopHeader()) return Loop->Parent; return Loop->Parent->Parent; } /// Resolve a node to its representative. /// /// Get the node currently representing Node, which could be a containing /// loop. /// /// This function should only be called when distributing mass. As long as /// there are no irreducible edges to Node, then it will have complexity /// O(1) in this context. /// /// In general, the complexity is O(L), where L is the number of loop /// headers Node has been packaged into. Since this method is called in /// the context of distributing mass, L will be the number of loop headers /// an early exit edge jumps out of. BlockNode getResolvedNode() const { auto L = getPackagedLoop(); return L ? L->getHeader() : Node; } LoopData *getPackagedLoop() const { if (!Loop || !Loop->IsPackaged) return nullptr; auto L = Loop; while (L->Parent && L->Parent->IsPackaged) L = L->Parent; return L; } /// Get the appropriate mass for a node. /// /// Get appropriate mass for Node. If Node is a loop-header (whose loop /// has been packaged), returns the mass of its pseudo-node. If it's a /// node inside a packaged loop, it returns the loop's mass. BlockMass &getMass() { if (!isAPackage()) return Mass; if (!isADoublePackage()) return Loop->Mass; return Loop->Parent->Mass; } /// Has ContainingLoop been packaged up? bool isPackaged() const { return getResolvedNode() != Node; } /// Has Loop been packaged up? bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } /// Has Loop been packaged up twice? bool isADoublePackage() const { return isDoubleLoopHeader() && Loop->Parent->IsPackaged; } }; /// Unscaled probability weight. /// /// Probability weight for an edge in the graph (including the /// successor/target node). /// /// All edges in the original function are 32-bit. However, exit edges from /// loop packages are taken from 64-bit exit masses, so we need 64-bits of /// space in general. /// /// In addition to the raw weight amount, Weight stores the type of the edge /// in the current context (i.e., the context of the loop being processed). /// Is this a local edge within the loop, an exit from the loop, or a /// backedge to the loop header? struct Weight { enum DistType { Local, Exit, Backedge }; DistType Type = Local; BlockNode TargetNode; uint64_t Amount = 0; Weight() = default; Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) : Type(Type), TargetNode(TargetNode), Amount(Amount) {} }; /// Distribution of unscaled probability weight. /// /// Distribution of unscaled probability weight to a set of successors. /// /// This class collates the successor edge weights for later processing. /// /// \a DidOverflow indicates whether \a Total did overflow while adding to /// the distribution. It should never overflow twice. struct Distribution { using WeightList = SmallVector; WeightList Weights; ///< Individual successor weights. uint64_t Total = 0; ///< Sum of all weights. bool DidOverflow = false; ///< Whether \a Total did overflow. Distribution() = default; void addLocal(const BlockNode &Node, uint64_t Amount) { add(Node, Amount, Weight::Local); } void addExit(const BlockNode &Node, uint64_t Amount) { add(Node, Amount, Weight::Exit); } void addBackedge(const BlockNode &Node, uint64_t Amount) { add(Node, Amount, Weight::Backedge); } /// Normalize the distribution. /// /// Combines multiple edges to the same \a Weight::TargetNode and scales /// down so that \a Total fits into 32-bits. /// /// This is linear in the size of \a Weights. For the vast majority of /// cases, adjacent edge weights are combined by sorting WeightList and /// combining adjacent weights. However, for very large edge lists an /// auxiliary hash table is used. void normalize(); private: void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); }; /// Data about each block. This is used downstream. std::vector Freqs; /// Whether each block is an irreducible loop header. /// This is used downstream. SparseBitVector<> IsIrrLoopHeader; /// Loop data: see initializeLoops(). std::vector Working; /// Indexed information about loops. std::list Loops; /// Virtual destructor. /// /// Need a virtual destructor to mask the compiler warning about /// getBlockName(). virtual ~BlockFrequencyInfoImplBase() = default; /// Add all edges out of a packaged loop to the distribution. /// /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each /// successor edge. /// /// \return \c true unless there's an irreducible backedge. bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist); /// Add an edge to the distribution. /// /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, /// every edge should be a local edge (since all the loops are packaged up). /// /// \return \c true unless aborted due to an irreducible backedge. bool addToDist(Distribution &Dist, const LoopData *OuterLoop, const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); /// Analyze irreducible SCCs. /// /// Separate irreducible SCCs from \c G, which is an explicit graph of \c /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). /// Insert them into \a Loops before \c Insert. /// /// \return the \c LoopData nodes representing the irreducible SCCs. iterator_range::iterator> analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, std::list::iterator Insert); /// Update a loop after packaging irreducible SCCs inside of it. /// /// Update \c OuterLoop. Before finding irreducible control flow, it was /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged /// up need to be removed from \a OuterLoop::Nodes. void updateLoopWithIrreducible(LoopData &OuterLoop); /// Distribute mass according to a distribution. /// /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), /// backedges and exits are stored in its entry in Loops. /// /// Mass is distributed in parallel from two copies of the source mass. void distributeMass(const BlockNode &Source, LoopData *OuterLoop, Distribution &Dist); /// Compute the loop scale for a loop. void computeLoopScale(LoopData &Loop); /// Adjust the mass of all headers in an irreducible loop. /// /// Initially, irreducible loops are assumed to distribute their mass /// equally among its headers. This can lead to wrong frequency estimates /// since some headers may be executed more frequently than others. /// /// This adjusts header