//===-- ELFDump.cpp - ELF-specific dumper -----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the ELF-specific dumper for llvm-objdump. /// //===----------------------------------------------------------------------===// #include "ELFDump.h" #include "llvm-objdump.h" #include "llvm/Demangle/Demangle.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::object; using namespace llvm::objdump; template static Expected getDynamicStrTab(const ELFFile &Elf) { auto DynamicEntriesOrError = Elf.dynamicEntries(); if (!DynamicEntriesOrError) return DynamicEntriesOrError.takeError(); for (const typename ELFT::Dyn &Dyn : *DynamicEntriesOrError) { if (Dyn.d_tag == ELF::DT_STRTAB) { auto MappedAddrOrError = Elf.toMappedAddr(Dyn.getPtr()); if (!MappedAddrOrError) consumeError(MappedAddrOrError.takeError()); return StringRef(reinterpret_cast(*MappedAddrOrError)); } } // If the dynamic segment is not present, we fall back on the sections. auto SectionsOrError = Elf.sections(); if (!SectionsOrError) return SectionsOrError.takeError(); for (const typename ELFT::Shdr &Sec : *SectionsOrError) { if (Sec.sh_type == ELF::SHT_DYNSYM) return Elf.getStringTableForSymtab(Sec); } return createError("dynamic string table not found"); } template static Error getRelocationValueString(const ELFObjectFile *Obj, const RelocationRef &RelRef, SmallVectorImpl &Result) { const ELFFile &EF = Obj->getELFFile(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); auto SecOrErr = EF.getSection(Rel.d.a); if (!SecOrErr) return SecOrErr.takeError(); int64_t Addend = 0; // If there is no Symbol associated with the relocation, we set the undef // boolean value to 'true'. This will prevent us from calling functions that // requires the relocation to be associated with a symbol. // // In SHT_REL case we would need to read the addend from section data. // GNU objdump does not do that and we just follow for simplicity atm. bool Undef = false; if ((*SecOrErr)->sh_type == ELF::SHT_RELA) { const typename ELFT::Rela *ERela = Obj->getRela(Rel); Addend = ERela->r_addend; Undef = ERela->getSymbol(false) == 0; } else if ((*SecOrErr)->sh_type == ELF::SHT_REL) { const typename ELFT::Rel *ERel = Obj->getRel(Rel); Undef = ERel->getSymbol(false) == 0; } else { return make_error(); } // Default scheme is to print Target, as well as "+ " for nonzero // addend. Should be acceptable for all normal purposes. std::string FmtBuf; raw_string_ostream Fmt(FmtBuf); if (!Undef) { symbol_iterator SI = RelRef.getSymbol(); Expected SymOrErr = Obj->getSymbol(SI->getRawDataRefImpl()); // TODO: test this error. if (!SymOrErr) return SymOrErr.takeError(); if ((*SymOrErr)->getType() == ELF::STT_SECTION) { Expected SymSI = SI->getSection(); if (!SymSI) return SymSI.takeError(); const typename ELFT::Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl()); auto SecName = EF.getSectionName(*SymSec); if (!SecName) return SecName.takeError(); Fmt << *SecName; } else { Expected SymName = SI->getName(); if (!SymName) return SymName.takeError(); if (Demangle) Fmt << demangle(std::string(*SymName)); else Fmt << *SymName; } } else { Fmt << "*ABS*"; } if (Addend != 0) { Fmt << (Addend < 0 ? "-" : "+") << format("0x%" PRIx64, (Addend < 0 ? -(uint64_t)Addend : (uint64_t)Addend)); } Fmt.flush(); Result.append(FmtBuf.begin(), FmtBuf.end()); return Error::success(); } Error objdump::getELFRelocationValueString(const ELFObjectFileBase *Obj, const RelocationRef &Rel, SmallVectorImpl &Result) { if (auto *ELF32LE = dyn_cast(Obj)) return getRelocationValueString(ELF32LE, Rel, Result); if (auto *ELF64LE = dyn_cast(Obj)) return getRelocationValueString(ELF64LE, Rel, Result); if (auto *ELF32BE = dyn_cast(Obj)) return getRelocationValueString(ELF32BE, Rel, Result); auto *ELF64BE = cast(Obj); return getRelocationValueString(ELF64BE, Rel, Result); } template