mass distribution so it matches the weights of /// the backedges going into each of the loop headers. void adjustLoopHeaderMass(LoopData &Loop); void distributeIrrLoopHeaderMass(Distribution &Dist); /// Package up a loop. void packageLoop(LoopData &Loop); /// Unwrap loops. void unwrapLoops(); /// Finalize frequency metrics. /// /// Calculates final frequencies and cleans up no-longer-needed data /// structures. void finalizeMetrics(); /// Clear all memory. void clear(); virtual std::string getBlockName(const BlockNode &Node) const; std::string getLoopName(const LoopData &Loop) const; virtual raw_ostream &print(raw_ostream &OS) const { return OS; } void dump() const { print(dbgs()); } Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; BlockFrequency getBlockFreq(const BlockNode &Node) const; std::optional getBlockProfileCount(const Function &F, const BlockNode &Node, bool AllowSynthetic = false) const; std::optional getProfileCountFromFreq(const Function &F, uint64_t Freq, bool AllowSynthetic = false) const; bool isIrrLoopHeader(const BlockNode &Node); void setBlockFreq(const BlockNode &Node, uint64_t Freq); raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; raw_ostream &printBlockFreq(raw_ostream &OS, const BlockFrequency &Freq) const; uint64_t getEntryFreq() const { assert(!Freqs.empty()); return Freqs[0].Integer; } }; namespace bfi_detail { template struct TypeMap {}; template <> struct TypeMap { using BlockT = BasicBlock; using BlockKeyT = AssertingVH; using FunctionT = Function; using BranchProbabilityInfoT = BranchProbabilityInfo; using LoopT = Loop; using LoopInfoT = LoopInfo; }; template <> struct TypeMap { using BlockT = MachineBasicBlock; using BlockKeyT = const MachineBasicBlock *; using FunctionT = MachineFunction; using BranchProbabilityInfoT = MachineBranchProbabilityInfo; using LoopT = MachineLoop; using LoopInfoT = MachineLoopInfo; }; template class BFICallbackVH; /// Get the name of a MachineBasicBlock. /// /// Get the name of a MachineBasicBlock. It's templated so that including from /// CodeGen is unnecessary (that would be a layering issue). /// /// This is used mainly for debug output. The name is similar to /// MachineBasicBlock::getFullName(), but skips the name of the function. template std::string getBlockName(const BlockT *BB) { assert(BB && "Unexpected nullptr"); auto MachineName = "BB" + Twine(BB->getNumber()); if (BB->getBasicBlock()) return (MachineName + "[" + BB->getName() + "]").str(); return MachineName.str(); } /// Get the name of a BasicBlock. template <> inline std::string getBlockName(const BasicBlock *BB) { assert(BB && "Unexpected nullptr"); return BB->getName().str(); } /// Graph of irreducible control flow. /// /// This graph is used for determining the SCCs in a loop (or top-level /// function) that has irreducible control flow. /// /// During the block frequency algorithm, the local graphs are defined in a /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock /// graphs for most edges, but getting others from \a LoopData::ExitMap. The /// latter only has successor information. /// /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), /// and it explicitly lists predecessors and successors. The initialization /// that relies on \c MachineBasicBlock is defined in the header. struct IrreducibleGraph { using BFIBase = BlockFrequencyInfoImplBase; BFIBase &BFI; using BlockNode = BFIBase::BlockNode; struct IrrNode { BlockNode Node; unsigned NumIn = 0; std::deque Edges; IrrNode(const BlockNode &Node) : Node(Node) {} using iterator = std::deque::const_iterator; iterator pred_begin() const { return Edges.begin(); } iterator succ_begin() const { return Edges.begin() + NumIn; } iterator pred_end() const { return succ_begin(); } iterator succ_end() const { return Edges.end(); } }; BlockNode Start; const IrrNode *StartIrr = nullptr; std::vector Nodes; SmallDenseMap Lookup; /// Construct an explicit graph containing irreducible control flow. /// /// Construct an explicit graph of the control flow in \c OuterLoop (or the /// top-level function, if \c OuterLoop is \c nullptr). Uses \c /// addBlockEdges to add block successors that have not been packaged into /// loops. /// /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected /// user of this. template IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges) : BFI(BFI) { initialize(OuterLoop, addBlockEdges); } template void initialize(const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges); void addNodesInLoop(const BFIBase::LoopData &OuterLoop); void addNodesInFunction(); void addNode(const BlockNode &Node) { Nodes.emplace_back(Node); BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); } void indexNodes(); template void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges); void addEdge(IrrNode &Irr, const BlockNode &Succ, const BFIBase::LoopData *OuterLoop); }; template void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges) { if (OuterLoop) { addNodesInLoop(*OuterLoop); for (auto N : OuterLoop->Nodes) addEdges(N, OuterLoop, addBlockEdges); } else { addNodesInFunction(); for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) addEdges(Index, OuterLoop, addBlockEdges); } StartIrr = Lookup[Start.Index]; } template void IrreducibleGraph::addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges) { auto L = Lookup.find(Node.Index); if (L == Lookup.end()) return; IrrNode &Irr = *L->second; const auto &Working = BFI.Working[Node.Index]; if (Working.isAPackage()) for (const auto &I : Working.Loop->Exits) addEdge(Irr, I.first, OuterLoop); else addBlockEdges(*this, Irr, OuterLoop); } } // end namespace bfi_detail /// Shared implementation for block frequency analysis. /// /// This is a shared implementation of BlockFrequencyInfo and /// MachineBlockFrequencyInfo, and calculates the relative frequencies of /// blocks. /// /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, /// which is called the header. A given loop, L, can have sub-loops, which are /// loops within the subgraph of L that exclude its header. (A "trivial" SCC /// consists of a single block that does not have a self-edge.) /// /// In addition to loops, this algorithm has limited support for irreducible /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are /// discovered on the fly, and modelled as loops with multiple headers. /// /// The headers of irreducible sub-SCCs consist of its entry blocks and all /// nodes that are targets of a backedge within it (excluding backedges within /// true sub-loops). Block frequency calculations act as if a block is /// inserted that intercepts all the edges to the headers. All backedges and /// entries point to this block. Its successors are the headers, which split /// the frequency evenly. /// /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, /// separates mass distribution from loop scaling, and dithers to eliminate /// probability mass loss. /// /// The implementation is split between BlockFrequencyInfoImpl, which knows the /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in /// reverse-post order. This gives two advantages: it's easy to compare the /// relative ordering of two nodes, and maps keyed on BlockT can be represented /// by vectors. /// /// This algorithm is O(V+E), unless there is irreducible control flow, in /// which case it's O(V*E) in the worst case. /// /// These are the main stages: /// /// 0. Reverse post-order traversal (\a initializeRPOT()). /// /// Run a single post-order traversal and save it (in reverse) in RPOT. /// All other stages make use of this ordering. Save a lookup from BlockT /// to BlockNode (the index into RPOT) in Nodes. /// /// 1. Loop initialization (\a initializeLoops()). /// /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of /// the algorithm. In particular, store the immediate members of each loop /// in reverse post-order. /// /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). /// /// For each loop (bottom-up), distribute mass through the DAG resulting /// from ignoring backedges and treating sub-loops as a single pseudo-node. /// Track the backedge mass distributed to the loop header, and use it to /// calculate the loop scale (number of loop iterations). Immediate /// members that represent sub-loops will already have been visited and /// packaged into a pseudo-node. /// /// Distributing mass in a loop is a reverse-post-order traversal through /// the loop. Start by assigning full mass to the Loop header. For each /// node in the loop: /// /// - Fetch and categorize the weight distribution for its successors. /// If this is a packaged-subloop, the weight distribution is stored /// in \a LoopData::Exits. Otherwise, fetch it from /// BranchProbabilityInfo. /// /// - Each successor is categorized as \a Weight::Local, a local edge /// within the current loop, \a Weight::Backedge, a backedge to the /// loop header, or \a Weight::Exit, any successor outside the loop. /// The weight, the successor, and its category are stored in \a /// Distribution. There can be multiple edges to each successor. /// /// - If there's a backedge to a non-header, there's an irreducible SCC. /// The usual flow is temporarily aborted. \a /// computeIrreducibleMass() finds the irreducible SCCs within the /// loop, packages them up, and restarts the flow. /// /// - Normalize the distribution: scale weights down so that their sum /// is 32-bits, and coalesce multiple edges to the same node. /// /// - Distribute the mass accordingly, dithering to minimize mass loss, /// as described in \a distributeMass(). /// /// In the case of irreducible loops, instead of a single loop header, /// there will be several. The computation of backedge masses is similar /// but instead of having a single backedge mass, there will be one /// backedge per loop header. In these cases, each backedge will carry /// a mass proportional to the edge weights along the corresponding /// path. /// /// At the end of propagation, the full mass assigned to the loop will be /// distributed among the loop headers proportionally according to the /// mass flowing through their backedges. /// /// Finally, calculate the loop scale from the accumulated backedge mass. /// /// 3. Distribute mass in the function (\a computeMassInFunction()). /// /// Finally, distribute mass through the DAG resulting from packaging all /// loops in the function. This uses the same algorithm as distributing /// mass in a loop, except that there are no exit or backedge edges. /// /// 4. Unpackage loops (\a unwrapLoops()). /// /// Initialize each block's frequency to a floating point representation of /// its mass. /// /// Visit loops top-down, scaling the frequencies of its immediate members /// by the loop's pseudo-node's frequency. /// /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). /// /// Using the min and max frequencies as a guide, translate floating point /// frequencies to an appropriate range in uint64_t. /// /// It has some known flaws. /// /// - The model of irreducible control flow is a rough approximation. /// /// Modelling irreducible control flow exactly involves setting up and /// solving a group of infinite geometric series. Such precision is /// unlikely to be worthwhile, since most of our algorithms give up on /// irreducible control flow anyway. /// /// Nevertheless, we might find that we need to get closer. Here's a sort /// of TODO list for the model with diminishing returns, to be completed as /// necessary. /// /// - The headers for the \a LoopData representing an irreducible SCC /// include non-entry blocks. When these extra blocks exist, they /// indicate a self-contained irreducible sub-SCC. We could treat them /// as sub-loops, rather than arbitrarily shoving the problematic /// blocks into the headers of the main irreducible SCC. /// /// - Entry frequencies are assumed to be evenly split between the /// headers of a given irreducible SCC, which is the only option if we /// need to compute mass in the SCC before its parent loop. Instead, /// we could partially compute mass in the parent loop, and stop when /// we get to the SCC. Here, we have the correct ratio of entry /// masses, which we can use to adjust their relative frequencies. /// Compute mass in the SCC, and then continue propagation in the /// parent. /// /// - We can propagate mass iteratively through the SCC, for some fixed /// number of iterations. Each iteration starts by assigning the entry /// blocks their backedge mass from the prior iteration. The final /// mass for each block (and each exit, and the total backedge mass /// used for