static uint64_t getSectionLMA(const ELFFile &Obj, const object::ELFSectionRef &Sec) { auto PhdrRangeOrErr = Obj.program_headers(); if (!PhdrRangeOrErr) report_fatal_error(Twine(toString(PhdrRangeOrErr.takeError()))); // Search for a PT_LOAD segment containing the requested section. Use this // segment's p_addr to calculate the section's LMA. for (const typename ELFT::Phdr &Phdr : *PhdrRangeOrErr) if ((Phdr.p_type == ELF::PT_LOAD) && (Phdr.p_vaddr <= Sec.getAddress()) && (Phdr.p_vaddr + Phdr.p_memsz > Sec.getAddress())) return Sec.getAddress() - Phdr.p_vaddr + Phdr.p_paddr; // Return section's VMA if it isn't in a PT_LOAD segment. return Sec.getAddress(); } uint64_t objdump::getELFSectionLMA(const object::ELFSectionRef &Sec) { if (const auto *ELFObj = dyn_cast(Sec.getObject())) return getSectionLMA(ELFObj->getELFFile(), Sec); else if (const auto *ELFObj = dyn_cast(Sec.getObject())) return getSectionLMA(ELFObj->getELFFile(), Sec); else if (const auto *ELFObj = dyn_cast(Sec.getObject())) return getSectionLMA(ELFObj->getELFFile(), Sec); const auto *ELFObj = cast(Sec.getObject()); return getSectionLMA(ELFObj->getELFFile(), Sec); } template static void printDynamicSection(const ELFFile &Elf, StringRef Filename) { auto DynamicEntriesOrErr = Elf.dynamicEntries(); if (!DynamicEntriesOrErr) { reportWarning(toString(DynamicEntriesOrErr.takeError()), Filename); return; } ArrayRef DynamicEntries = *DynamicEntriesOrErr; // Find the maximum tag name length to format the value column properly. size_t MaxLen = 0; for (const typename ELFT::Dyn &Dyn : DynamicEntries) MaxLen = std::max(MaxLen, Elf.getDynamicTagAsString(Dyn.d_tag).size()); std::string TagFmt = " %-" + std::to_string(MaxLen) + "s "; outs() << "\nDynamic Section:\n"; for (const typename ELFT::Dyn &Dyn : DynamicEntries) { if (Dyn.d_tag == ELF::DT_NULL) continue; std::string Str = Elf.getDynamicTagAsString(Dyn.d_tag); outs() << format(TagFmt.c_str(), Str.c_str()); const char *Fmt = ELFT::Is64Bits ? "0x%016" PRIx64 "\n" : "0x%08" PRIx64 "\n"; if (Dyn.d_tag == ELF::DT_NEEDED || Dyn.d_tag == ELF::DT_RPATH || Dyn.d_tag == ELF::DT_RUNPATH || Dyn.d_tag == ELF::DT_SONAME || Dyn.d_tag == ELF::DT_AUXILIARY || Dyn.d_tag == ELF::DT_FILTER) { Expected StrTabOrErr = getDynamicStrTab(Elf); if (StrTabOrErr) { const char *Data = StrTabOrErr.get().data(); outs() << (Data + Dyn.d_un.d_val) << "\n"; continue; } reportWarning(toString(StrTabOrErr.takeError()), Filename); consumeError(StrTabOrErr.takeError()); } outs() << format(Fmt, (uint64_t)Dyn.d_un.d_val); } } template static void printProgramHeaders(const ELFFile &Obj, StringRef FileName) { outs() << "\nProgram Header:\n"; auto ProgramHeaderOrError = Obj.program_headers(); if (!ProgramHeaderOrError) { reportWarning("unable to read program headers: " + toString(ProgramHeaderOrError.takeError()), FileName); return; } for (const typename ELFT::Phdr &Phdr : *ProgramHeaderOrError) { switch (Phdr.p_type) { case ELF::PT_DYNAMIC: outs() << " DYNAMIC "; break; case ELF::PT_GNU_EH_FRAME: outs() << "EH_FRAME "; break; case ELF::PT_GNU_RELRO: outs() << " RELRO "; break; case ELF::PT_GNU_PROPERTY: outs() << " PROPERTY "; break; case ELF::PT_GNU_STACK: outs() << " STACK "; break; case ELF::PT_INTERP: outs() << " INTERP "; break; case ELF::PT_LOAD: outs() << " LOAD "; break; case ELF::PT_NOTE: outs() << " NOTE "; break; case ELF::PT_OPENBSD_BOOTDATA: outs() << " OPENBSD_BOOTDATA "; break; case ELF::PT_OPENBSD_RANDOMIZE: outs() << " OPENBSD_RANDOMIZE "; break; case ELF::PT_OPENBSD_WXNEEDED: outs() << " OPENBSD_WXNEEDED "; break; case ELF::PT_PHDR: outs() << " PHDR "; break; case ELF::PT_TLS: outs() << " TLS "; break; default: outs() << " UNKNOWN "; } const char *Fmt = ELFT::Is64Bits ? "0x%016" PRIx64 " " : "0x%08" PRIx64 " "; outs() << "off " << format(Fmt, (uint64_t)Phdr.p_offset) << "vaddr " << format(Fmt, (uint64_t)Phdr.p_vaddr) << "paddr " << format(Fmt, (uint64_t)Phdr.p_paddr) << format("align 2**%u\n", countTrailingZeros(Phdr.p_align)) << " filesz " << format(Fmt, (uint64_t)Phdr.p_filesz) << "memsz " << format(Fmt, (uint64_t)Phdr.p_memsz) << "flags " << ((Phdr.p_flags & ELF::PF_R) ? "r" : "-") << ((Phdr.p_flags & ELF::PF_W) ? "w" : "-") << ((Phdr.p_flags & ELF::PF_X) ? "x" : "-") << "\n"; } } template static void printSymbolVersionDependency(ArrayRef Contents, StringRef StrTab) { outs() << "\nVersion References:\n"; const uint8_t *Buf = Contents.data(); while (Buf) { auto *Verneed = reinterpret_cast(Buf); outs() << " required from " << StringRef(StrTab.drop_front(Verneed->vn_file).data()) << ":\n"; const uint8_t *BufAux = Buf + Verneed->vn_aux; while (BufAux) { auto *Vernaux = reinterpret_cast(BufAux); outs() << " " << format("0x%08" PRIx32 " ", (uint32_t)Vernaux->vna_hash) << format("0x%02" PRIx16 " ", (uint16_t)Vernaux->vna_flags) << format("%02" PRIu16 " ", (uint16_t)Vernaux->vna_other) << StringRef(StrTab.drop_front(Vernaux->vna_name).data()) << '\n'; BufAux = Vernaux->vna_next ? BufAux + Vernaux->vna_next : nullptr; } Buf = Verneed->vn_next ? Buf + Verneed->vn_next : nullptr; } } template static void printSymbolVersionDefinition(const typename ELFT::Shdr &Shdr, ArrayRef Contents, StringRef StrTab) { outs() << "\nVersion definitions:\n"; const uint8_t *Buf = Contents.data(); uint32_t VerdefIndex = 1; // sh_info contains the number of entries in the SHT_GNU_verdef section. To // make the index column have consistent width, we should insert blank spaces // according to sh_info. uint16_t VerdefIndexWidth = std::to_string(Shdr.sh_info).size(); while (Buf) { auto *Verdef = reinterpret_cast(Buf); outs() << format_decimal(VerdefIndex++, VerdefIndexWidth) << " " << format("0x%02" PRIx16 " ", (uint16_t)Verdef->vd_flags) << format("0x%08" PRIx32 " ", (uint32_t)Verdef->vd_hash); const uint8_t *BufAux = Buf + Verdef->vd_aux; uint16_t VerdauxIndex = 0; while (BufAux) { auto *Verdaux = reinterpret_cast(BufAux); if (VerdauxIndex) outs() << std::string(VerdefIndexWidth + 17, ' '); outs() << StringRef(StrTab.drop_front(Verdaux->vda_name).data()) << '\n'; BufAux = Verdaux->vda_next ? BufAux + Verdaux->vda_next : nullptr; ++VerdauxIndex; } Buf = Verdef->vd_next ? Buf + Verdef->vd_next : nullptr; } } template static void printSymbolVersionInfo(const ELFFile &Elf, StringRef FileName) { ArrayRef Sections = unwrapOrError(Elf.sections(), FileName); for (const typename ELFT::Shdr &Shdr : Sections) { if (Shdr.sh_type != ELF::SHT_GNU_verneed && Shdr.sh_type != ELF::SHT_GNU_verdef) continue; ArrayRef Contents = unwrapOrError(Elf.getSectionContents(Shdr), FileName); const typename ELFT::Shdr *StrTabSec = unwrapOrError(Elf.getSection(Shdr.sh_link), FileName); StringRef StrTab = unwrapOrError(Elf.getStringTable(*StrTabSec), FileName); if (Shdr.sh_type == ELF::SHT_GNU_verneed) printSymbolVersionDependency(Contents, StrTab); else printSymbolVersionDefinition(Shdr, Contents, StrTab); } } void objdump::printELFFileHeader(const object::ObjectFile *Obj) { if (const auto *ELFObj = dyn_cast(Obj)) printProgramHeaders(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printProgramHeaders(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printProgramHeaders(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printProgramHeaders(ELFObj->getELFFile(), Obj->getFileName()); } void objdump::printELFDynamicSection(const object::ObjectFile *Obj) { if (const auto *ELFObj = dyn_cast(Obj)) printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); } void objdump::printELFSymbolVersionInfo(const object::ObjectFile *Obj) { if (const auto *ELFObj = dyn_cast(Obj)) printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast(Obj)) printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); }