computing loop scale) is the sum of all iterations. /// (Running this until fixed point would "solve" the geometric /// series by simulation.) template class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { // This is part of a workaround for a GCC 4.7 crash on lambdas. friend struct bfi_detail::BlockEdgesAdder; using BlockT = typename bfi_detail::TypeMap::BlockT; using BlockKeyT = typename bfi_detail::TypeMap::BlockKeyT; using FunctionT = typename bfi_detail::TypeMap::FunctionT; using BranchProbabilityInfoT = typename bfi_detail::TypeMap::BranchProbabilityInfoT; using LoopT = typename bfi_detail::TypeMap::LoopT; using LoopInfoT = typename bfi_detail::TypeMap::LoopInfoT; using Successor = GraphTraits; using Predecessor = GraphTraits>; using BFICallbackVH = bfi_detail::BFICallbackVH; const BranchProbabilityInfoT *BPI = nullptr; const LoopInfoT *LI = nullptr; const FunctionT *F = nullptr; // All blocks in reverse postorder. std::vector RPOT; DenseMap> Nodes; using rpot_iterator = typename std::vector::const_iterator; rpot_iterator rpot_begin() const { return RPOT.begin(); } rpot_iterator rpot_end() const { return RPOT.end(); } size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } BlockNode getNode(const rpot_iterator &I) const { return BlockNode(getIndex(I)); } BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; } const BlockT *getBlock(const BlockNode &Node) const { assert(Node.Index < RPOT.size()); return RPOT[Node.Index]; } /// Run (and save) a post-order traversal. /// /// Saves a reverse post-order traversal of all the nodes in \a F. void initializeRPOT(); /// Initialize loop data. /// /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from /// each block to the deepest loop it's in, but we need the inverse. For each /// loop, we store in reverse post-order its "immediate" members, defined as /// the header, the headers of immediate sub-loops, and all other blocks in /// the loop that are not in sub-loops. void initializeLoops(); /// Propagate to a block's successors. /// /// In the context of distributing mass through \c OuterLoop, divide the mass /// currently assigned to \c Node between its successors. /// /// \return \c true unless there's an irreducible backedge. bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); /// Compute mass in a particular loop. /// /// Assign mass to \c Loop's header, and then for each block in \c Loop in /// reverse post-order, distribute mass to its successors. Only visits nodes /// that have not been packaged into sub-loops. /// /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. /// \return \c true unless there's an irreducible backedge. bool computeMassInLoop(LoopData &Loop); /// Try to compute mass in the top-level function. /// /// Assign mass to the entry block, and then for each block in reverse /// post-order, distribute mass to its successors. Skips nodes that have /// been packaged into loops. /// /// \pre \a computeMassInLoops() has been called. /// \return \c true unless there's an irreducible backedge. bool tryToComputeMassInFunction(); /// Compute mass in (and package up) irreducible SCCs. /// /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front /// of \c Insert), and call \a computeMassInLoop() on each of them. /// /// If \c OuterLoop is \c nullptr, it refers to the top-level function. /// /// \pre \a computeMassInLoop() has been called for each subloop of \c /// OuterLoop. /// \pre \c Insert points at the last loop successfully processed by \a /// computeMassInLoop(). /// \pre \c OuterLoop has irreducible SCCs. void computeIrreducibleMass(LoopData *OuterLoop, std::list::iterator Insert); /// Compute mass in all loops. /// /// For each loop bottom-up, call \a computeMassInLoop(). /// /// \a computeMassInLoop() aborts (and returns \c false) on loops that /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then /// re-enter \a computeMassInLoop(). /// /// \post \a computeMassInLoop() has returned \c true for every loop. void computeMassInLoops(); /// Compute mass in the top-level function. /// /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to /// compute mass in the top-level function. /// /// \post \a tryToComputeMassInFunction() has returned \c true. void computeMassInFunction(); std::string getBlockName(const BlockNode &Node) const override { return bfi_detail::getBlockName(getBlock(Node)); } /// The current implementation for computing relative block frequencies does /// not handle correctly control-flow graphs containing irreducible loops. To /// resolve the problem, we apply a post-processing step, which iteratively /// updates block frequencies based on the frequencies of their predesessors. /// This corresponds to finding the stationary point of the Markov chain by /// an iterative method aka "PageRank computation". /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but /// typically converges faster. /// /// Decide whether we want to apply iterative inference for a given function. bool needIterativeInference() const; /// Apply an iterative post-processing to infer correct counts for irr loops. void applyIterativeInference(); using ProbMatrixType = std::vector>>; /// Run iterative inference for a probability matrix and initial frequencies. void iterativeInference(const ProbMatrixType &ProbMatrix, std::vector &Freq) const; /// Find all blocks to apply inference on, that is, reachable from the entry /// and backward reachable from exists along edges with positive probability. void findReachableBlocks(std::vector &Blocks) const; /// Build a matrix of probabilities with transitions (edges) between the /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P void initTransitionProbabilities( const std::vector &Blocks, const DenseMap &BlockIndex, ProbMatrixType &ProbMatrix) const; #ifndef NDEBUG /// Compute the discrepancy between current block frequencies and the /// probability matrix. Scaled64 discrepancy(const ProbMatrixType &ProbMatrix, const std::vector &Freq) const; #endif public: BlockFrequencyInfoImpl() = default; const FunctionT *getFunction() const { return F; } void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, const LoopInfoT &LI); using BlockFrequencyInfoImplBase::getEntryFreq; BlockFrequency getBlockFreq(const BlockT *BB) const { return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); } std::optional getBlockProfileCount(const Function &F, const BlockT *BB, bool AllowSynthetic = false) const { return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB), AllowSynthetic); } std::optional getProfileCountFromFreq(const Function &F, uint64_t Freq, bool AllowSynthetic = false) const { return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq, AllowSynthetic); } bool isIrrLoopHeader(const BlockT *BB) { return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB)); } void setBlockFreq(const BlockT *BB, uint64_t Freq); void forgetBlock(const BlockT *BB) { // We don't erase corresponding items from `Freqs`, `RPOT` and other to // avoid invalidating indices. Doing so would have saved some memory, but // it's not worth it. Nodes.erase(BB); } Scaled64 getFloatingBlockFreq(const BlockT *BB) const { return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); } const BranchProbabilityInfoT &getBPI() const { return *BPI; } /// Print the frequencies for the current function. /// /// Prints the frequencies for the blocks in the current function. /// /// Blocks are printed in the natural iteration order of the function, rather /// than reverse post-order. This provides two advantages: writing -analyze /// tests is easier (since blocks come out in source order), and even /// unreachable blocks are printed. /// /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so /// we need to override it here. raw_ostream &print(raw_ostream &OS) const override; using BlockFrequencyInfoImplBase::dump; using BlockFrequencyInfoImplBase::printBlockFreq; raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); } void verifyMatch(BlockFrequencyInfoImpl &Other) const; }; namespace bfi_detail { template class BFICallbackVH : public CallbackVH { BFIImplT *BFIImpl; public: BFICallbackVH() = default; BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl) : CallbackVH(BB), BFIImpl(BFIImpl) {} virtual ~BFICallbackVH() = default; void deleted() override { BFIImpl->forgetBlock(cast(getValPtr())); } }; /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles /// don't apply to them. template class BFICallbackVH { public: BFICallbackVH() = default; BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {} }; } // end namespace bfi_detail template void BlockFrequencyInfoImpl::calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, const LoopInfoT &LI) { // Save the parameters. this->BPI = &BPI; this->LI = &LI; this->F = &F; // Clean up left-over data structures. BlockFrequencyInfoImplBase::clear(); RPOT.clear(); Nodes.clear(); // Initialize. LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n=================" << std::string(F.getName().size(), '=') << "\n"); initializeRPOT(); initializeLoops(); // Visit loops in post-order to find the local mass distribution, and then do // the full function. computeMassInLoops(); computeMassInFunction(); unwrapLoops(); // Apply a post-processing step improving computed frequencies for functions // with irreducible loops. if (needIterativeInference()) applyIterativeInference(); finalizeMetrics(); if (CheckBFIUnknownBlockQueries) { // To detect BFI queries for unknown blocks, add entries for unreachable // blocks, if any. This is to distinguish between known/existing unreachable // blocks and unknown blocks. for (const BlockT &BB : F) if (!Nodes.count(&BB)) setBlockFreq(&BB, 0); } } template void BlockFrequencyInfoImpl::setBlockFreq(const BlockT *BB, uint64_t Freq) { if (Nodes.count(BB)) BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); else { // If BB is a newly added block after BFI is done, we need to create a new // BlockNode for it assigned with a new index. The index can be determined // by the size of Freqs. BlockNode NewNode(Freqs.size()); Nodes[BB] = {NewNode, BFICallbackVH(BB, this)}; Freqs.emplace_back(); BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); } } template void BlockFrequencyInfoImpl::initializeRPOT() { const BlockT *Entry = &F->front(); RPOT.reserve(F->size()); std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); std::reverse(RPOT.begin(), RPOT.end()); assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && "More nodes in function than Block Frequency Info supports"); LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n"); for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { BlockNode Node = getNode(I); LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n"); Nodes[*I] = {Node, BFICallbackVH(*I, this)}; } Working.reserve(RPOT.size()); for (size_t Index = 0; Index < RPOT.size(); ++Index) Working.emplace_back(Index); Freqs.resize(RPOT.size()); } template void BlockFrequencyInfoImpl::initializeLoops() { LLVM_DEBUG(dbgs() << "loop-detection\n"); if (LI->empty()) return; // Visit loops top down and assign them an index. std::deque> Q; for (const LoopT *L : *LI) Q.emplace_back(L, nullptr); while (!Q.empty()) { const LoopT *Loop = Q.front().first; LoopData *Parent = Q.front().second; Q.pop_front(); BlockNode Header = getNode(Loop->getHeader()); assert(Header.isValid()); Loops.emplace_back(Parent, Header); Working[Header.Index].Loop = &Loops.back(); LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); for (const LoopT *L : *Loop) Q.emplace_back(L, &Loops.back()); } // Visit nodes in reverse post-order and add them to their deepest containing // loop. for (size_t Index = 0; Index < RPOT.size(); ++Index) { // Loop headers have already been mostly mapped. if (Working[Index].isLoopHeader()) { LoopData *ContainingLoop = Working[Index].getContainingLoop(); if (ContainingLoop) ContainingLoop->Nodes.push_back(Index); continue; } const LoopT *Loop = LI->getLoopFor(RPOT[Index]); if (!Loop) continue; // Add this node to its containing loop's member list. BlockNode Header = getNode(Loop->getHeader()); assert(Header.isValid()); const auto &HeaderData = Working[Header.Index]; assert(HeaderData.isLoopHeader()); Working[Index].Loop = HeaderData.Loop; HeaderData.Loop->Nodes.push_back(Index); LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << ": member = " << getBlockName(Index) << "\n"); } } template void BlockFrequencyInfoImpl::computeMassInLoops() { // Visit loops with the deepest first, and the top-level loops last. for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { if (computeMassInLoop(*L)) continue; auto Next = std::next(L); computeIrreducibleMass(&*L, L.base()); L = std::prev(Next); if (computeMassInLoop(*L)) continue; llvm_unreachable("unhandled irreducible control flow"); } } template bool BlockFrequencyInfoImpl::computeMassInLoop(LoopData &Loop) { // Compute mass in loop. LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); if (Loop.isIrreducible()) { LLVM_DEBUG(dbgs() << "isIrreducible = true\n"); Distribution Dist; unsigned NumHeadersWithWeight = 0; std::optional MinHeaderWeight; DenseSet HeadersWithoutWeight; HeadersWithoutWeight.reserve(Loop.NumHeaders); for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { auto &HeaderNode = Loop.Nodes[H]; const BlockT *Block = getBlock(HeaderNode); IsIrrLoopHeader.set(Loop.Nodes[H].Index); std::optional HeaderWeight = Block->getIrrLoopHeaderWeight(); if (!HeaderWeight) { LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on " << getBlockName(HeaderNode) << "\n"); HeadersWithoutWeight.insert(H); continue; } LLVM_DEBUG(dbgs() << getBlockName(HeaderNode) << " has irr loop header weight " << *HeaderWeight << "\n"); NumHeadersWithWeight++; uint64_t HeaderWeightValue = *HeaderWeight; if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight) MinHeaderWeight = HeaderWeightValue; if (HeaderWeightValue) { Dist.addLocal(HeaderNode, HeaderWeightValue); } } // As a heuristic, if some headers don't have a weight, give them the // minimum weight seen (not to disrupt the existing trends too much by // using a weight that's in the general range of the other headers' weights, // and the minimum seems to perform better than the average.) // FIXME: better update in the passes that drop the header weight. // If no headers have a weight, give them even weight (use weight 1). if (!MinHeaderWeight) MinHeaderWeight = 1; for (uint32_t H : HeadersWithoutWeight) { auto &HeaderNode = Loop.Nodes[H]; assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() && "Shouldn't have a weight metadata"); uint64_t MinWeight = *MinHeaderWeight; LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to " << getBlockName(HeaderNode) << "\n"); if (MinWeight) Dist.addLocal(HeaderNode, MinWeight); } distributeIrrLoopHeaderMass(Dist); for (const BlockNode &M : Loop.Nodes) if (!propagateMassToSuccessors(&Loop, M)) llvm_unreachable("unhandled irreducible control flow"); if (NumHeadersWithWeight == 0) // No headers have a metadata. Adjust header mass. adjustLoopHeaderMass(Loop); } else { Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) llvm_unreachable("irreducible control flow to loop header!?"); for (const BlockNode &M : Loop.members()) if (!propagateMassToSuccessors(&Loop, M)) // Irreducible backedge. return false; } computeLoopScale(Loop); packageLoop(Loop); return true; } template bool BlockFrequencyInfoImpl::tryToComputeMassInFunction() { // Compute mass in function. LLVM_DEBUG(dbgs() << "compute-mass-in-function\n"); assert(!Working.empty() && "no blocks in function"); assert(!Working[0].isLoopHeader() && "entry block is a loop header"); Working[0].getMass() = BlockMass::getFull(); for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { // Check for nodes that have been packaged. BlockNode Node = getNode(I); if (Working[Node.Index].isPackaged()) continue; if (!propagateMassToSuccessors(nullptr, Node)) return false; } return true; } template void BlockFrequencyInfoImpl::computeMassInFunction() { if (tryToComputeMassInFunction()) return; computeIrreducibleMass(nullptr, Loops.begin()); if (tryToComputeMassInFunction()) return; llvm_unreachable("unhandled irreducible control flow"); } template bool BlockFrequencyInfoImpl::needIterativeInference() const { if (!UseIterativeBFIInference) return false; if (!F->getFunction().hasProfileData()) return false; // Apply iterative inference only if the function contains irreducible loops; // otherwise, computed block frequencies are reasonably correct. for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { if (L->isIrreducible()) return true; } return false; } template void BlockFrequencyInfoImpl::applyIterativeInference() { // Extract blocks for processing: a block is considered for inference iff it // can be reached from the entry by edges with a positive probability. // Non-processed blocks are assigned with the zero frequency and are ignored // in the computation std::vector ReachableBlocks; findReachableBlocks(ReachableBlocks); if (ReachableBlocks.empty()) return; // The map is used to to index successors/predecessors of reachable blocks in // the ReachableBlocks vector DenseMap BlockIndex; // Extract initial frequencies for the reachable blocks auto Freq = std::vector(ReachableBlocks.size()); Scaled64 SumFreq; for (size_t I = 0; I < ReachableBlocks.size(); I++) { const BlockT *BB = ReachableBlocks[I]; BlockIndex[BB] = I; Freq[I] = getFloatingBlockFreq(BB); SumFreq += Freq[I]; } assert(!SumFreq.isZero() && "empty initial block frequencies"); LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName() << " with " << ReachableBlocks.size() << " blocks\n"); // Normalizing frequencies so they sum up to 1.0 for (auto &Value : Freq) { Value /= SumFreq; } // Setting up edge probabilities using sparse matrix representation: // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P ProbMatrixType ProbMatrix; initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix); // Run the propagation iterativeInference(ProbMatrix, Freq); // Assign computed frequency values for (const BlockT &BB : *F) { auto Node = getNode(&BB); if (!Node.isValid()) continue; if (BlockIndex.count(&BB)) { Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]]; } else { Freqs[Node.Index].Scaled = Scaled64::getZero(); } } } template void BlockFrequencyInfoImpl::iterativeInference( const ProbMatrixType &ProbMatrix, std::vector &Freq) const { assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 && "incorrectly specified precision"); // Convert double precision to Scaled64 const auto Precision = Scaled64::getInverse(static_cast(1.0 / IterativeBFIPrecision)); const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size(); #ifndef NDEBUG LLVM_DEBUG(dbgs() << " Initial discrepancy = " << discrepancy(ProbMatrix, Freq).toString() << "\n"); #endif // Successors[I] holds unique sucessors of the I-th block auto Successors = std::vector>(Freq.size()); for (size_t I = 0; I < Freq.size(); I++) { for (const auto &Jump : ProbMatrix[I]) { Successors[Jump.first].push_back(I); } } // To speedup computation, we maintain a set of "active" blocks whose // frequencies need to be updated based on the incoming edges. // The set is dynamic and changes after every update. Initially all blocks // with a positive frequency are active auto IsActive = BitVector(Freq.size(), false); std::queue ActiveSet; for (size_t I = 0; I < Freq.size(); I++) { if (Freq[I] > 0) { ActiveSet.push(I); IsActive[I] = true; } } // Iterate over the blocks propagating frequencies size_t It = 0; while (It++ < MaxIterations && !ActiveSet.empty()) { size_t I = ActiveSet.front(); ActiveSet.pop(); IsActive[I] = false; // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix. // A special care is taken for self-edges that needs to be scaled by // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges Scaled64 NewFreq; Scaled64 OneMinusSelfProb = Scaled64::getOne(); for (const auto &Jump : ProbMatrix[I]) { if (Jump.first == I) { OneMinusSelfProb -= Jump.second; } else { NewFreq += Freq[Jump.first] * Jump.second; } } if (OneMinusSelfProb != Scaled64::getOne()) NewFreq /= OneMinusSelfProb; // If the block's frequency has changed enough, then // make sure the block and its successors are in the active set auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I]; if (Change > Precision) { ActiveSet.push(I); IsActive[I] = true; for (size_t Succ : Successors[I]) { if (!IsActive[Succ]) { ActiveSet.push(Succ); IsActive[Succ] = true; } } } // Update the frequency for the block Freq[I] = NewFreq; } LLVM_DEBUG(dbgs() << " Completed " << It << " inference iterations" << format(" (%0.0f per block)", double(It) / Freq.size()) << "\n"); #ifndef NDEBUG LLVM_DEBUG(dbgs() << " Final discrepancy = " << discrepancy(ProbMatrix, Freq).toString() << "\n"); #endif } template void BlockFrequencyInfoImpl::findReachableBlocks( std::vector &Blocks) const { // Find all blocks to apply inference on, that is, reachable from the entry // along edges with non-zero probablities std::queue Queue; SmallPtrSet Reachable; const BlockT *Entry = &F->front(); Queue.push(Entry); Reachable.insert(Entry); while (!Queue.empty()) { const BlockT *SrcBB = Queue.front(); Queue.pop(); for (const BlockT *DstBB : children(SrcBB)) { auto EP = BPI->getEdgeProbability(SrcBB, DstBB); if (EP.isZero()) continue; if (Reachable.insert(DstBB).second) Queue.push(DstBB); } } // Find all blocks to apply inference on, that is, backward reachable from // the entry along (backward) edges with non-zero probablities SmallPtrSet InverseReachable; for (const BlockT &BB : *F) { // An exit block is a block without any successors bool HasSucc = GraphTraits::child_begin(&BB) != GraphTraits::child_end(&BB); if (!HasSucc && Reachable.count(&BB)) { Queue.push(&BB); InverseReachable.insert(&BB); } } while (!Queue.empty()) { const BlockT *SrcBB = Queue.front(); Queue.pop(); for (const BlockT *DstBB : children>(SrcBB)) { auto EP = BPI->getEdgeProbability(DstBB, SrcBB); if (EP.isZero()) continue; if (InverseReachable.insert(DstBB).second) Queue.push(DstBB); } } // Collect the result Blocks.reserve(F->size()); for (const BlockT &BB : *F) { if (Reachable.count(&BB) && InverseReachable.count(&BB)) { Blocks.push_back(&BB); } } } template void BlockFrequencyInfoImpl::initTransitionProbabilities( const std::vector &Blocks, const DenseMap &BlockIndex, ProbMatrixType &ProbMatrix) const { const size_t NumBlocks = Blocks.size(); auto Succs = std::vector>>(NumBlocks); auto SumProb = std::vector(NumBlocks); // Find unique successors and corresponding probabilities for every block for (size_t Src = 0; Src < NumBlocks; Src++) { const BlockT *BB = Blocks[Src]; SmallPtrSet UniqueSuccs; for (const auto SI : children(BB)) { // Ignore cold blocks if (BlockIndex.find(SI) == BlockIndex.end()) continue; // Ignore parallel edges between BB and SI blocks if (!UniqueSuccs.insert(SI).second) continue; // Ignore jumps with zero probability auto EP = BPI->getEdgeProbability(BB, SI); if (EP.isZero()) continue; auto EdgeProb = Scaled64::getFraction(EP.getNumerator(), EP.getDenominator()); size_t Dst = BlockIndex.find(SI)->second; Succs[Src].push_back(std::make_pair(Dst, EdgeProb)); SumProb[Src] += EdgeProb; } } // Add transitions for every jump with positive branch probability ProbMatrix = ProbMatrixType(NumBlocks); for (size_t Src = 0; Src < NumBlocks; Src++) { // Ignore blocks w/o successors if (Succs[Src].empty()) continue; assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block"); for (auto &Jump : Succs[Src]) { size_t Dst = Jump.first; Scaled64 Prob = Jump.second; ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src])); } } // Add transitions from sinks to the source size_t EntryIdx = BlockIndex.find(&F->front())->second; for (size_t Src = 0; Src < NumBlocks; Src++) { if (Succs[Src].empty()) { ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne())); } } } #ifndef NDEBUG template BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl::discrepancy( const ProbMatrixType &ProbMatrix, const std::vector &Freq) const { assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block"); Scaled64 Discrepancy; for (size_t I = 0; I < ProbMatrix.size(); I++) { Scaled64 Sum; for (const auto &Jump : ProbMatrix[I]) { Sum += Freq[Jump.first] * Jump.second; } Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I]; } // Normalizing by the frequency of the entry block return Discrepancy / Freq[0]; } #endif /// \note This should be a lambda, but that crashes GCC 4.7. namespace bfi_detail { template struct BlockEdgesAdder { using BlockT = BT; using LoopData = BlockFrequencyInfoImplBase::LoopData; using Successor = GraphTraits; const BlockFrequencyInfoImpl &BFI; explicit BlockEdgesAdder(const BlockFrequencyInfoImpl &BFI) : BFI(BFI) {} void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, const LoopData *OuterLoop) { const BlockT *BB = BFI.RPOT[Irr.Node.Index]; for (const auto Succ : children(BB)) G.addEdge(Irr, BFI.getNode(Succ), OuterLoop); } }; } // end namespace bfi_detail template void BlockFrequencyInfoImpl::computeIrreducibleMass( LoopData *OuterLoop, std::list::iterator Insert) { LLVM_DEBUG(dbgs() << "analyze-irreducible-in-"; if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n"; else dbgs() << "function\n"); using namespace bfi_detail; // Ideally, addBlockEdges() would be declared here as a lambda, but that // crashes GCC 4.7. BlockEdgesAdder addBlockEdges(*this); IrreducibleGraph G(*this, OuterLoop, addBlockEdges); for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) computeMassInLoop(L); if (!OuterLoop) return; updateLoopWithIrreducible(*OuterLoop); } // A helper function that converts a branch probability into weight. inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { return Prob.getNumerator(); } template bool BlockFrequencyInfoImpl::propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node) { LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); // Calculate probability for successors. Distribution Dist; if (auto *Loop = Working[Node.Index].getPackagedLoop()) { assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) // Irreducible backedge. return false; } else { const BlockT *BB = getBlock(Node); for (auto SI = GraphTraits::child_begin(BB), SE = GraphTraits::child_end(BB); SI != SE; ++SI) if (!addToDist( Dist, OuterLoop, Node, getNode(*SI), getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) // Irreducible backedge. return false; } // Distribute mass to successors, saving exit and backedge data in the // loop header. distributeMass(Node, OuterLoop, Dist); return true; } template raw_ostream &BlockFrequencyInfoImpl::print(raw_ostream &OS) const { if (!F) return OS; OS << "block-frequency-info: " << F->getName() << "\n"; for (const BlockT &BB : *F) { OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; getFloatingBlockFreq(&BB).print(OS, 5) << ", int = " << getBlockFreq(&BB).getFrequency(); if (std::optional ProfileCount = BlockFrequencyInfoImplBase::getBlockProfileCount( F->getFunction(), getNode(&BB))) OS << ", count = " << *ProfileCount; if (std::optional IrrLoopHeaderWeight = BB.getIrrLoopHeaderWeight()) OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight; OS << "\n"; } // Add an extra newline for readability. OS << "\n"; return OS; } template void BlockFrequencyInfoImpl::verifyMatch( BlockFrequencyInfoImpl &Other) const { bool Match = true; DenseMap ValidNodes; DenseMap OtherValidNodes; for (auto &Entry : Nodes) { const BlockT *BB = Entry.first; if (BB) { ValidNodes[BB] = Entry.second.first; } } for (auto &Entry : Other.Nodes) { const BlockT *BB = Entry.first; if (BB) { OtherValidNodes[BB] = Entry.second.first; } } unsigned NumValidNodes = ValidNodes.size(); unsigned NumOtherValidNodes = OtherValidNodes.size(); if (NumValidNodes != NumOtherValidNodes) { Match = false; dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs " << NumOtherValidNodes << "\n"; } else { for (auto &Entry : ValidNodes) { const BlockT *BB = Entry.first; BlockNode Node = Entry.second; if (OtherValidNodes.count(BB)) { BlockNode OtherNode = OtherValidNodes[BB]; const auto &Freq = Freqs[Node.Index]; const auto &OtherFreq = Other.Freqs[OtherNode.Index]; if (Freq.Integer != OtherFreq.Integer) { Match = false; dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " " << Freq.Integer << " vs " << OtherFreq.Integer << "\n"; } } else { Match = false; dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index " << Node.Index << " does not exist in Other.\n"; } } // If there's a valid node in OtherValidNodes that's not in ValidNodes, // either the above num check or the check on OtherValidNodes will fail. } if (!Match) { dbgs() << "This\n"; print(dbgs()); dbgs() << "Other\n"; Other.print(dbgs()); } assert(Match && "BFI mismatch"); } // Graph trait base class for block frequency information graph // viewer. enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; template struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { using GTraits = GraphTraits; using NodeRef = typename GTraits::NodeRef; using EdgeIter = typename GTraits::ChildIteratorType; using NodeIter = typename GTraits::nodes_iterator; uint64_t MaxFrequency = 0; explicit BFIDOTGraphTraitsBase(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} static StringRef getGraphName(const BlockFrequencyInfoT *G) { return G->getFunction()->getName(); } std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, unsigned HotPercentThreshold = 0) { std::string Result; if (!HotPercentThreshold) return Result; // Compute MaxFrequency on the fly: if (!MaxFrequency) { for (NodeIter I = GTraits::nodes_begin(Graph), E = GTraits::nodes_end(Graph); I != E; ++I) { NodeRef N = *I; MaxFrequency = std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency()); } } BlockFrequency Freq = Graph->getBlockFreq(Node); BlockFrequency HotFreq = (BlockFrequency(MaxFrequency) * BranchProbability::getBranchProbability(HotPercentThreshold, 100)); if (Freq < HotFreq) return Result; raw_string_ostream OS(Result); OS << "color=\"red\""; OS.flush(); return Result; } std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, GVDAGType GType, int layout_order = -1) { std::string Result; raw_string_ostream OS(Result); if (layout_order != -1) OS << Node->getName() << "[" << layout_order << "] : "; else OS << Node->getName() << " : "; switch (GType) { case GVDT_Fraction: Graph->printBlockFreq(OS, Node); break; case GVDT_Integer: OS << Graph->getBlockFreq(Node).getFrequency(); break; case GVDT_Count: { auto Count = Graph->getBlockProfileCount(Node); if (Count) OS << *Count; else OS << "Unknown"; break; } case GVDT_None: llvm_unreachable("If we are not supposed to render a graph we should " "never reach this point."); } return Result; } std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, const BlockFrequencyInfoT *BFI, const BranchProbabilityInfoT *BPI, unsigned HotPercentThreshold = 0) { std::string Str; if (!BPI) return Str; BranchProbability BP = BPI->getEdgeProbability(Node, EI); uint32_t N = BP.getNumerator(); uint32_t D = BP.getDenominator(); double Percent = 100.0 * N / D; raw_string_ostream OS(Str); OS << format("label=\"%.1f%%\"", Percent); if (HotPercentThreshold) { BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * BranchProbability(HotPercentThreshold, 100); if (EFreq >= HotFreq) { OS << ",color=\"red\""; } } OS.flush(); return Str; } }; } // end namespace llvm #undef DEBUG_TYPE #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif