//===-- PPCInstrInfo.td - The PowerPC Instruction Set ------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the subset of the 32-bit PowerPC instruction set, as used // by the PowerPC instruction selector. // //===----------------------------------------------------------------------===// include "PPCInstrFormats.td" //===----------------------------------------------------------------------===// // PowerPC specific type constraints. // def SDT_PPCstfiwx : SDTypeProfile<0, 2, [ // stfiwx SDTCisVT<0, f64>, SDTCisPtrTy<1> ]>; def SDT_PPClfiwx : SDTypeProfile<1, 1, [ // lfiw[az]x SDTCisVT<0, f64>, SDTCisPtrTy<1> ]>; def SDT_PPCLxsizx : SDTypeProfile<1, 2, [ SDTCisVT<0, f64>, SDTCisPtrTy<1>, SDTCisPtrTy<2> ]>; def SDT_PPCstxsix : SDTypeProfile<0, 3, [ SDTCisVT<0, f64>, SDTCisPtrTy<1>, SDTCisPtrTy<2> ]>; def SDT_PPCcv_fp_to_int : SDTypeProfile<1, 1, [ SDTCisFP<0>, SDTCisFP<1> ]>; def SDT_PPCstore_scal_int_from_vsr : SDTypeProfile<0, 3, [ SDTCisVT<0, f64>, SDTCisPtrTy<1>, SDTCisPtrTy<2> ]>; def SDT_PPCVexts : SDTypeProfile<1, 2, [ SDTCisVT<0, f64>, SDTCisVT<1, f64>, SDTCisPtrTy<2> ]>; def SDT_PPCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_PPCCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_PPCvperm : SDTypeProfile<1, 3, [ SDTCisVT<3, v16i8>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2> ]>; def SDT_PPCVecSplat : SDTypeProfile<1, 2, [ SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<2> ]>; def SDT_PPCSpToDp : SDTypeProfile<1, 1, [ SDTCisVT<0, v2f64>, SDTCisInt<1> ]>; def SDT_PPCVecShift : SDTypeProfile<1, 3, [ SDTCisVec<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisPtrTy<3> ]>; def SDT_PPCVecInsert : SDTypeProfile<1, 3, [ SDTCisVec<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisInt<3> ]>; def SDT_PPCxxpermdi: SDTypeProfile<1, 3, [ SDTCisVec<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisInt<3> ]>; def SDT_PPCvcmp : SDTypeProfile<1, 3, [ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32> ]>; def SDT_PPCcondbr : SDTypeProfile<0, 3, [ SDTCisVT<0, i32>, SDTCisVT<2, OtherVT> ]>; def SDT_PPCFtsqrt : SDTypeProfile<1, 1, [ SDTCisVT<0, i32>]>; def SDT_PPClbrx : SDTypeProfile<1, 2, [ SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT> ]>; def SDT_PPCstbrx : SDTypeProfile<0, 3, [ SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT> ]>; def SDT_PPCTC_ret : SDTypeProfile<0, 2, [ SDTCisPtrTy<0>, SDTCisVT<1, i32> ]>; def tocentry32 : Operand { let MIOperandInfo = (ops i32imm:$imm); } def SDT_PPCqvfperm : SDTypeProfile<1, 3, [ SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVec<3> ]>; def SDT_PPCqvgpci : SDTypeProfile<1, 1, [ SDTCisVec<0>, SDTCisInt<1> ]>; def SDT_PPCqvaligni : SDTypeProfile<1, 3, [ SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<3> ]>; def SDT_PPCqvesplati : SDTypeProfile<1, 2, [ SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2> ]>; def SDT_PPCqbflt : SDTypeProfile<1, 1, [ SDTCisVec<0>, SDTCisVec<1> ]>; def SDT_PPCqvlfsb : SDTypeProfile<1, 1, [ SDTCisVec<0>, SDTCisPtrTy<1> ]>; def SDT_PPCextswsli : SDTypeProfile<1, 2, [ // extswsli SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisInt<2> ]>; def SDT_PPCFPMinMax : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> ]>; //===----------------------------------------------------------------------===// // PowerPC specific DAG Nodes. // def PPCfre : SDNode<"PPCISD::FRE", SDTFPUnaryOp, []>; def PPCfrsqrte: SDNode<"PPCISD::FRSQRTE", SDTFPUnaryOp, []>; def PPCfsqrt : SDNode<"PPCISD::FSQRT", SDTFPUnaryOp, []>; def PPCftsqrt : SDNode<"PPCISD::FTSQRT", SDT_PPCFtsqrt,[]>; def PPCfcfid : SDNode<"PPCISD::FCFID", SDTFPUnaryOp, []>; def PPCfcfidu : SDNode<"PPCISD::FCFIDU", SDTFPUnaryOp, []>; def PPCfcfids : SDNode<"PPCISD::FCFIDS", SDTFPRoundOp, []>; def PPCfcfidus: SDNode<"PPCISD::FCFIDUS", SDTFPRoundOp, []>; def PPCfctidz : SDNode<"PPCISD::FCTIDZ", SDTFPUnaryOp, []>; def PPCfctiwz : SDNode<"PPCISD::FCTIWZ", SDTFPUnaryOp, []>; def PPCfctiduz: SDNode<"PPCISD::FCTIDUZ",SDTFPUnaryOp, []>; def PPCfctiwuz: SDNode<"PPCISD::FCTIWUZ",SDTFPUnaryOp, []>; def PPCstrict_fcfid : SDNode<"PPCISD::STRICT_FCFID", SDTFPUnaryOp, [SDNPHasChain]>; def PPCstrict_fcfidu : SDNode<"PPCISD::STRICT_FCFIDU", SDTFPUnaryOp, [SDNPHasChain]>; def PPCstrict_fcfids : SDNode<"PPCISD::STRICT_FCFIDS", SDTFPRoundOp, [SDNPHasChain]>; def PPCstrict_fcfidus : SDNode<"PPCISD::STRICT_FCFIDUS", SDTFPRoundOp, [SDNPHasChain]>; def PPCany_fcfid : PatFrags<(ops node:$op), [(PPCfcfid node:$op), (PPCstrict_fcfid node:$op)]>; def PPCany_fcfidu : PatFrags<(ops node:$op), [(PPCfcfidu node:$op), (PPCstrict_fcfidu node:$op)]>; def PPCany_fcfids : PatFrags<(ops node:$op), [(PPCfcfids node:$op), (PPCstrict_fcfids node:$op)]>; def PPCany_fcfidus : PatFrags<(ops node:$op), [(PPCfcfidus node:$op), (PPCstrict_fcfidus node:$op)]>; def PPCcv_fp_to_uint_in_vsr: SDNode<"PPCISD::FP_TO_UINT_IN_VSR", SDT_PPCcv_fp_to_int, []>; def PPCcv_fp_to_sint_in_vsr: SDNode<"PPCISD::FP_TO_SINT_IN_VSR", SDT_PPCcv_fp_to_int, []>; def PPCstore_scal_int_from_vsr: SDNode<"PPCISD::ST_VSR_SCAL_INT", SDT_PPCstore_scal_int_from_vsr, [SDNPHasChain, SDNPMayStore]>; def PPCstfiwx : SDNode<"PPCISD::STFIWX", SDT_PPCstfiwx, [SDNPHasChain, SDNPMayStore]>; def PPClfiwax : SDNode<"PPCISD::LFIWAX", SDT_PPClfiwx, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def PPClfiwzx : SDNode<"PPCISD::LFIWZX", SDT_PPClfiwx, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def PPClxsizx : SDNode<"PPCISD::LXSIZX", SDT_PPCLxsizx, [SDNPHasChain, SDNPMayLoad]>; def PPCstxsix : SDNode<"PPCISD::STXSIX", SDT_PPCstxsix, [SDNPHasChain, SDNPMayStore]>; def PPCVexts : SDNode<"PPCISD::VEXTS", SDT_PPCVexts, []>; // Extract FPSCR (not modeled at the DAG level). def PPCmffs : SDNode<"PPCISD::MFFS", SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>, [SDNPHasChain]>; // Perform FADD in round-to-zero mode. def PPCfaddrtz: SDNode<"PPCISD::FADDRTZ", SDTFPBinOp, []>; def PPCstrict_faddrtz: SDNode<"PPCISD::STRICT_FADDRTZ", SDTFPBinOp, [SDNPHasChain]>; def PPCany_faddrtz: PatFrags<(ops node:$lhs, node:$rhs), [(PPCfaddrtz node:$lhs, node:$rhs), (PPCstrict_faddrtz node:$lhs, node:$rhs)]>; def PPCfsel : SDNode<"PPCISD::FSEL", // Type constraint for fsel. SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0>, SDTCisVT<1, f64>]>, []>; def PPCxsmaxc : SDNode<"PPCISD::XSMAXCDP", SDT_PPCFPMinMax, []>; def PPCxsminc : SDNode<"PPCISD::XSMINCDP", SDT_PPCFPMinMax, []>; def PPChi : SDNode<"PPCISD::Hi", SDTIntBinOp, []>; def PPClo : SDNode<"PPCISD::Lo", SDTIntBinOp, []>; def PPCtoc_entry: SDNode<"PPCISD::TOC_ENTRY", SDTIntBinOp, [SDNPMayLoad, SDNPMemOperand]>; def PPCppc32GOT : SDNode<"PPCISD::PPC32_GOT", SDTIntLeaf, []>; def PPCaddisGotTprelHA : SDNode<"PPCISD::ADDIS_GOT_TPREL_HA", SDTIntBinOp>; def PPCldGotTprelL : SDNode<"PPCISD::LD_GOT_TPREL_L", SDTIntBinOp, [SDNPMayLoad]>; def PPCaddTls : SDNode<"PPCISD::ADD_TLS", SDTIntBinOp, []>; def PPCaddisTlsgdHA : SDNode<"PPCISD::ADDIS_TLSGD_HA", SDTIntBinOp>; def PPCaddiTlsgdL : SDNode<"PPCISD::ADDI_TLSGD_L", SDTIntBinOp>; def PPCgetTlsAddr : SDNode<"PPCISD::GET_TLS_ADDR", SDTIntBinOp>; def PPCaddiTlsgdLAddr : SDNode<"PPCISD::ADDI_TLSGD_L_ADDR", SDTypeProfile<1, 3, [ SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0> ]>>; def PPCTlsgdAIX : SDNode<"PPCISD::TLSGD_AIX", SDTIntBinOp>; def PPCaddisTlsldHA : SDNode<"PPCISD::ADDIS_TLSLD_HA", SDTIntBinOp>; def PPCaddiTlsldL : SDNode<"PPCISD::ADDI_TLSLD_L", SDTIntBinOp>; def PPCgetTlsldAddr : SDNode<"PPCISD::GET_TLSLD_ADDR", SDTIntBinOp>; def PPCaddiTlsldLAddr : SDNode<"PPCISD::ADDI_TLSLD_L_ADDR", SDTypeProfile<1, 3, [ SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0> ]>>; def PPCaddisDtprelHA : SDNode<"PPCISD::ADDIS_DTPREL_HA", SDTIntBinOp>; def PPCaddiDtprelL : SDNode<"PPCISD::ADDI_DTPREL_L", SDTIntBinOp>; def PPCpaddiDtprel : SDNode<"PPCISD::PADDI_DTPREL", SDTIntBinOp>; def PPCvperm : SDNode<"PPCISD::VPERM", SDT_PPCvperm, []>; def PPCxxsplt : SDNode<"PPCISD::XXSPLT", SDT_PPCVecSplat, []>; def PPCxxspltidp : SDNode<"PPCISD::XXSPLTI_SP_TO_DP", SDT_PPCSpToDp, []>; def PPCvecinsert : SDNode<"PPCISD::VECINSERT", SDT_PPCVecInsert, []>; def PPCxxpermdi : SDNode<"PPCISD::XXPERMDI", SDT_PPCxxpermdi, []>; def PPCvecshl : SDNode<"PPCISD::VECSHL", SDT_PPCVecShift, []>; def PPCcmpb : SDNode<"PPCISD::CMPB", SDTIntBinOp, []>; // These nodes represent the 32-bit PPC shifts that operate on 6-bit shift // amounts. These nodes are generated by the multi-precision shift code. def PPCsrl : SDNode<"PPCISD::SRL" , SDTIntShiftOp>; def PPCsra : SDNode<"PPCISD::SRA" , SDTIntShiftOp>; def PPCshl : SDNode<"PPCISD::SHL" , SDTIntShiftOp>; def PPCfnmsub : SDNode<"PPCISD::FNMSUB" , SDTFPTernaryOp>; def PPCextswsli : SDNode<"PPCISD::EXTSWSLI" , SDT_PPCextswsli>; def PPCstrict_fctidz : SDNode<"PPCISD::STRICT_FCTIDZ", SDTFPUnaryOp, [SDNPHasChain]>; def PPCstrict_fctiwz : SDNode<"PPCISD::STRICT_FCTIWZ", SDTFPUnaryOp, [SDNPHasChain]>; def PPCstrict_fctiduz : SDNode<"PPCISD::STRICT_FCTIDUZ", SDTFPUnaryOp, [SDNPHasChain]>; def PPCstrict_fctiwuz : SDNode<"PPCISD::STRICT_FCTIWUZ", SDTFPUnaryOp, [SDNPHasChain]>; def PPCany_fctidz : PatFrags<(ops node:$op), [(PPCstrict_fctidz node:$op), (PPCfctidz node:$op)]>; def PPCany_fctiwz : PatFrags<(ops node:$op), [(PPCstrict_fctiwz node:$op), (PPCfctiwz node:$op)]>; def PPCany_fctiduz : PatFrags<(ops node:$op), [(PPCstrict_fctiduz node:$op), (PPCfctiduz node:$op)]>; def PPCany_fctiwuz : PatFrags<(ops node:$op), [(PPCstrict_fctiwuz node:$op), (PPCfctiwuz node:$op)]>; // Move 2 i64 values into a VSX register def PPCbuild_fp128: SDNode<"PPCISD::BUILD_FP128", SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisSameSizeAs<1,2>, SDTCisSameAs<1,2>]>, []>; def PPCbuild_spe64: SDNode<"PPCISD::BUILD_SPE64", SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1,i32>, SDTCisVT<1,i32>]>, []>; def PPCextract_spe : SDNode<"PPCISD::EXTRACT_SPE", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, f64>, SDTCisPtrTy<2>]>, []>; // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PPCCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PPCCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_PPCCall : SDTypeProfile<0, -1, [SDTCisInt<0>]>; def PPCcall : SDNode<"PPCISD::CALL", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCcall_nop : SDNode<"PPCISD::CALL_NOP", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCcall_notoc : SDNode<"PPCISD::CALL_NOTOC", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PPCbctrl : SDNode<"PPCISD::BCTRL", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCbctrl_load_toc : SDNode<"PPCISD::BCTRL_LOAD_TOC", SDTypeProfile<0, 1, []>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; // Call nodes for strictfp calls (that define RM). def PPCcall_rm : SDNode<"PPCISD::CALL_RM", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCcall_nop_rm : SDNode<"PPCISD::CALL_NOP_RM", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCcall_notoc_rm : SDNode<"PPCISD::CALL_NOTOC_RM", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCbctrl_rm : SDNode<"PPCISD::BCTRL_RM", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCbctrl_load_toc_rm : SDNode<"PPCISD::BCTRL_LOAD_TOC_RM", SDTypeProfile<0, 1, []>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PPCtc_return : SDNode<"PPCISD::TC_RETURN", SDT_PPCTC_ret, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PPCeh_sjlj_setjmp : SDNode<"PPCISD::EH_SJLJ_SETJMP", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, [SDNPHasChain, SDNPSideEffect]>; def PPCeh_sjlj_longjmp : SDNode<"PPCISD::EH_SJLJ_LONGJMP", SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPSideEffect]>; def SDT_PPCsc : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def PPCsc : SDNode<"PPCISD::SC", SDT_PPCsc, [SDNPHasChain, SDNPSideEffect]>; def PPCclrbhrb : SDNode<"PPCISD::CLRBHRB", SDTNone, [SDNPHasChain, SDNPSideEffect]>; def PPCmfbhrbe : SDNode<"PPCISD::MFBHRBE", SDTIntBinOp, [SDNPHasChain]>; def PPCrfebb : SDNode<"PPCISD::RFEBB", SDT_PPCsc, [SDNPHasChain, SDNPSideEffect]>; def PPCvcmp : SDNode<"PPCISD::VCMP" , SDT_PPCvcmp, []>; def PPCvcmp_rec : SDNode<"PPCISD::VCMP_rec", SDT_PPCvcmp, [SDNPOutGlue]>; def PPCcondbranch : SDNode<"PPCISD::COND_BRANCH", SDT_PPCcondbr, [SDNPHasChain, SDNPOptInGlue]>; // PPC-specific atomic operations. def PPCatomicCmpSwap_8 : SDNode<"PPCISD::ATOMIC_CMP_SWAP_8", SDTAtomic3, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def PPCatomicCmpSwap_16 : SDNode<"PPCISD::ATOMIC_CMP_SWAP_16", SDTAtomic3, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def PPClbrx : SDNode<"PPCISD::LBRX", SDT_PPClbrx, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def PPCstbrx : SDNode<"PPCISD::STBRX", SDT_PPCstbrx, [SDNPHasChain, SDNPMayStore]>; // Instructions to set/unset CR bit 6 for SVR4 vararg calls def PPCcr6set : SDNode<"PPCISD::CR6SET", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PPCcr6unset : SDNode<"PPCISD::CR6UNSET", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; // Instructions to support dynamic alloca. def SDTDynOp : SDTypeProfile<1, 2, []>; def SDTDynAreaOp : SDTypeProfile<1, 1, []>; def PPCdynalloc : SDNode<"PPCISD::DYNALLOC", SDTDynOp, [SDNPHasChain]>; def PPCdynareaoffset : SDNode<"PPCISD::DYNAREAOFFSET", SDTDynAreaOp, [SDNPHasChain]>; def PPCprobedalloca : SDNode<"PPCISD::PROBED_ALLOCA", SDTDynOp, [SDNPHasChain]>; // PC Relative Specific Nodes def PPCmatpcreladdr : SDNode<"PPCISD::MAT_PCREL_ADDR", SDTIntUnaryOp, []>; def PPCtlsdynamatpcreladdr : SDNode<"PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR", SDTIntUnaryOp, []>; def PPCtlslocalexecmataddr : SDNode<"PPCISD::TLS_LOCAL_EXEC_MAT_ADDR", SDTIntUnaryOp, []>; //===----------------------------------------------------------------------===// // PowerPC specific transformation functions and pattern fragments. // // A floating point immediate that is not a positive zero and can be converted // to a single precision floating point non-denormal immediate without loss of // information. def nzFPImmAsi32 : PatLeaf<(fpimm), [{ APFloat APFloatOfN = N->getValueAPF(); return convertToNonDenormSingle(APFloatOfN) && !N->isExactlyValue(+0.0); }]>; // Convert the floating point immediate into a 32 bit floating point immediate // and get a i32 with the resulting bits. def getFPAs32BitInt : SDNodeXFormgetValueAPF(); convertToNonDenormSingle(APFloatOfN); return CurDAG->getTargetConstant(APFloatOfN.bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32); }]>; // Check if the value can be converted to be single precision immediate, which // can be exploited by XXSPLTIDP. Ensure that it cannot be converted to single // precision before exploiting with XXSPLTI32DX. def nzFPImmAsi64 : PatLeaf<(fpimm), [{ APFloat APFloatOfN = N->getValueAPF(); return !N->isExactlyValue(+0.0) && !checkConvertToNonDenormSingle(APFloatOfN); }]>; // Get the Hi bits of a 64 bit immediate. def getFPAs64BitIntHi : SDNodeXFormgetValueAPF(); bool Unused; APFloatOfN.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); uint32_t Hi = (uint32_t)((APFloatOfN.bitcastToAPInt().getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); return CurDAG->getTargetConstant(Hi, SDLoc(N), MVT::i32); }]>; // Get the Lo bits of a 64 bit immediate. def getFPAs64BitIntLo : SDNodeXFormgetValueAPF(); bool Unused; APFloatOfN.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); uint32_t Lo = (uint32_t)(APFloatOfN.bitcastToAPInt().getZExtValue() & 0xFFFFFFFF); return CurDAG->getTargetConstant(Lo, SDLoc(N), MVT::i32); }]>; def imm34 : PatLeaf<(imm), [{ return isInt<34>(N->getSExtValue()); }]>; def getImmAs64BitInt : SDNodeXFormgetSExtValue(), SDLoc(N)); }]>; def SHL32 : SDNodeXFormgetZExtValue(), SDLoc(N)); }]>; def SRL32 : SDNodeXFormgetZExtValue() ? getI32Imm(32 - N->getZExtValue(), SDLoc(N)) : getI32Imm(0, SDLoc(N)); }]>; def LO16 : SDNodeXFormgetZExtValue(), SDLoc(N)); }]>; def HI16 : SDNodeXFormgetZExtValue() >> 16, SDLoc(N)); }]>; def HA16 : SDNodeXFormgetZExtValue(); return getI32Imm((Val - (signed short)Val) >> 16, SDLoc(N)); }]>; def MB : SDNodeXFormgetZExtValue(), mb, me); return getI32Imm(mb, SDLoc(N)); }]>; def ME : SDNodeXFormgetZExtValue(), mb, me); return getI32Imm(me, SDLoc(N)); }]>; def maskimm32 : PatLeaf<(imm), [{ // maskImm predicate - True if immediate is a run of ones. unsigned mb, me; if (N->getValueType(0) == MVT::i32) return isRunOfOnes((unsigned)N->getZExtValue(), mb, me); else return false; }]>; def imm32SExt16 : Operand, ImmLeaf; def imm64SExt16 : Operand, ImmLeaf; def immZExt16 : PatLeaf<(imm), [{ // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended // field. Used by instructions like 'ori'. return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); }], LO16>; def immNonAllOneAnyExt8 : ImmLeaf(Imm) && (Imm != -1)) || (isUInt<8>(Imm) && (Imm != 0xFF)); }]>; def i32immNonAllOneNonZero : ImmLeaf; def immSExt5NonZero : ImmLeaf(Imm); }]>; // imm16Shifted* - These match immediates where the low 16-bits are zero. There // are two forms: imm16ShiftedSExt and imm16ShiftedZExt. These two forms are // identical in 32-bit mode, but in 64-bit mode, they return true if the // immediate fits into a sign/zero extended 32-bit immediate (with the low bits // clear). def imm16ShiftedZExt : PatLeaf<(imm), [{ // imm16ShiftedZExt predicate - True if only bits in the top 16-bits of the // immediate are set. Used by instructions like 'xoris'. return (N->getZExtValue() & ~uint64_t(0xFFFF0000)) == 0; }], HI16>; def imm16ShiftedSExt : PatLeaf<(imm), [{ // imm16ShiftedSExt predicate - True if only bits in the top 16-bits of the // immediate are set. Used by instructions like 'addis'. Identical to // imm16ShiftedZExt in 32-bit mode. if (N->getZExtValue() & 0xFFFF) return false; if (N->getValueType(0) == MVT::i32) return true; // For 64-bit, make sure it is sext right. return N->getZExtValue() == (uint64_t)(int)N->getZExtValue(); }], HI16>; def imm64ZExt32 : Operand, ImmLeaf(Imm); }]>; // This is a somewhat weaker condition than actually checking for 4-byte // alignment. It is simply checking that the displacement can be represented // as an immediate that is a multiple of 4 (i.e. the requirements for DS-Form // instructions). // But some r+i load/store instructions (such as LD, STD, LDU, etc.) that require // restricted memrix (4-aligned) constants are alignment sensitive. If these // offsets are hidden behind TOC entries than the values of the lower-order // bits cannot be checked directly. As a result, we need to also incorporate // an alignment check into the relevant patterns. def DSFormLoad : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return isOffsetMultipleOf(N, 4) || cast(N)->getAlignment() >= 4; }]>; def DSFormStore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return isOffsetMultipleOf(N, 4) || cast(N)->getAlignment() >= 4; }]>; def DSFormSextLoadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{ return isOffsetMultipleOf(N, 4) || cast(N)->getAlignment() >= 4; }]>; def DSFormPreStore : PatFrag< (ops node:$val, node:$base, node:$offset), (pre_store node:$val, node:$base, node:$offset), [{ return isOffsetMultipleOf(N, 4) || cast(N)->getAlignment() >= 4; }]>; def NonDSFormLoad : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() < 4 && !isOffsetMultipleOf(N, 4); }]>; def NonDSFormStore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() < 4 && !isOffsetMultipleOf(N, 4); }]>; def NonDSFormSextLoadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{ return cast(N)->getAlignment() < 4 && !isOffsetMultipleOf(N, 4); }]>; // This is a somewhat weaker condition than actually checking for 16-byte // alignment. It is simply checking that the displacement can be represented // as an immediate that is a multiple of 16 (i.e. the requirements for DQ-Form // instructions). def quadwOffsetLoad : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return isOffsetMultipleOf(N, 16); }]>; def quadwOffsetStore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return isOffsetMultipleOf(N, 16); }]>; def nonQuadwOffsetLoad : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return !isOffsetMultipleOf(N, 16); }]>; def nonQuadwOffsetStore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return !isOffsetMultipleOf(N, 16); }]>; // PatFrag for binary operation whose operands are both non-constant class BinOpWithoutSImm16Operand : PatFrag<(ops node:$left, node:$right), (opcode node:$left, node:$right), [{ int16_t Imm; return !isIntS16Immediate(N->getOperand(0), Imm) && !isIntS16Immediate(N->getOperand(1), Imm); }]>; def add_without_simm16 : BinOpWithoutSImm16Operand; def mul_without_simm16 : BinOpWithoutSImm16Operand; //===----------------------------------------------------------------------===// // PowerPC Flag Definitions. class isPPC64 { bit PPC64 = 1; } class isRecordForm { bit RC = 1; } class RegConstraint { string Constraints = C; } class NoEncode { string DisableEncoding = E; } //===----------------------------------------------------------------------===// // PowerPC Operand Definitions. // In the default PowerPC assembler syntax, registers are specified simply // by number, so they cannot be distinguished from immediate values (without // looking at the opcode). This means that the default operand matching logic // for the asm parser does not work, and we need to specify custom matchers. // Since those can only be specified with RegisterOperand classes and not // directly on the RegisterClass, all instructions patterns used by the asm // parser need to use a RegisterOperand (instead of a RegisterClass) for // all their register operands. // For this purpose, we define one RegisterOperand for each RegisterClass, // using the same name as the class, just in lower case. def PPCRegGPRCAsmOperand : AsmOperandClass { let Name = "RegGPRC"; let PredicateMethod = "isRegNumber"; } def gprc : RegisterOperand { let ParserMatchClass = PPCRegGPRCAsmOperand; } def PPCRegG8RCAsmOperand : AsmOperandClass { let Name = "RegG8RC"; let PredicateMethod = "isRegNumber"; } def g8rc : RegisterOperand { let ParserMatchClass = PPCRegG8RCAsmOperand; } def PPCRegG8pRCAsmOperand : AsmOperandClass { let Name = "RegG8pRC"; let PredicateMethod = "isEvenRegNumber"; } def g8prc : RegisterOperand { let ParserMatchClass = PPCRegG8pRCAsmOperand; } def PPCRegGPRCNoR0AsmOperand : AsmOperandClass { let Name = "RegGPRCNoR0"; let PredicateMethod = "isRegNumber"; } def gprc_nor0 : RegisterOperand { let ParserMatchClass = PPCRegGPRCNoR0AsmOperand; } def PPCRegG8RCNoX0AsmOperand : AsmOperandClass { let Name = "RegG8RCNoX0"; let PredicateMethod = "isRegNumber"; } def g8rc_nox0 : RegisterOperand { let ParserMatchClass = PPCRegG8RCNoX0AsmOperand; } def PPCRegF8RCAsmOperand : AsmOperandClass { let Name = "RegF8RC"; let PredicateMethod = "isRegNumber"; } def f8rc : RegisterOperand { let ParserMatchClass = PPCRegF8RCAsmOperand; } def PPCRegF4RCAsmOperand : AsmOperandClass { let Name = "RegF4RC"; let PredicateMethod = "isRegNumber"; } def f4rc : RegisterOperand { let ParserMatchClass = PPCRegF4RCAsmOperand; } def PPCRegVRRCAsmOperand : AsmOperandClass { let Name = "RegVRRC"; let PredicateMethod = "isRegNumber"; } def vrrc : RegisterOperand { let ParserMatchClass = PPCRegVRRCAsmOperand; } def PPCRegVFRCAsmOperand : AsmOperandClass { let Name = "RegVFRC"; let PredicateMethod = "isRegNumber"; } def vfrc : RegisterOperand { let ParserMatchClass = PPCRegVFRCAsmOperand; } def PPCRegCRBITRCAsmOperand : AsmOperandClass { let Name = "RegCRBITRC"; let PredicateMethod = "isCRBitNumber"; } def crbitrc : RegisterOperand { let ParserMatchClass = PPCRegCRBITRCAsmOperand; } def PPCRegCRRCAsmOperand : AsmOperandClass { let Name = "RegCRRC"; let PredicateMethod = "isCCRegNumber"; } def crrc : RegisterOperand { let ParserMatchClass = PPCRegCRRCAsmOperand; } def PPCRegSPERCAsmOperand : AsmOperandClass { let Name = "RegSPERC"; let PredicateMethod = "isRegNumber"; } def sperc : RegisterOperand { let ParserMatchClass = PPCRegSPERCAsmOperand; } def PPCRegSPE4RCAsmOperand : AsmOperandClass { let Name = "RegSPE4RC"; let PredicateMethod = "isRegNumber"; } def spe4rc : RegisterOperand { let ParserMatchClass = PPCRegSPE4RCAsmOperand; } def PPCU1ImmAsmOperand : AsmOperandClass { let Name = "U1Imm"; let PredicateMethod = "isU1Imm"; let RenderMethod = "addImmOperands"; } def u1imm : Operand { let PrintMethod = "printU1ImmOperand"; let ParserMatchClass = PPCU1ImmAsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU2ImmAsmOperand : AsmOperandClass { let Name = "U2Imm"; let PredicateMethod = "isU2Imm"; let RenderMethod = "addImmOperands"; } def u2imm : Operand { let PrintMethod = "printU2ImmOperand"; let ParserMatchClass = PPCU2ImmAsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } def PPCATBitsAsHintAsmOperand : AsmOperandClass { let Name = "ATBitsAsHint"; let PredicateMethod = "isATBitsAsHint"; let RenderMethod = "addImmOperands"; // Irrelevant, predicate always fails. } def atimm : Operand { let PrintMethod = "printATBitsAsHint"; let ParserMatchClass = PPCATBitsAsHintAsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU3ImmAsmOperand : AsmOperandClass { let Name = "U3Imm"; let PredicateMethod = "isU3Imm"; let RenderMethod = "addImmOperands"; } def u3imm : Operand { let PrintMethod = "printU3ImmOperand"; let ParserMatchClass = PPCU3ImmAsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU4ImmAsmOperand : AsmOperandClass { let Name = "U4Imm"; let PredicateMethod = "isU4Imm"; let RenderMethod = "addImmOperands"; } def u4imm : Operand { let PrintMethod = "printU4ImmOperand"; let ParserMatchClass = PPCU4ImmAsmOperand; let OperandType = "OPERAND_IMMEDIATE"; } def PPCS5ImmAsmOperand : AsmOperandClass { let Name = "S5Imm"; let PredicateMethod = "isS5Imm"; let RenderMethod = "addImmOperands"; } def s5imm : Operand { let PrintMethod = "printS5ImmOperand"; let ParserMatchClass = PPCS5ImmAsmOperand; let DecoderMethod = "decodeSImmOperand<5>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU5ImmAsmOperand : AsmOperandClass { let Name = "U5Imm"; let PredicateMethod = "isU5Imm"; let RenderMethod = "addImmOperands"; } def u5imm : Operand { let PrintMethod = "printU5ImmOperand"; let ParserMatchClass = PPCU5ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<5>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU6ImmAsmOperand : AsmOperandClass { let Name = "U6Imm"; let PredicateMethod = "isU6Imm"; let RenderMethod = "addImmOperands"; } def u6imm : Operand { let PrintMethod = "printU6ImmOperand"; let ParserMatchClass = PPCU6ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<6>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU7ImmAsmOperand : AsmOperandClass { let Name = "U7Imm"; let PredicateMethod = "isU7Imm"; let RenderMethod = "addImmOperands"; } def u7imm : Operand { let PrintMethod = "printU7ImmOperand"; let ParserMatchClass = PPCU7ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<7>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU8ImmAsmOperand : AsmOperandClass { let Name = "U8Imm"; let PredicateMethod = "isU8Imm"; let RenderMethod = "addImmOperands"; } def u8imm : Operand { let PrintMethod = "printU8ImmOperand"; let ParserMatchClass = PPCU8ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<8>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU10ImmAsmOperand : AsmOperandClass { let Name = "U10Imm"; let PredicateMethod = "isU10Imm"; let RenderMethod = "addImmOperands"; } def u10imm : Operand { let PrintMethod = "printU10ImmOperand"; let ParserMatchClass = PPCU10ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<10>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU12ImmAsmOperand : AsmOperandClass { let Name = "U12Imm"; let PredicateMethod = "isU12Imm"; let RenderMethod = "addImmOperands"; } def u12imm : Operand { let PrintMethod = "printU12ImmOperand"; let ParserMatchClass = PPCU12ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<12>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCS16ImmAsmOperand : AsmOperandClass { let Name = "S16Imm"; let PredicateMethod = "isS16Imm"; let RenderMethod = "addS16ImmOperands"; } def s16imm : Operand { let PrintMethod = "printS16ImmOperand"; let EncoderMethod = "getImm16Encoding"; let ParserMatchClass = PPCS16ImmAsmOperand; let DecoderMethod = "decodeSImmOperand<16>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCU16ImmAsmOperand : AsmOperandClass { let Name = "U16Imm"; let PredicateMethod = "isU16Imm"; let RenderMethod = "addU16ImmOperands"; } def u16imm : Operand { let PrintMethod = "printU16ImmOperand"; let EncoderMethod = "getImm16Encoding"; let ParserMatchClass = PPCU16ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<16>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCS17ImmAsmOperand : AsmOperandClass { let Name = "S17Imm"; let PredicateMethod = "isS17Imm"; let RenderMethod = "addS16ImmOperands"; } def s17imm : Operand { // This operand type is used for addis/lis to allow the assembler parser // to accept immediates in the range -65536..65535 for compatibility with // the GNU assembler. The operand is treated as 16-bit otherwise. let PrintMethod = "printS16ImmOperand"; let EncoderMethod = "getImm16Encoding"; let ParserMatchClass = PPCS17ImmAsmOperand; let DecoderMethod = "decodeSImmOperand<16>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCS34ImmAsmOperand : AsmOperandClass { let Name = "S34Imm"; let PredicateMethod = "isS34Imm"; let RenderMethod = "addImmOperands"; } def s34imm : Operand { let PrintMethod = "printS34ImmOperand"; let EncoderMethod = "getImm34EncodingNoPCRel"; let ParserMatchClass = PPCS34ImmAsmOperand; let DecoderMethod = "decodeSImmOperand<34>"; let OperandType = "OPERAND_IMMEDIATE"; } def s34imm_pcrel : Operand { let PrintMethod = "printS34ImmOperand"; let EncoderMethod = "getImm34EncodingPCRel"; let ParserMatchClass = PPCS34ImmAsmOperand; let DecoderMethod = "decodeSImmOperand<34>"; let OperandType = "OPERAND_IMMEDIATE"; } def PPCImmZeroAsmOperand : AsmOperandClass { let Name = "ImmZero"; let PredicateMethod = "isImmZero"; let RenderMethod = "addImmOperands"; } def immZero : Operand { let PrintMethod = "printImmZeroOperand"; let ParserMatchClass = PPCImmZeroAsmOperand; let DecoderMethod = "decodeImmZeroOperand"; let OperandType = "OPERAND_IMMEDIATE"; } def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; def PPCDirectBrAsmOperand : AsmOperandClass { let Name = "DirectBr"; let PredicateMethod = "isDirectBr"; let RenderMethod = "addBranchTargetOperands"; } def directbrtarget : Operand { let PrintMethod = "printBranchOperand"; let EncoderMethod = "getDirectBrEncoding"; let DecoderMethod = "decodeDirectBrTarget"; let ParserMatchClass = PPCDirectBrAsmOperand; let OperandType = "OPERAND_PCREL"; } def absdirectbrtarget : Operand { let PrintMethod = "printAbsBranchOperand"; let EncoderMethod = "getAbsDirectBrEncoding"; let ParserMatchClass = PPCDirectBrAsmOperand; } def PPCCondBrAsmOperand : AsmOperandClass { let Name = "CondBr"; let PredicateMethod = "isCondBr"; let RenderMethod = "addBranchTargetOperands"; } def condbrtarget : Operand { let PrintMethod = "printBranchOperand"; let EncoderMethod = "getCondBrEncoding"; let DecoderMethod = "decodeCondBrTarget"; let ParserMatchClass = PPCCondBrAsmOperand; let OperandType = "OPERAND_PCREL"; } def abscondbrtarget : Operand { let PrintMethod = "printAbsBranchOperand"; let EncoderMethod = "getAbsCondBrEncoding"; let ParserMatchClass = PPCCondBrAsmOperand; } def calltarget : Operand { let PrintMethod = "printBranchOperand"; let EncoderMethod = "getDirectBrEncoding"; let DecoderMethod = "decodeDirectBrTarget"; let ParserMatchClass = PPCDirectBrAsmOperand; let OperandType = "OPERAND_PCREL"; } def abscalltarget : Operand { let PrintMethod = "printAbsBranchOperand"; let EncoderMethod = "getAbsDirectBrEncoding"; let ParserMatchClass = PPCDirectBrAsmOperand; } def PPCCRBitMaskOperand : AsmOperandClass { let Name = "CRBitMask"; let PredicateMethod = "isCRBitMask"; } def crbitm: Operand { let PrintMethod = "printcrbitm"; let EncoderMethod = "get_crbitm_encoding"; let DecoderMethod = "decodeCRBitMOperand"; let ParserMatchClass = PPCCRBitMaskOperand; } // Address operands // A version of ptr_rc which excludes R0 (or X0 in 64-bit mode). def PPCRegGxRCNoR0Operand : AsmOperandClass { let Name = "RegGxRCNoR0"; let PredicateMethod = "isRegNumber"; } def ptr_rc_nor0 : Operand, PointerLikeRegClass<1> { let ParserMatchClass = PPCRegGxRCNoR0Operand; } // New addressing modes with 34 bit immediates. def PPCDispRI34Operand : AsmOperandClass { let Name = "DispRI34"; let PredicateMethod = "isS34Imm"; let RenderMethod = "addImmOperands"; } def dispRI34 : Operand { let ParserMatchClass = PPCDispRI34Operand; } def memri34 : Operand { // memri, imm is a 34-bit value. let PrintMethod = "printMemRegImm34"; let MIOperandInfo = (ops dispRI34:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getMemRI34Encoding"; let DecoderMethod = "decodeMemRI34Operands"; } // memri, imm is a 34-bit value for pc-relative instructions where // base register is set to zero. def memri34_pcrel : Operand { // memri, imm is a 34-bit value. let PrintMethod = "printMemRegImm34PCRel"; let MIOperandInfo = (ops dispRI34:$imm, immZero:$reg); let EncoderMethod = "getMemRI34PCRelEncoding"; let DecoderMethod = "decodeMemRI34PCRelOperands"; } // A version of ptr_rc usable with the asm parser. def PPCRegGxRCOperand : AsmOperandClass { let Name = "RegGxRC"; let PredicateMethod = "isRegNumber"; } def ptr_rc_idx : Operand, PointerLikeRegClass<0> { let ParserMatchClass = PPCRegGxRCOperand; } def PPCDispRIOperand : AsmOperandClass { let Name = "DispRI"; let PredicateMethod = "isS16Imm"; let RenderMethod = "addS16ImmOperands"; } def dispRI : Operand { let ParserMatchClass = PPCDispRIOperand; } def PPCDispRIXOperand : AsmOperandClass { let Name = "DispRIX"; let PredicateMethod = "isS16ImmX4"; let RenderMethod = "addS16ImmOperands"; } def dispRIX : Operand { let ParserMatchClass = PPCDispRIXOperand; } def PPCDispRIHashOperand : AsmOperandClass { let Name = "DispRIHash"; let PredicateMethod = "isHashImmX8"; let RenderMethod = "addImmOperands"; } def dispRIHash : Operand { let ParserMatchClass = PPCDispRIHashOperand; } def PPCDispRIX16Operand : AsmOperandClass { let Name = "DispRIX16"; let PredicateMethod = "isS16ImmX16"; let RenderMethod = "addS16ImmOperands"; } def dispRIX16 : Operand { let ParserMatchClass = PPCDispRIX16Operand; } def PPCDispSPE8Operand : AsmOperandClass { let Name = "DispSPE8"; let PredicateMethod = "isU8ImmX8"; let RenderMethod = "addImmOperands"; } def dispSPE8 : Operand { let ParserMatchClass = PPCDispSPE8Operand; } def PPCDispSPE4Operand : AsmOperandClass { let Name = "DispSPE4"; let PredicateMethod = "isU7ImmX4"; let RenderMethod = "addImmOperands"; } def dispSPE4 : Operand { let ParserMatchClass = PPCDispSPE4Operand; } def PPCDispSPE2Operand : AsmOperandClass { let Name = "DispSPE2"; let PredicateMethod = "isU6ImmX2"; let RenderMethod = "addImmOperands"; } def dispSPE2 : Operand { let ParserMatchClass = PPCDispSPE2Operand; } def memri : Operand { let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispRI:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getMemRIEncoding"; let DecoderMethod = "decodeMemRIOperands"; let OperandType = "OPERAND_MEMORY"; } def memrr : Operand { let PrintMethod = "printMemRegReg"; let MIOperandInfo = (ops ptr_rc_nor0:$ptrreg, ptr_rc_idx:$offreg); let OperandType = "OPERAND_MEMORY"; } def memrix : Operand { // memri where the imm is 4-aligned. let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispRIX:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getMemRIXEncoding"; let DecoderMethod = "decodeMemRIXOperands"; let OperandType = "OPERAND_MEMORY"; } def memrihash : Operand { // memrihash 8-aligned for ROP Protection Instructions. let PrintMethod = "printMemRegImmHash"; let MIOperandInfo = (ops dispRIHash:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getMemRIHashEncoding"; let DecoderMethod = "decodeMemRIHashOperands"; let OperandType = "OPERAND_MEMORY"; } def memrix16 : Operand { // memri, imm is 16-aligned, 12-bit, Inst{16:27} let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispRIX16:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getMemRIX16Encoding"; let DecoderMethod = "decodeMemRIX16Operands"; let OperandType = "OPERAND_MEMORY"; } def spe8dis : Operand { // SPE displacement where the imm is 8-aligned. let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispSPE8:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getSPE8DisEncoding"; let DecoderMethod = "decodeSPE8Operands"; let OperandType = "OPERAND_MEMORY"; } def spe4dis : Operand { // SPE displacement where the imm is 4-aligned. let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispSPE4:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getSPE4DisEncoding"; let DecoderMethod = "decodeSPE4Operands"; let OperandType = "OPERAND_MEMORY"; } def spe2dis : Operand { // SPE displacement where the imm is 2-aligned. let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispSPE2:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getSPE2DisEncoding"; let DecoderMethod = "decodeSPE2Operands"; let OperandType = "OPERAND_MEMORY"; } // A single-register address. This is used with the SjLj // pseudo-instructions which translates to LD/LWZ. These instructions requires // G8RC_NOX0 registers. def memr : Operand { let MIOperandInfo = (ops ptr_rc_nor0:$ptrreg); let OperandType = "OPERAND_MEMORY"; } def PPCTLSRegOperand : AsmOperandClass { let Name = "TLSReg"; let PredicateMethod = "isTLSReg"; let RenderMethod = "addTLSRegOperands"; } def tlsreg32 : Operand { let EncoderMethod = "getTLSRegEncoding"; let ParserMatchClass = PPCTLSRegOperand; } def tlsgd32 : Operand {} def tlscall32 : Operand { let PrintMethod = "printTLSCall"; let MIOperandInfo = (ops calltarget:$func, tlsgd32:$sym); let EncoderMethod = "getTLSCallEncoding"; } // PowerPC Predicate operand. def pred : Operand { let PrintMethod = "printPredicateOperand"; let MIOperandInfo = (ops i32imm:$bibo, crrc:$reg); } // Define PowerPC specific addressing mode. // d-form def iaddr : ComplexPattern; // "stb" // ds-form def iaddrX4 : ComplexPattern; // "std" // dq-form def iaddrX16 : ComplexPattern; // "stxv" // 8LS:d-form def iaddrX34 : ComplexPattern; // "pstxvp" // Below forms are all x-form addressing mode, use three different ones so we // can make a accurate check for x-form instructions in ISEL. // x-form addressing mode whose associated displacement form is D. def xaddr : ComplexPattern; // "stbx" // x-form addressing mode whose associated displacement form is DS. def xaddrX4 : ComplexPattern; // "stdx" // x-form addressing mode whose associated displacement form is DQ. def xaddrX16 : ComplexPattern; // "stxvx" def xoaddr : ComplexPattern; // The address in a single register. This is used with the SjLj // pseudo-instructions. def addr : ComplexPattern; /// This is just the offset part of iaddr, used for preinc. def iaddroff : ComplexPattern; // Load and Store Instruction Selection addressing modes. def DForm : ComplexPattern; def DSForm : ComplexPattern; def DQForm : ComplexPattern; def XForm : ComplexPattern; def ForceXForm : ComplexPattern; def PCRelForm : ComplexPattern; def PDForm : ComplexPattern; //===----------------------------------------------------------------------===// // PowerPC Instruction Predicate Definitions. def In32BitMode : Predicate<"!Subtarget->isPPC64()">; def In64BitMode : Predicate<"Subtarget->isPPC64()">; def IsBookE : Predicate<"Subtarget->isBookE()">; def IsNotBookE : Predicate<"!Subtarget->isBookE()">; def HasOnlyMSYNC : Predicate<"Subtarget->hasOnlyMSYNC()">; def HasSYNC : Predicate<"!Subtarget->hasOnlyMSYNC()">; def IsPPC4xx : Predicate<"Subtarget->isPPC4xx()">; def IsPPC6xx : Predicate<"Subtarget->isPPC6xx()">; def IsE500 : Predicate<"Subtarget->isE500()">; def HasSPE : Predicate<"Subtarget->hasSPE()">; def HasICBT : Predicate<"Subtarget->hasICBT()">; def HasPartwordAtomics : Predicate<"Subtarget->hasPartwordAtomics()">; def HasQuadwordAtomics : Predicate<"Subtarget->hasQuadwordAtomics()">; def NoNaNsFPMath : Predicate<"Subtarget->getTargetMachine().Options.NoNaNsFPMath">; def NaNsFPMath : Predicate<"!Subtarget->getTargetMachine().Options.NoNaNsFPMath">; def HasBPERMD : Predicate<"Subtarget->hasBPERMD()">; def HasExtDiv : Predicate<"Subtarget->hasExtDiv()">; def IsISA2_06 : Predicate<"Subtarget->isISA2_06()">; def IsISA2_07 : Predicate<"Subtarget->isISA2_07()">; def IsISA3_0 : Predicate<"Subtarget->isISA3_0()">; def HasFPU : Predicate<"Subtarget->hasFPU()">; def PCRelativeMemops : Predicate<"Subtarget->hasPCRelativeMemops()">; def IsNotISA3_1 : Predicate<"!Subtarget->isISA3_1()">; // AIX assembler may not be modern enough to support some extended mne. def ModernAs: Predicate<"!Subtarget->isAIXABI() || Subtarget->HasModernAIXAs">, AssemblerPredicate<(any_of (not AIXOS), FeatureModernAIXAs)>; def IsAIX : Predicate<"Subtarget->isAIXABI()">; def NotAIX : Predicate<"!Subtarget->isAIXABI()">; //===----------------------------------------------------------------------===// // PowerPC Multiclass Definitions. multiclass XForm_6r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_6, RecFormRel; let Defs = [CR0] in def _rec : XForm_6, isRecordForm, RecFormRel; } } multiclass XForm_6rc opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XForm_6, RecFormRel; let Defs = [CARRY, CR0] in def _rec : XForm_6, isRecordForm, RecFormRel; } } multiclass XForm_10rc opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XForm_10, RecFormRel; let Defs = [CARRY, CR0] in def _rec : XForm_10, isRecordForm, RecFormRel; } } multiclass XForm_11r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_11, RecFormRel; let Defs = [CR0] in def _rec : XForm_11, isRecordForm, RecFormRel; } } multiclass XOForm_1r opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XOForm_1, RecFormRel; let Defs = [CR0] in def _rec : XOForm_1, isRecordForm, RecFormRel; } } // Multiclass for instructions which have a record overflow form as well // as a record form but no carry (i.e. mulld, mulldo, subf, subfo, etc.) multiclass XOForm_1rx opcode, bits<9> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XOForm_1, RecFormRel; let Defs = [CR0] in def _rec : XOForm_1, isRecordForm, RecFormRel; } let BaseName = !strconcat(asmbase, "O") in { let Defs = [XER] in def O : XOForm_1, RecFormRel; let Defs = [XER, CR0] in def O_rec : XOForm_1, isRecordForm, RecFormRel; } } // Multiclass for instructions for which the non record form is not cracked // and the record form is cracked (i.e. divw, mullw, etc.) multiclass XOForm_1rcr opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XOForm_1, RecFormRel; let Defs = [CR0] in def _rec : XOForm_1, isRecordForm, RecFormRel, PPC970_DGroup_First, PPC970_DGroup_Cracked; } let BaseName = !strconcat(asmbase, "O") in { let Defs = [XER] in def O : XOForm_1, RecFormRel; let Defs = [XER, CR0] in def O_rec : XOForm_1, isRecordForm, RecFormRel; } } multiclass XOForm_1rc opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XOForm_1, RecFormRel; let Defs = [CARRY, CR0] in def _rec : XOForm_1, isRecordForm, RecFormRel; } let BaseName = !strconcat(asmbase, "O") in { let Defs = [CARRY, XER] in def O : XOForm_1, RecFormRel; let Defs = [CARRY, XER, CR0] in def O_rec : XOForm_1, isRecordForm, RecFormRel; } } multiclass XOForm_3r opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XOForm_3, RecFormRel; let Defs = [CR0] in def _rec : XOForm_3, isRecordForm, RecFormRel; } let BaseName = !strconcat(asmbase, "O") in { let Defs = [XER] in def O : XOForm_3, RecFormRel; let Defs = [XER, CR0] in def O_rec : XOForm_3, isRecordForm, RecFormRel; } } multiclass XOForm_3rc opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XOForm_3, RecFormRel; let Defs = [CARRY, CR0] in def _rec : XOForm_3, isRecordForm, RecFormRel; } let BaseName = !strconcat(asmbase, "O") in { let Defs = [CARRY, XER] in def O : XOForm_3, RecFormRel; let Defs = [CARRY, XER, CR0] in def O_rec : XOForm_3, isRecordForm, RecFormRel; } } multiclass MForm_2r opcode, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : MForm_2, RecFormRel; let Defs = [CR0] in def _rec : MForm_2, isRecordForm, RecFormRel; } } multiclass MDForm_1r opcode, bits<3> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : MDForm_1, RecFormRel; let Defs = [CR0] in def _rec : MDForm_1, isRecordForm, RecFormRel; } } multiclass MDSForm_1r opcode, bits<4> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : MDSForm_1, RecFormRel; let Defs = [CR0] in def _rec : MDSForm_1, isRecordForm, RecFormRel; } } multiclass XSForm_1rc opcode, bits<9> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XSForm_1, RecFormRel; let Defs = [CARRY, CR0] in def _rec : XSForm_1, isRecordForm, RecFormRel; } } multiclass XSForm_1r opcode, bits<9> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XSForm_1, RecFormRel; let Defs = [CR0] in def _rec : XSForm_1, isRecordForm, RecFormRel; } } multiclass XForm_26r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_26, RecFormRel; let Defs = [CR1] in def _rec : XForm_26, isRecordForm, RecFormRel; } } multiclass XForm_28r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_28, RecFormRel; let Defs = [CR1] in def _rec : XForm_28, isRecordForm, RecFormRel; } } multiclass AForm_1r opcode, bits<5> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : AForm_1, RecFormRel; let Defs = [CR1] in def _rec : AForm_1, isRecordForm, RecFormRel; } } multiclass AForm_2r opcode, bits<5> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : AForm_2, RecFormRel; let Defs = [CR1] in def _rec : AForm_2, isRecordForm, RecFormRel; } } multiclass AForm_3r opcode, bits<5> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : AForm_3, RecFormRel; let Defs = [CR1] in def _rec : AForm_3, isRecordForm, RecFormRel; } } //===----------------------------------------------------------------------===// // PowerPC Instruction Definitions. // Pseudo instructions: let hasCtrlDep = 1 in { let Defs = [R1], Uses = [R1] in { def ADJCALLSTACKDOWN : PPCEmitTimePseudo<(outs), (ins u16imm:$amt1, u16imm:$amt2), "#ADJCALLSTACKDOWN $amt1 $amt2", [(callseq_start timm:$amt1, timm:$amt2)]>; def ADJCALLSTACKUP : PPCEmitTimePseudo<(outs), (ins u16imm:$amt1, u16imm:$amt2), "#ADJCALLSTACKUP $amt1 $amt2", [(callseq_end timm:$amt1, timm:$amt2)]>; } } // hasCtrlDep let Defs = [R1], Uses = [R1] in def DYNALLOC : PPCEmitTimePseudo<(outs gprc:$result), (ins gprc:$negsize, memri:$fpsi), "#DYNALLOC", [(set i32:$result, (PPCdynalloc i32:$negsize, iaddr:$fpsi))]>; def DYNAREAOFFSET : PPCEmitTimePseudo<(outs i32imm:$result), (ins memri:$fpsi), "#DYNAREAOFFSET", [(set i32:$result, (PPCdynareaoffset iaddr:$fpsi))]>; // Probed alloca to support stack clash protection. let Defs = [R1], Uses = [R1], hasNoSchedulingInfo = 1 in { def PROBED_ALLOCA_32 : PPCCustomInserterPseudo<(outs gprc:$result), (ins gprc:$negsize, memri:$fpsi), "#PROBED_ALLOCA_32", [(set i32:$result, (PPCprobedalloca i32:$negsize, iaddr:$fpsi))]>; def PREPARE_PROBED_ALLOCA_32 : PPCEmitTimePseudo<(outs gprc:$fp, gprc:$actual_negsize), (ins gprc:$negsize, memri:$fpsi), "#PREPARE_PROBED_ALLOCA_32", []>; def PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32 : PPCEmitTimePseudo<(outs gprc:$fp, gprc:$actual_negsize), (ins gprc:$negsize, memri:$fpsi), "#PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32", []>, RegConstraint<"$actual_negsize = $negsize">; def PROBED_STACKALLOC_32 : PPCEmitTimePseudo<(outs gprc:$scratch, gprc:$temp), (ins i64imm:$stacksize), "#PROBED_STACKALLOC_32", []>; } // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after // instruction selection into a branch sequence. let PPC970_Single = 1 in { // Note that SELECT_CC_I4 and SELECT_CC_I8 use the no-r0 register classes // because either operand might become the first operand in an isel, and // that operand cannot be r0. def SELECT_CC_I4 : PPCCustomInserterPseudo<(outs gprc:$dst), (ins crrc:$cond, gprc_nor0:$T, gprc_nor0:$F, i32imm:$BROPC), "#SELECT_CC_I4", []>; def SELECT_CC_I8 : PPCCustomInserterPseudo<(outs g8rc:$dst), (ins crrc:$cond, g8rc_nox0:$T, g8rc_nox0:$F, i32imm:$BROPC), "#SELECT_CC_I8", []>; def SELECT_CC_F4 : PPCCustomInserterPseudo<(outs f4rc:$dst), (ins crrc:$cond, f4rc:$T, f4rc:$F, i32imm:$BROPC), "#SELECT_CC_F4", []>; def SELECT_CC_F8 : PPCCustomInserterPseudo<(outs f8rc:$dst), (ins crrc:$cond, f8rc:$T, f8rc:$F, i32imm:$BROPC), "#SELECT_CC_F8", []>; def SELECT_CC_F16 : PPCCustomInserterPseudo<(outs vrrc:$dst), (ins crrc:$cond, vrrc:$T, vrrc:$F, i32imm:$BROPC), "#SELECT_CC_F16", []>; def SELECT_CC_VRRC: PPCCustomInserterPseudo<(outs vrrc:$dst), (ins crrc:$cond, vrrc:$T, vrrc:$F, i32imm:$BROPC), "#SELECT_CC_VRRC", []>; // SELECT_* pseudo instructions, like SELECT_CC_* but taking condition // register bit directly. def SELECT_I4 : PPCCustomInserterPseudo<(outs gprc:$dst), (ins crbitrc:$cond, gprc_nor0:$T, gprc_nor0:$F), "#SELECT_I4", [(set i32:$dst, (select i1:$cond, i32:$T, i32:$F))]>; def SELECT_I8 : PPCCustomInserterPseudo<(outs g8rc:$dst), (ins crbitrc:$cond, g8rc_nox0:$T, g8rc_nox0:$F), "#SELECT_I8", [(set i64:$dst, (select i1:$cond, i64:$T, i64:$F))]>; let Predicates = [HasFPU] in { def SELECT_F4 : PPCCustomInserterPseudo<(outs f4rc:$dst), (ins crbitrc:$cond, f4rc:$T, f4rc:$F), "#SELECT_F4", [(set f32:$dst, (select i1:$cond, f32:$T, f32:$F))]>; def SELECT_F8 : PPCCustomInserterPseudo<(outs f8rc:$dst), (ins crbitrc:$cond, f8rc:$T, f8rc:$F), "#SELECT_F8", [(set f64:$dst, (select i1:$cond, f64:$T, f64:$F))]>; def SELECT_F16 : PPCCustomInserterPseudo<(outs vrrc:$dst), (ins crbitrc:$cond, vrrc:$T, vrrc:$F), "#SELECT_F16", [(set f128:$dst, (select i1:$cond, f128:$T, f128:$F))]>; } def SELECT_VRRC: PPCCustomInserterPseudo<(outs vrrc:$dst), (ins crbitrc:$cond, vrrc:$T, vrrc:$F), "#SELECT_VRRC", [(set v4i32:$dst, (select i1:$cond, v4i32:$T, v4i32:$F))]>; } // SPILL_CR - Indicate that we're dumping the CR register, so we'll need to // scavenge a register for it. let mayStore = 1 in { def SPILL_CR : PPCEmitTimePseudo<(outs), (ins crrc:$cond, memri:$F), "#SPILL_CR", []>; def SPILL_CRBIT : PPCEmitTimePseudo<(outs), (ins crbitrc:$cond, memri:$F), "#SPILL_CRBIT", []>; } // RESTORE_CR - Indicate that we're restoring the CR register (previously // spilled), so we'll need to scavenge a register for it. let mayLoad = 1 in { def RESTORE_CR : PPCEmitTimePseudo<(outs crrc:$cond), (ins memri:$F), "#RESTORE_CR", []>; def RESTORE_CRBIT : PPCEmitTimePseudo<(outs crbitrc:$cond), (ins memri:$F), "#RESTORE_CRBIT", []>; } let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, hasSideEffects = 0 in { let isPredicable = 1, isReturn = 1, Uses = [LR, RM] in def BLR : XLForm_2_ext<19, 16, 20, 0, 0, (outs), (ins), "blr", IIC_BrB, [(retflag)]>, Requires<[In32BitMode]>; let isBranch = 1, isIndirectBranch = 1, Uses = [CTR] in { let isPredicable = 1 in def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB, []>; let isCodeGenOnly = 1 in { def BCCCTR : XLForm_2_br<19, 528, 0, (outs), (ins pred:$cond), "b${cond:cc}ctr${cond:pm} ${cond:reg}", IIC_BrB, []>; def BCCTR : XLForm_2_br2<19, 528, 12, 0, (outs), (ins crbitrc:$bi), "bcctr 12, $bi, 0", IIC_BrB, []>; def BCCTRn : XLForm_2_br2<19, 528, 4, 0, (outs), (ins crbitrc:$bi), "bcctr 4, $bi, 0", IIC_BrB, []>; } } } // Set the float rounding mode. let Uses = [RM], Defs = [RM] in { def SETRNDi : PPCCustomInserterPseudo<(outs f8rc:$FRT), (ins u2imm:$RND), "#SETRNDi", [(set f64:$FRT, (int_ppc_setrnd (i32 imm:$RND)))]>; def SETRND : PPCCustomInserterPseudo<(outs f8rc:$FRT), (ins gprc:$in), "#SETRND", [(set f64:$FRT, (int_ppc_setrnd gprc :$in))]>; def SETFLM : PPCCustomInserterPseudo<(outs f8rc:$FRT), (ins f8rc:$FLM), "#SETFLM", [(set f64:$FRT, (int_ppc_setflm f8rc:$FLM))]>; } let Defs = [LR] in def MovePCtoLR : PPCEmitTimePseudo<(outs), (ins), "#MovePCtoLR", []>, PPC970_Unit_BRU; let Defs = [LR] in def MoveGOTtoLR : PPCEmitTimePseudo<(outs), (ins), "#MoveGOTtoLR", []>, PPC970_Unit_BRU; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, hasSideEffects = 0 in { let isBarrier = 1 in { let isPredicable = 1 in def B : IForm<18, 0, 0, (outs), (ins directbrtarget:$dst), "b $dst", IIC_BrB, [(br bb:$dst)]>; def BA : IForm<18, 1, 0, (outs), (ins absdirectbrtarget:$dst), "ba $dst", IIC_BrB, []>; } // BCC represents an arbitrary conditional branch on a predicate. // FIXME: should be able to write a pattern for PPCcondbranch, but can't use // a two-value operand where a dag node expects two operands. :( let isCodeGenOnly = 1 in { class BCC_class : BForm<16, 0, 0, (outs), (ins pred:$cond, condbrtarget:$dst), "b${cond:cc}${cond:pm} ${cond:reg}, $dst" /*[(PPCcondbranch crrc:$crS, imm:$opc, bb:$dst)]*/>; def BCC : BCC_class; // The same as BCC, except that it's not a terminator. Used for introducing // control flow dependency without creating new blocks. let isTerminator = 0 in def CTRL_DEP : BCC_class; def BCCA : BForm<16, 1, 0, (outs), (ins pred:$cond, abscondbrtarget:$dst), "b${cond:cc}a${cond:pm} ${cond:reg}, $dst">; let isReturn = 1, Uses = [LR, RM] in def BCCLR : XLForm_2_br<19, 16, 0, (outs), (ins pred:$cond), "b${cond:cc}lr${cond:pm} ${cond:reg}", IIC_BrB, []>; } let isCodeGenOnly = 1 in { let Pattern = [(brcond i1:$bi, bb:$dst)] in def BC : BForm_4<16, 12, 0, 0, (outs), (ins crbitrc:$bi, condbrtarget:$dst), "bc 12, $bi, $dst">; let Pattern = [(brcond (not i1:$bi), bb:$dst)] in def BCn : BForm_4<16, 4, 0, 0, (outs), (ins crbitrc:$bi, condbrtarget:$dst), "bc 4, $bi, $dst">; let isReturn = 1, Uses = [LR, RM] in { def BCLR : XLForm_2_br2<19, 16, 12, 0, (outs), (ins crbitrc:$bi), "bclr 12, $bi, 0", IIC_BrB, []>; def BCLRn : XLForm_2_br2<19, 16, 4, 0, (outs), (ins crbitrc:$bi), "bclr 4, $bi, 0", IIC_BrB, []>; } } let isReturn = 1, Defs = [CTR], Uses = [CTR, LR, RM] in { def BDZLR : XLForm_2_ext<19, 16, 18, 0, 0, (outs), (ins), "bdzlr", IIC_BrB, []>; def BDNZLR : XLForm_2_ext<19, 16, 16, 0, 0, (outs), (ins), "bdnzlr", IIC_BrB, []>; def BDZLRp : XLForm_2_ext<19, 16, 27, 0, 0, (outs), (ins), "bdzlr+", IIC_BrB, []>; def BDNZLRp: XLForm_2_ext<19, 16, 25, 0, 0, (outs), (ins), "bdnzlr+", IIC_BrB, []>; def BDZLRm : XLForm_2_ext<19, 16, 26, 0, 0, (outs), (ins), "bdzlr-", IIC_BrB, []>; def BDNZLRm: XLForm_2_ext<19, 16, 24, 0, 0, (outs), (ins), "bdnzlr-", IIC_BrB, []>; } let Defs = [CTR], Uses = [CTR] in { def BDZ : BForm_1<16, 18, 0, 0, (outs), (ins condbrtarget:$dst), "bdz $dst">; def BDNZ : BForm_1<16, 16, 0, 0, (outs), (ins condbrtarget:$dst), "bdnz $dst">; def BDZA : BForm_1<16, 18, 1, 0, (outs), (ins abscondbrtarget:$dst), "bdza $dst">; def BDNZA : BForm_1<16, 16, 1, 0, (outs), (ins abscondbrtarget:$dst), "bdnza $dst">; def BDZp : BForm_1<16, 27, 0, 0, (outs), (ins condbrtarget:$dst), "bdz+ $dst">; def BDNZp: BForm_1<16, 25, 0, 0, (outs), (ins condbrtarget:$dst), "bdnz+ $dst">; def BDZAp : BForm_1<16, 27, 1, 0, (outs), (ins abscondbrtarget:$dst), "bdza+ $dst">; def BDNZAp: BForm_1<16, 25, 1, 0, (outs), (ins abscondbrtarget:$dst), "bdnza+ $dst">; def BDZm : BForm_1<16, 26, 0, 0, (outs), (ins condbrtarget:$dst), "bdz- $dst">; def BDNZm: BForm_1<16, 24, 0, 0, (outs), (ins condbrtarget:$dst), "bdnz- $dst">; def BDZAm : BForm_1<16, 26, 1, 0, (outs), (ins abscondbrtarget:$dst), "bdza- $dst">; def BDNZAm: BForm_1<16, 24, 1, 0, (outs), (ins abscondbrtarget:$dst), "bdnza- $dst">; } } // The unconditional BCL used by the SjLj setjmp code. let isCall = 1, hasCtrlDep = 1, isCodeGenOnly = 1, PPC970_Unit = 7, hasSideEffects = 0 in { let Defs = [LR], Uses = [RM] in { def BCLalways : BForm_2<16, 20, 31, 0, 1, (outs), (ins condbrtarget:$dst), "bcl 20, 31, $dst">; } } let isCall = 1, PPC970_Unit = 7, Defs = [LR] in { // Convenient aliases for call instructions let Uses = [RM] in { def BL : IForm<18, 0, 1, (outs), (ins calltarget:$func), "bl $func", IIC_BrB, []>; // See Pat patterns below. def BLA : IForm<18, 1, 1, (outs), (ins abscalltarget:$func), "bla $func", IIC_BrB, [(PPCcall (i32 imm:$func))]>; let isCodeGenOnly = 1 in { def BL_TLS : IForm<18, 0, 1, (outs), (ins tlscall32:$func), "bl $func", IIC_BrB, []>; def BCCL : BForm<16, 0, 1, (outs), (ins pred:$cond, condbrtarget:$dst), "b${cond:cc}l${cond:pm} ${cond:reg}, $dst">; def BCCLA : BForm<16, 1, 1, (outs), (ins pred:$cond, abscondbrtarget:$dst), "b${cond:cc}la${cond:pm} ${cond:reg}, $dst">; def BCL : BForm_4<16, 12, 0, 1, (outs), (ins crbitrc:$bi, condbrtarget:$dst), "bcl 12, $bi, $dst">; def BCLn : BForm_4<16, 4, 0, 1, (outs), (ins crbitrc:$bi, condbrtarget:$dst), "bcl 4, $bi, $dst">; def BL_NOP : IForm_and_DForm_4_zero<18, 0, 1, 24, (outs), (ins calltarget:$func), "bl $func\n\tnop", IIC_BrB, []>; } } let Uses = [CTR, RM] in { let isPredicable = 1 in def BCTRL : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins), "bctrl", IIC_BrB, [(PPCbctrl)]>, Requires<[In32BitMode]>; let isCodeGenOnly = 1 in { def BCCCTRL : XLForm_2_br<19, 528, 1, (outs), (ins pred:$cond), "b${cond:cc}ctrl${cond:pm} ${cond:reg}", IIC_BrB, []>; def BCCTRL : XLForm_2_br2<19, 528, 12, 1, (outs), (ins crbitrc:$bi), "bcctrl 12, $bi, 0", IIC_BrB, []>; def BCCTRLn : XLForm_2_br2<19, 528, 4, 1, (outs), (ins crbitrc:$bi), "bcctrl 4, $bi, 0", IIC_BrB, []>; } } let Uses = [LR, RM] in { def BLRL : XLForm_2_ext<19, 16, 20, 0, 1, (outs), (ins), "blrl", IIC_BrB, []>; let isCodeGenOnly = 1 in { def BCCLRL : XLForm_2_br<19, 16, 1, (outs), (ins pred:$cond), "b${cond:cc}lrl${cond:pm} ${cond:reg}", IIC_BrB, []>; def BCLRL : XLForm_2_br2<19, 16, 12, 1, (outs), (ins crbitrc:$bi), "bclrl 12, $bi, 0", IIC_BrB, []>; def BCLRLn : XLForm_2_br2<19, 16, 4, 1, (outs), (ins crbitrc:$bi), "bclrl 4, $bi, 0", IIC_BrB, []>; } } let Defs = [CTR], Uses = [CTR, RM] in { def BDZL : BForm_1<16, 18, 0, 1, (outs), (ins condbrtarget:$dst), "bdzl $dst">; def BDNZL : BForm_1<16, 16, 0, 1, (outs), (ins condbrtarget:$dst), "bdnzl $dst">; def BDZLA : BForm_1<16, 18, 1, 1, (outs), (ins abscondbrtarget:$dst), "bdzla $dst">; def BDNZLA : BForm_1<16, 16, 1, 1, (outs), (ins abscondbrtarget:$dst), "bdnzla $dst">; def BDZLp : BForm_1<16, 27, 0, 1, (outs), (ins condbrtarget:$dst), "bdzl+ $dst">; def BDNZLp: BForm_1<16, 25, 0, 1, (outs), (ins condbrtarget:$dst), "bdnzl+ $dst">; def BDZLAp : BForm_1<16, 27, 1, 1, (outs), (ins abscondbrtarget:$dst), "bdzla+ $dst">; def BDNZLAp: BForm_1<16, 25, 1, 1, (outs), (ins abscondbrtarget:$dst), "bdnzla+ $dst">; def BDZLm : BForm_1<16, 26, 0, 1, (outs), (ins condbrtarget:$dst), "bdzl- $dst">; def BDNZLm: BForm_1<16, 24, 0, 1, (outs), (ins condbrtarget:$dst), "bdnzl- $dst">; def BDZLAm : BForm_1<16, 26, 1, 1, (outs), (ins abscondbrtarget:$dst), "bdzla- $dst">; def BDNZLAm: BForm_1<16, 24, 1, 1, (outs), (ins abscondbrtarget:$dst), "bdnzla- $dst">; } let Defs = [CTR], Uses = [CTR, LR, RM] in { def BDZLRL : XLForm_2_ext<19, 16, 18, 0, 1, (outs), (ins), "bdzlrl", IIC_BrB, []>; def BDNZLRL : XLForm_2_ext<19, 16, 16, 0, 1, (outs), (ins), "bdnzlrl", IIC_BrB, []>; def BDZLRLp : XLForm_2_ext<19, 16, 27, 0, 1, (outs), (ins), "bdzlrl+", IIC_BrB, []>; def BDNZLRLp: XLForm_2_ext<19, 16, 25, 0, 1, (outs), (ins), "bdnzlrl+", IIC_BrB, []>; def BDZLRLm : XLForm_2_ext<19, 16, 26, 0, 1, (outs), (ins), "bdzlrl-", IIC_BrB, []>; def BDNZLRLm: XLForm_2_ext<19, 16, 24, 0, 1, (outs), (ins), "bdnzlrl-", IIC_BrB, []>; } } let isCall = 1, PPC970_Unit = 7, Defs = [LR, RM], isCodeGenOnly = 1 in { // Convenient aliases for call instructions let Uses = [RM] in { def BL_RM : IForm<18, 0, 1, (outs), (ins calltarget:$func), "bl $func", IIC_BrB, []>; // See Pat patterns below. def BLA_RM : IForm<18, 1, 1, (outs), (ins abscalltarget:$func), "bla $func", IIC_BrB, [(PPCcall_rm (i32 imm:$func))]>; def BL_NOP_RM : IForm_and_DForm_4_zero<18, 0, 1, 24, (outs), (ins calltarget:$func), "bl $func\n\tnop", IIC_BrB, []>; } let Uses = [CTR, RM] in { let isPredicable = 1 in def BCTRL_RM : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins), "bctrl", IIC_BrB, [(PPCbctrl_rm)]>, Requires<[In32BitMode]>; } } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNdi :PPCEmitTimePseudo< (outs), (ins calltarget:$dst, i32imm:$offset), "#TC_RETURNd $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNai :PPCEmitTimePseudo<(outs), (ins abscalltarget:$func, i32imm:$offset), "#TC_RETURNa $func $offset", [(PPCtc_return (i32 imm:$func), imm:$offset)]>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNri : PPCEmitTimePseudo<(outs), (ins CTRRC:$dst, i32imm:$offset), "#TC_RETURNr $dst $offset", []>; let isCall = 1, PPC970_Unit = 7, isCodeGenOnly = 1, Defs = [LR, R2], Uses = [CTR, RM], RST = 2 in { def BCTRL_LWZinto_toc: XLForm_2_ext_and_DForm_1<19, 528, 20, 0, 1, 32, (outs), (ins memri:$src), "bctrl\n\tlwz 2, $src", IIC_BrB, [(PPCbctrl_load_toc iaddr:$src)]>, Requires<[In32BitMode]>; } let isCall = 1, PPC970_Unit = 7, isCodeGenOnly = 1, Defs = [LR, R2, RM], Uses = [CTR, RM], RST = 2 in { def BCTRL_LWZinto_toc_RM: XLForm_2_ext_and_DForm_1<19, 528, 20, 0, 1, 32, (outs), (ins memri:$src), "bctrl\n\tlwz 2, $src", IIC_BrB, [(PPCbctrl_load_toc_rm iaddr:$src)]>, Requires<[In32BitMode]>; } let isCodeGenOnly = 1, hasSideEffects = 0 in { let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1, isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR, RM] in def TAILBCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB, []>, Requires<[In32BitMode]>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILB : IForm<18, 0, 0, (outs), (ins calltarget:$dst), "b $dst", IIC_BrB, []>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILBA : IForm<18, 0, 0, (outs), (ins abscalltarget:$dst), "ba $dst", IIC_BrB, []>; } // While longjmp is a control-flow barrier (fallthrough isn't allowed), setjmp // is not. let hasSideEffects = 1 in { let Defs = [CTR] in def EH_SjLj_SetJmp32 : PPCCustomInserterPseudo<(outs gprc:$dst), (ins memr:$buf), "#EH_SJLJ_SETJMP32", [(set i32:$dst, (PPCeh_sjlj_setjmp addr:$buf))]>, Requires<[In32BitMode]>; } let hasSideEffects = 1, isBarrier = 1 in { let isTerminator = 1 in def EH_SjLj_LongJmp32 : PPCCustomInserterPseudo<(outs), (ins memr:$buf), "#EH_SJLJ_LONGJMP32", [(PPCeh_sjlj_longjmp addr:$buf)]>, Requires<[In32BitMode]>; } // This pseudo is never removed from the function, as it serves as // a terminator. Size is set to 0 to prevent the builtin assembler // from emitting it. let isBranch = 1, isTerminator = 1, Size = 0 in { def EH_SjLj_Setup : PPCEmitTimePseudo<(outs), (ins directbrtarget:$dst), "#EH_SjLj_Setup\t$dst", []>; } // System call. let PPC970_Unit = 7 in { def SC : SCForm<17, 1, (outs), (ins i32imm:$lev), "sc $lev", IIC_BrB, [(PPCsc (i32 imm:$lev))]>; } // Branch history rolling buffer. def CLRBHRB : XForm_0<31, 430, (outs), (ins), "clrbhrb", IIC_BrB, [(PPCclrbhrb)]>, PPC970_DGroup_Single; // The $dmy argument used for MFBHRBE is not needed; however, including // it avoids automatic generation of PPCFastISel::fastEmit_i(), which // interferes with necessary special handling (see PPCFastISel.cpp). def MFBHRBE : XFXForm_3p<31, 302, (outs gprc:$rD), (ins u10imm:$imm, u10imm:$dmy), "mfbhrbe $rD, $imm", IIC_BrB, [(set i32:$rD, (PPCmfbhrbe imm:$imm, imm:$dmy))]>, PPC970_DGroup_First; def RFEBB : XLForm_S<19, 146, (outs), (ins u1imm:$imm), "rfebb $imm", IIC_BrB, [(PPCrfebb (i32 imm:$imm))]>, PPC970_DGroup_Single; def : InstAlias<"rfebb", (RFEBB 1)>; // DCB* instructions. def DCBA : DCB_Form<758, 0, (outs), (ins memrr:$dst), "dcba $dst", IIC_LdStDCBF, [(int_ppc_dcba xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBI : DCB_Form<470, 0, (outs), (ins memrr:$dst), "dcbi $dst", IIC_LdStDCBF, [(int_ppc_dcbi xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBST : DCB_Form<54, 0, (outs), (ins memrr:$dst), "dcbst $dst", IIC_LdStDCBF, [(int_ppc_dcbst xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBZ : DCB_Form<1014, 0, (outs), (ins memrr:$dst), "dcbz $dst", IIC_LdStDCBF, [(int_ppc_dcbz xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBZL : DCB_Form<1014, 1, (outs), (ins memrr:$dst), "dcbzl $dst", IIC_LdStDCBF, [(int_ppc_dcbzl xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBF : DCB_Form_hint<86, (outs), (ins u3imm:$TH, memrr:$dst), "dcbf $dst, $TH", IIC_LdStDCBF, []>, PPC970_DGroup_Single; let hasSideEffects = 0, mayLoad = 1, mayStore = 1 in { def DCBT : DCB_Form_hint<278, (outs), (ins u5imm:$TH, memrr:$dst), "dcbt $dst, $TH", IIC_LdStDCBF, []>, PPC970_DGroup_Single; def DCBTST : DCB_Form_hint<246, (outs), (ins u5imm:$TH, memrr:$dst), "dcbtst $dst, $TH", IIC_LdStDCBF, []>, PPC970_DGroup_Single; } // hasSideEffects = 0 def ICBLC : XForm_icbt<31, 230, (outs), (ins u4imm:$CT, memrr:$src), "icblc $CT, $src", IIC_LdStStore>, Requires<[HasICBT]>; def ICBLQ : XForm_icbt<31, 198, (outs), (ins u4imm:$CT, memrr:$src), "icblq. $CT, $src", IIC_LdStLoad>, Requires<[HasICBT]>; def ICBT : XForm_icbt<31, 22, (outs), (ins u4imm:$CT, memrr:$src), "icbt $CT, $src", IIC_LdStLoad>, Requires<[HasICBT]>; def ICBTLS : XForm_icbt<31, 486, (outs), (ins u4imm:$CT, memrr:$src), "icbtls $CT, $src", IIC_LdStLoad>, Requires<[HasICBT]>; def : Pat<(int_ppc_dcbt xoaddr:$dst), (DCBT 0, xoaddr:$dst)>; def : Pat<(int_ppc_dcbtst xoaddr:$dst), (DCBTST 0, xoaddr:$dst)>; def : Pat<(int_ppc_dcbf xoaddr:$dst), (DCBF 0, xoaddr:$dst)>; def : Pat<(int_ppc_icbt xoaddr:$dst), (ICBT 0, xoaddr:$dst)>; def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 1)), (DCBT 0, xoaddr:$dst)>; // data prefetch for loads def : Pat<(prefetch xoaddr:$dst, (i32 1), imm, (i32 1)), (DCBTST 0, xoaddr:$dst)>; // data prefetch for stores def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 0)), (ICBT 0, xoaddr:$dst)>, Requires<[HasICBT]>; // inst prefetch (for read) def : Pat<(int_ppc_dcbt_with_hint xoaddr:$dst, i32:$TH), (DCBT i32:$TH, xoaddr:$dst)>; def : Pat<(int_ppc_dcbtst_with_hint xoaddr:$dst, i32:$TH), (DCBTST i32:$TH, xoaddr:$dst)>; // Atomic operations // FIXME: some of these might be used with constant operands. This will result // in constant materialization instructions that may be redundant. We currently // clean this up in PPCMIPeephole with calls to // PPCInstrInfo::convertToImmediateForm() but we should probably not emit them // in the first place. let Defs = [CR0] in { def ATOMIC_LOAD_ADD_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I8", [(set i32:$dst, (atomic_load_add_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_SUB_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I8", [(set i32:$dst, (atomic_load_sub_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_AND_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I8", [(set i32:$dst, (atomic_load_and_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_OR_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I8", [(set i32:$dst, (atomic_load_or_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_XOR_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "ATOMIC_LOAD_XOR_I8", [(set i32:$dst, (atomic_load_xor_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_NAND_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I8", [(set i32:$dst, (atomic_load_nand_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_MIN_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_MIN_I8", [(set i32:$dst, (atomic_load_min_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_MAX_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_MAX_I8", [(set i32:$dst, (atomic_load_max_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_UMIN_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_UMIN_I8", [(set i32:$dst, (atomic_load_umin_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_UMAX_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_UMAX_I8", [(set i32:$dst, (atomic_load_umax_8 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_ADD_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I16", [(set i32:$dst, (atomic_load_add_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_SUB_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I16", [(set i32:$dst, (atomic_load_sub_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_AND_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I16", [(set i32:$dst, (atomic_load_and_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_OR_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I16", [(set i32:$dst, (atomic_load_or_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_XOR_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_XOR_I16", [(set i32:$dst, (atomic_load_xor_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_NAND_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I16", [(set i32:$dst, (atomic_load_nand_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_MIN_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_MIN_I16", [(set i32:$dst, (atomic_load_min_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_MAX_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_MAX_I16", [(set i32:$dst, (atomic_load_max_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_UMIN_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_UMIN_I16", [(set i32:$dst, (atomic_load_umin_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_UMAX_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_UMAX_I16", [(set i32:$dst, (atomic_load_umax_16 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_ADD_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I32", [(set i32:$dst, (atomic_load_add_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_SUB_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I32", [(set i32:$dst, (atomic_load_sub_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_AND_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I32", [(set i32:$dst, (atomic_load_and_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_OR_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I32", [(set i32:$dst, (atomic_load_or_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_XOR_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_XOR_I32", [(set i32:$dst, (atomic_load_xor_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_NAND_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I32", [(set i32:$dst, (atomic_load_nand_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_MIN_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_MIN_I32", [(set i32:$dst, (atomic_load_min_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_MAX_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_MAX_I32", [(set i32:$dst, (atomic_load_max_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_UMIN_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_UMIN_I32", [(set i32:$dst, (atomic_load_umin_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_LOAD_UMAX_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_UMAX_I32", [(set i32:$dst, (atomic_load_umax_32 ForceXForm:$ptr, i32:$incr))]>; def ATOMIC_CMP_SWAP_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I8", [(set i32:$dst, (atomic_cmp_swap_8 ForceXForm:$ptr, i32:$old, i32:$new))]>; def ATOMIC_CMP_SWAP_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I16 $dst $ptr $old $new", [(set i32:$dst, (atomic_cmp_swap_16 ForceXForm:$ptr, i32:$old, i32:$new))]>; def ATOMIC_CMP_SWAP_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I32 $dst $ptr $old $new", [(set i32:$dst, (atomic_cmp_swap_32 ForceXForm:$ptr, i32:$old, i32:$new))]>; def ATOMIC_SWAP_I8 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_i8", [(set i32:$dst, (atomic_swap_8 ForceXForm:$ptr, i32:$new))]>; def ATOMIC_SWAP_I16 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_I16", [(set i32:$dst, (atomic_swap_16 ForceXForm:$ptr, i32:$new))]>; def ATOMIC_SWAP_I32 : PPCCustomInserterPseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_I32", [(set i32:$dst, (atomic_swap_32 ForceXForm:$ptr, i32:$new))]>; } def : Pat<(PPCatomicCmpSwap_8 ForceXForm:$ptr, i32:$old, i32:$new), (ATOMIC_CMP_SWAP_I8 ForceXForm:$ptr, i32:$old, i32:$new)>; def : Pat<(PPCatomicCmpSwap_16 ForceXForm:$ptr, i32:$old, i32:$new), (ATOMIC_CMP_SWAP_I16 ForceXForm:$ptr, i32:$old, i32:$new)>; // Instructions to support atomic operations let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in { def LBARX : XForm_1_memOp<31, 52, (outs gprc:$rD), (ins memrr:$src), "lbarx $rD, $src", IIC_LdStLWARX, []>, Requires<[HasPartwordAtomics]>; def LHARX : XForm_1_memOp<31, 116, (outs gprc:$rD), (ins memrr:$src), "lharx $rD, $src", IIC_LdStLWARX, []>, Requires<[HasPartwordAtomics]>; def LWARX : XForm_1_memOp<31, 20, (outs gprc:$rD), (ins memrr:$src), "lwarx $rD, $src", IIC_LdStLWARX, []>; // Instructions to support lock versions of atomics // (EH=1 - see Power ISA 2.07 Book II 4.4.2) def LBARXL : XForm_1_memOp<31, 52, (outs gprc:$rD), (ins memrr:$src), "lbarx $rD, $src, 1", IIC_LdStLWARX, []>, isRecordForm, Requires<[HasPartwordAtomics]>; def LHARXL : XForm_1_memOp<31, 116, (outs gprc:$rD), (ins memrr:$src), "lharx $rD, $src, 1", IIC_LdStLWARX, []>, isRecordForm, Requires<[HasPartwordAtomics]>; def LWARXL : XForm_1_memOp<31, 20, (outs gprc:$rD), (ins memrr:$src), "lwarx $rD, $src, 1", IIC_LdStLWARX, []>, isRecordForm; // The atomic instructions use the destination register as well as the next one // or two registers in order (modulo 31). let hasExtraSrcRegAllocReq = 1 in def LWAT : X_RD5_RS5_IM5<31, 582, (outs gprc:$rD), (ins gprc:$rA, u5imm:$FC), "lwat $rD, $rA, $FC", IIC_LdStLoad>, Requires<[IsISA3_0]>; } let Defs = [CR0], mayStore = 1, mayLoad = 0, hasSideEffects = 0 in { def STBCX : XForm_1_memOp<31, 694, (outs), (ins gprc:$rS, memrr:$dst), "stbcx. $rS, $dst", IIC_LdStSTWCX, []>, isRecordForm, Requires<[HasPartwordAtomics]>; def STHCX : XForm_1_memOp<31, 726, (outs), (ins gprc:$rS, memrr:$dst), "sthcx. $rS, $dst", IIC_LdStSTWCX, []>, isRecordForm, Requires<[HasPartwordAtomics]>; def STWCX : XForm_1_memOp<31, 150, (outs), (ins gprc:$rS, memrr:$dst), "stwcx. $rS, $dst", IIC_LdStSTWCX, []>, isRecordForm; } let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in def STWAT : X_RD5_RS5_IM5<31, 710, (outs), (ins gprc:$rS, gprc:$rA, u5imm:$FC), "stwat $rS, $rA, $FC", IIC_LdStStore>, Requires<[IsISA3_0]>; let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in def TRAP : XForm_24<31, 4, (outs), (ins), "trap", IIC_LdStLoad, [(trap)]>; def TWI : DForm_base<3, (outs), (ins u5imm:$to, gprc:$rA, s16imm:$imm), "twi $to, $rA, $imm", IIC_IntTrapW, []>; def TW : XForm_1<31, 4, (outs), (ins u5imm:$to, gprc:$rA, gprc:$rB), "tw $to, $rA, $rB", IIC_IntTrapW, []>; def TDI : DForm_base<2, (outs), (ins u5imm:$to, g8rc:$rA, s16imm:$imm), "tdi $to, $rA, $imm", IIC_IntTrapD, []>; def TD : XForm_1<31, 68, (outs), (ins u5imm:$to, g8rc:$rA, g8rc:$rB), "td $to, $rA, $rB", IIC_IntTrapD, []>; def POPCNTB : XForm_11<31, 122, (outs gprc:$rA), (ins gprc:$rS), "popcntb $rA, $rS", IIC_IntGeneral, [(set i32:$rA, (int_ppc_popcntb i32:$rS))]>; //===----------------------------------------------------------------------===// // PPC32 Load Instructions. // // Unindexed (r+i) Loads. let PPC970_Unit = 2 in { def LBZ : DForm_1<34, (outs gprc:$rD), (ins memri:$src), "lbz $rD, $src", IIC_LdStLoad, [(set i32:$rD, (zextloadi8 DForm:$src))]>; def LHA : DForm_1<42, (outs gprc:$rD), (ins memri:$src), "lha $rD, $src", IIC_LdStLHA, [(set i32:$rD, (sextloadi16 DForm:$src))]>, PPC970_DGroup_Cracked; def LHZ : DForm_1<40, (outs gprc:$rD), (ins memri:$src), "lhz $rD, $src", IIC_LdStLoad, [(set i32:$rD, (zextloadi16 DForm:$src))]>; def LWZ : DForm_1<32, (outs gprc:$rD), (ins memri:$src), "lwz $rD, $src", IIC_LdStLoad, [(set i32:$rD, (load DForm:$src))]>; let Predicates = [HasFPU] in { def LFS : DForm_1<48, (outs f4rc:$rD), (ins memri:$src), "lfs $rD, $src", IIC_LdStLFD, [(set f32:$rD, (load DForm:$src))]>; def LFD : DForm_1<50, (outs f8rc:$rD), (ins memri:$src), "lfd $rD, $src", IIC_LdStLFD, [(set f64:$rD, (load DForm:$src))]>; } // Unindexed (r+i) Loads with Update (preinc). let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in { def LBZU : DForm_1<35, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lbzu $rD, $addr", IIC_LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LHAU : DForm_1<43, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lhau $rD, $addr", IIC_LdStLHAU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LHZU : DForm_1<41, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lhzu $rD, $addr", IIC_LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LWZU : DForm_1<33, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lwzu $rD, $addr", IIC_LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; let Predicates = [HasFPU] in { def LFSU : DForm_1<49, (outs f4rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lfsu $rD, $addr", IIC_LdStLFDU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LFDU : DForm_1<51, (outs f8rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lfdu $rD, $addr", IIC_LdStLFDU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; } // Indexed (r+r) Loads with Update (preinc). def LBZUX : XForm_1_memOp<31, 119, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lbzux $rD, $addr", IIC_LdStLoadUpdX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LHAUX : XForm_1_memOp<31, 375, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lhaux $rD, $addr", IIC_LdStLHAUX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LHZUX : XForm_1_memOp<31, 311, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lhzux $rD, $addr", IIC_LdStLoadUpdX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LWZUX : XForm_1_memOp<31, 55, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lwzux $rD, $addr", IIC_LdStLoadUpdX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; let Predicates = [HasFPU] in { def LFSUX : XForm_1_memOp<31, 567, (outs f4rc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lfsux $rD, $addr", IIC_LdStLFDUX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LFDUX : XForm_1_memOp<31, 631, (outs f8rc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lfdux $rD, $addr", IIC_LdStLFDUX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; } } } // Indexed (r+r) Loads. // let PPC970_Unit = 2, mayLoad = 1, mayStore = 0 in { def LBZX : XForm_1_memOp<31, 87, (outs gprc:$rD), (ins memrr:$src), "lbzx $rD, $src", IIC_LdStLoad, [(set i32:$rD, (zextloadi8 XForm:$src))]>; def LHAX : XForm_1_memOp<31, 343, (outs gprc:$rD), (ins memrr:$src), "lhax $rD, $src", IIC_LdStLHA, [(set i32:$rD, (sextloadi16 XForm:$src))]>, PPC970_DGroup_Cracked; def LHZX : XForm_1_memOp<31, 279, (outs gprc:$rD), (ins memrr:$src), "lhzx $rD, $src", IIC_LdStLoad, [(set i32:$rD, (zextloadi16 XForm:$src))]>; def LWZX : XForm_1_memOp<31, 23, (outs gprc:$rD), (ins memrr:$src), "lwzx $rD, $src", IIC_LdStLoad, [(set i32:$rD, (load XForm:$src))]>; def LHBRX : XForm_1_memOp<31, 790, (outs gprc:$rD), (ins memrr:$src), "lhbrx $rD, $src", IIC_LdStLoad, [(set i32:$rD, (PPClbrx ForceXForm:$src, i16))]>; def LWBRX : XForm_1_memOp<31, 534, (outs gprc:$rD), (ins memrr:$src), "lwbrx $rD, $src", IIC_LdStLoad, [(set i32:$rD, (PPClbrx ForceXForm:$src, i32))]>; let Predicates = [HasFPU] in { def LFSX : XForm_25_memOp<31, 535, (outs f4rc:$frD), (ins memrr:$src), "lfsx $frD, $src", IIC_LdStLFD, [(set f32:$frD, (load XForm:$src))]>; def LFDX : XForm_25_memOp<31, 599, (outs f8rc:$frD), (ins memrr:$src), "lfdx $frD, $src", IIC_LdStLFD, [(set f64:$frD, (load XForm:$src))]>; def LFIWAX : XForm_25_memOp<31, 855, (outs f8rc:$frD), (ins memrr:$src), "lfiwax $frD, $src", IIC_LdStLFD, [(set f64:$frD, (PPClfiwax ForceXForm:$src))]>; def LFIWZX : XForm_25_memOp<31, 887, (outs f8rc:$frD), (ins memrr:$src), "lfiwzx $frD, $src", IIC_LdStLFD, [(set f64:$frD, (PPClfiwzx ForceXForm:$src))]>; } } // Load Multiple let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in def LMW : DForm_1<46, (outs gprc:$rD), (ins memri:$src), "lmw $rD, $src", IIC_LdStLMW, []>; //===----------------------------------------------------------------------===// // PPC32 Store Instructions. // // Unindexed (r+i) Stores. let PPC970_Unit = 2, mayStore = 1, mayLoad = 0 in { def STB : DForm_1<38, (outs), (ins gprc:$rS, memri:$dst), "stb $rS, $dst", IIC_LdStStore, [(truncstorei8 i32:$rS, DForm:$dst)]>; def STH : DForm_1<44, (outs), (ins gprc:$rS, memri:$dst), "sth $rS, $dst", IIC_LdStStore, [(truncstorei16 i32:$rS, DForm:$dst)]>; def STW : DForm_1<36, (outs), (ins gprc:$rS, memri:$dst), "stw $rS, $dst", IIC_LdStStore, [(store i32:$rS, DForm:$dst)]>; let Predicates = [HasFPU] in { def STFS : DForm_1<52, (outs), (ins f4rc:$rS, memri:$dst), "stfs $rS, $dst", IIC_LdStSTFD, [(store f32:$rS, DForm:$dst)]>; def STFD : DForm_1<54, (outs), (ins f8rc:$rS, memri:$dst), "stfd $rS, $dst", IIC_LdStSTFD, [(store f64:$rS, DForm:$dst)]>; } } // Unindexed (r+i) Stores with Update (preinc). let PPC970_Unit = 2, mayStore = 1, mayLoad = 0 in { def STBU : DForm_1<39, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst), "stbu $rS, $dst", IIC_LdStSTU, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; def STHU : DForm_1<45, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst), "sthu $rS, $dst", IIC_LdStSTU, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; def STWU : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst), "stwu $rS, $dst", IIC_LdStSTU, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; let Predicates = [HasFPU] in { def STFSU : DForm_1<53, (outs ptr_rc_nor0:$ea_res), (ins f4rc:$rS, memri:$dst), "stfsu $rS, $dst", IIC_LdStSTFDU, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; def STFDU : DForm_1<55, (outs ptr_rc_nor0:$ea_res), (ins f8rc:$rS, memri:$dst), "stfdu $rS, $dst", IIC_LdStSTFDU, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; } } // Patterns to match the pre-inc stores. We can't put the patterns on // the instruction definitions directly as ISel wants the address base // and offset to be separate operands, not a single complex operand. def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STBU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STHU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STWU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STFSU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STFDU $rS, iaddroff:$ptroff, $ptrreg)>; // Indexed (r+r) Stores. let PPC970_Unit = 2 in { def STBX : XForm_8_memOp<31, 215, (outs), (ins gprc:$rS, memrr:$dst), "stbx $rS, $dst", IIC_LdStStore, [(truncstorei8 i32:$rS, XForm:$dst)]>, PPC970_DGroup_Cracked; def STHX : XForm_8_memOp<31, 407, (outs), (ins gprc:$rS, memrr:$dst), "sthx $rS, $dst", IIC_LdStStore, [(truncstorei16 i32:$rS, XForm:$dst)]>, PPC970_DGroup_Cracked; def STWX : XForm_8_memOp<31, 151, (outs), (ins gprc:$rS, memrr:$dst), "stwx $rS, $dst", IIC_LdStStore, [(store i32:$rS, XForm:$dst)]>, PPC970_DGroup_Cracked; def STHBRX: XForm_8_memOp<31, 918, (outs), (ins gprc:$rS, memrr:$dst), "sthbrx $rS, $dst", IIC_LdStStore, [(PPCstbrx i32:$rS, ForceXForm:$dst, i16)]>, PPC970_DGroup_Cracked; def STWBRX: XForm_8_memOp<31, 662, (outs), (ins gprc:$rS, memrr:$dst), "stwbrx $rS, $dst", IIC_LdStStore, [(PPCstbrx i32:$rS, ForceXForm:$dst, i32)]>, PPC970_DGroup_Cracked; let Predicates = [HasFPU] in { def STFIWX: XForm_28_memOp<31, 983, (outs), (ins f8rc:$frS, memrr:$dst), "stfiwx $frS, $dst", IIC_LdStSTFD, [(PPCstfiwx f64:$frS, ForceXForm:$dst)]>; def STFSX : XForm_28_memOp<31, 663, (outs), (ins f4rc:$frS, memrr:$dst), "stfsx $frS, $dst", IIC_LdStSTFD, [(store f32:$frS, XForm:$dst)]>; def STFDX : XForm_28_memOp<31, 727, (outs), (ins f8rc:$frS, memrr:$dst), "stfdx $frS, $dst", IIC_LdStSTFD, [(store f64:$frS, XForm:$dst)]>; } } // Indexed (r+r) Stores with Update (preinc). let PPC970_Unit = 2, mayStore = 1, mayLoad = 0 in { def STBUX : XForm_8_memOp<31, 247, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst), "stbux $rS, $dst", IIC_LdStSTUX, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STHUX : XForm_8_memOp<31, 439, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst), "sthux $rS, $dst", IIC_LdStSTUX, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STWUX : XForm_8_memOp<31, 183, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst), "stwux $rS, $dst", IIC_LdStSTUX, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; let Predicates = [HasFPU] in { def STFSUX: XForm_8_memOp<31, 695, (outs ptr_rc_nor0:$ea_res), (ins f4rc:$rS, memrr:$dst), "stfsux $rS, $dst", IIC_LdStSTFDU, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STFDUX: XForm_8_memOp<31, 759, (outs ptr_rc_nor0:$ea_res), (ins f8rc:$rS, memrr:$dst), "stfdux $rS, $dst", IIC_LdStSTFDU, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; } } // Patterns to match the pre-inc stores. We can't put the patterns on // the instruction definitions directly as ISel wants the address base // and offset to be separate operands, not a single complex operand. def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STBUX $rS, $ptrreg, $ptroff)>; def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STHUX $rS, $ptrreg, $ptroff)>; def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STWUX $rS, $ptrreg, $ptroff)>; let Predicates = [HasFPU] in { def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STFSUX $rS, $ptrreg, $ptroff)>; def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STFDUX $rS, $ptrreg, $ptroff)>; } // Store Multiple let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in def STMW : DForm_1<47, (outs), (ins gprc:$rS, memri:$dst), "stmw $rS, $dst", IIC_LdStLMW, []>; def SYNC : XForm_24_sync<31, 598, (outs), (ins u2imm:$L), "sync $L", IIC_LdStSync, []>; let isCodeGenOnly = 1 in { def MSYNC : XForm_24_sync<31, 598, (outs), (ins), "msync", IIC_LdStSync, []> { let L = 0; } } // We used to have EIEIO as value but E[0-9A-Z] is a reserved name def EnforceIEIO : XForm_24_eieio<31, 854, (outs), (ins), "eieio", IIC_LdStLoad, []>; def PseudoEIEIO : PPCEmitTimePseudo<(outs), (ins), "#PPCEIEIO", [(int_ppc_eieio)]>; def : Pat<(int_ppc_sync), (SYNC 0)>, Requires<[HasSYNC]>; def : Pat<(int_ppc_iospace_sync), (SYNC 0)>, Requires<[HasSYNC]>; def : Pat<(int_ppc_lwsync), (SYNC 1)>, Requires<[HasSYNC]>; def : Pat<(int_ppc_iospace_lwsync), (SYNC 1)>, Requires<[HasSYNC]>; def : Pat<(int_ppc_sync), (MSYNC)>, Requires<[HasOnlyMSYNC]>; def : Pat<(int_ppc_iospace_sync), (MSYNC)>, Requires<[HasOnlyMSYNC]>; def : Pat<(int_ppc_lwsync), (MSYNC)>, Requires<[HasOnlyMSYNC]>; def : Pat<(int_ppc_iospace_lwsync), (MSYNC)>, Requires<[HasOnlyMSYNC]>; def : Pat<(int_ppc_eieio), (PseudoEIEIO)>; def : Pat<(int_ppc_iospace_eieio), (PseudoEIEIO)>; //===----------------------------------------------------------------------===// // PPC32 Arithmetic Instructions. // let PPC970_Unit = 1 in { // FXU Operations. def ADDI : DForm_2<14, (outs gprc:$rD), (ins gprc_nor0:$rA, s16imm:$imm), "addi $rD, $rA, $imm", IIC_IntSimple, [(set i32:$rD, (add i32:$rA, imm32SExt16:$imm))]>; let BaseName = "addic" in { let Defs = [CARRY] in def ADDIC : DForm_2<12, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "addic $rD, $rA, $imm", IIC_IntGeneral, [(set i32:$rD, (addc i32:$rA, imm32SExt16:$imm))]>, RecFormRel, PPC970_DGroup_Cracked; let Defs = [CARRY, CR0] in def ADDIC_rec : DForm_2<13, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "addic. $rD, $rA, $imm", IIC_IntGeneral, []>, isRecordForm, RecFormRel; } def ADDIS : DForm_2<15, (outs gprc:$rD), (ins gprc_nor0:$rA, s17imm:$imm), "addis $rD, $rA, $imm", IIC_IntSimple, [(set i32:$rD, (add i32:$rA, imm16ShiftedSExt:$imm))]>; let isCodeGenOnly = 1 in def LA : DForm_2<14, (outs gprc:$rD), (ins gprc_nor0:$rA, s16imm:$sym), "la $rD, $sym($rA)", IIC_IntGeneral, [(set i32:$rD, (add i32:$rA, (PPClo tglobaladdr:$sym, 0)))]>; def MULLI : DForm_2< 7, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "mulli $rD, $rA, $imm", IIC_IntMulLI, [(set i32:$rD, (mul i32:$rA, imm32SExt16:$imm))]>; let Defs = [CARRY] in def SUBFIC : DForm_2< 8, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "subfic $rD, $rA, $imm", IIC_IntGeneral, [(set i32:$rD, (subc imm32SExt16:$imm, i32:$rA))]>; let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { def LI : DForm_2_r0<14, (outs gprc:$rD), (ins s16imm:$imm), "li $rD, $imm", IIC_IntSimple, [(set i32:$rD, imm32SExt16:$imm)]>; def LIS : DForm_2_r0<15, (outs gprc:$rD), (ins s17imm:$imm), "lis $rD, $imm", IIC_IntSimple, [(set i32:$rD, imm16ShiftedSExt:$imm)]>; } } def : InstAlias<"li $rD, $imm", (ADDI gprc:$rD, ZERO, s16imm:$imm)>; def : InstAlias<"lis $rD, $imm", (ADDIS gprc:$rD, ZERO, s17imm:$imm)>; let PPC970_Unit = 1 in { // FXU Operations. let Defs = [CR0] in { def ANDI_rec : DForm_4<28, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "andi. $dst, $src1, $src2", IIC_IntGeneral, [(set i32:$dst, (and i32:$src1, immZExt16:$src2))]>, isRecordForm; def ANDIS_rec : DForm_4<29, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "andis. $dst, $src1, $src2", IIC_IntGeneral, [(set i32:$dst, (and i32:$src1, imm16ShiftedZExt:$src2))]>, isRecordForm; } def ORI : DForm_4<24, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "ori $dst, $src1, $src2", IIC_IntSimple, [(set i32:$dst, (or i32:$src1, immZExt16:$src2))]>; def ORIS : DForm_4<25, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "oris $dst, $src1, $src2", IIC_IntSimple, [(set i32:$dst, (or i32:$src1, imm16ShiftedZExt:$src2))]>; def XORI : DForm_4<26, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "xori $dst, $src1, $src2", IIC_IntSimple, [(set i32:$dst, (xor i32:$src1, immZExt16:$src2))]>; def XORIS : DForm_4<27, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "xoris $dst, $src1, $src2", IIC_IntSimple, [(set i32:$dst, (xor i32:$src1, imm16ShiftedZExt:$src2))]>; def NOP : DForm_4_zero<24, (outs), (ins), "nop", IIC_IntSimple, []>; let isCodeGenOnly = 1 in { // The POWER6 and POWER7 have special group-terminating nops. def NOP_GT_PWR6 : DForm_4_fixedreg_zero<24, 1, (outs), (ins), "ori 1, 1, 0", IIC_IntSimple, []>; def NOP_GT_PWR7 : DForm_4_fixedreg_zero<24, 2, (outs), (ins), "ori 2, 2, 0", IIC_IntSimple, []>; } let isCompare = 1, hasSideEffects = 0 in { def CMPWI : DForm_5_ext<11, (outs crrc:$crD), (ins gprc:$rA, s16imm:$imm), "cmpwi $crD, $rA, $imm", IIC_IntCompare>; def CMPLWI : DForm_6_ext<10, (outs crrc:$dst), (ins gprc:$src1, u16imm:$src2), "cmplwi $dst, $src1, $src2", IIC_IntCompare>; def CMPRB : X_BF3_L1_RS5_RS5<31, 192, (outs crrc:$BF), (ins u1imm:$L, gprc:$rA, gprc:$rB), "cmprb $BF, $L, $rA, $rB", IIC_IntCompare, []>, Requires<[IsISA3_0]>; } } let PPC970_Unit = 1, hasSideEffects = 0 in { // FXU Operations. let isCommutable = 1 in { defm NAND : XForm_6r<31, 476, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "nand", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (not (and i32:$rS, i32:$rB)))]>; defm AND : XForm_6r<31, 28, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "and", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (and i32:$rS, i32:$rB))]>; } // isCommutable defm ANDC : XForm_6r<31, 60, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "andc", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (and i32:$rS, (not i32:$rB)))]>; let isCommutable = 1 in { defm OR : XForm_6r<31, 444, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "or", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (or i32:$rS, i32:$rB))]>; defm NOR : XForm_6r<31, 124, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "nor", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (not (or i32:$rS, i32:$rB)))]>; } // isCommutable defm ORC : XForm_6r<31, 412, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "orc", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (or i32:$rS, (not i32:$rB)))]>; let isCommutable = 1 in { defm EQV : XForm_6r<31, 284, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "eqv", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (not (xor i32:$rS, i32:$rB)))]>; defm XOR : XForm_6r<31, 316, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "xor", "$rA, $rS, $rB", IIC_IntSimple, [(set i32:$rA, (xor i32:$rS, i32:$rB))]>; } // isCommutable defm SLW : XForm_6r<31, 24, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "slw", "$rA, $rS, $rB", IIC_IntGeneral, [(set i32:$rA, (PPCshl i32:$rS, i32:$rB))]>; defm SRW : XForm_6r<31, 536, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "srw", "$rA, $rS, $rB", IIC_IntGeneral, [(set i32:$rA, (PPCsrl i32:$rS, i32:$rB))]>; defm SRAW : XForm_6rc<31, 792, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "sraw", "$rA, $rS, $rB", IIC_IntShift, [(set i32:$rA, (PPCsra i32:$rS, i32:$rB))]>; } def : InstAlias<"mr $rA, $rB", (OR gprc:$rA, gprc:$rB, gprc:$rB)>; def : InstAlias<"mr. $rA, $rB", (OR_rec gprc:$rA, gprc:$rB, gprc:$rB)>; def : InstAlias<"not $rA, $rS", (NOR gprc:$rA, gprc:$rS, gprc:$rS)>; def : InstAlias<"not. $rA, $rS", (NOR_rec gprc:$rA, gprc:$rS, gprc:$rS)>; def : InstAlias<"nop", (ORI R0, R0, 0)>; let PPC970_Unit = 1 in { // FXU Operations. let hasSideEffects = 0 in { defm SRAWI : XForm_10rc<31, 824, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH), "srawi", "$rA, $rS, $SH", IIC_IntShift, [(set i32:$rA, (sra i32:$rS, (i32 imm:$SH)))]>; defm CNTLZW : XForm_11r<31, 26, (outs gprc:$rA), (ins gprc:$rS), "cntlzw", "$rA, $rS", IIC_IntGeneral, [(set i32:$rA, (ctlz i32:$rS))]>; defm CNTTZW : XForm_11r<31, 538, (outs gprc:$rA), (ins gprc:$rS), "cnttzw", "$rA, $rS", IIC_IntGeneral, [(set i32:$rA, (cttz i32:$rS))]>, Requires<[IsISA3_0]>; defm EXTSB : XForm_11r<31, 954, (outs gprc:$rA), (ins gprc:$rS), "extsb", "$rA, $rS", IIC_IntSimple, [(set i32:$rA, (sext_inreg i32:$rS, i8))]>; defm EXTSH : XForm_11r<31, 922, (outs gprc:$rA), (ins gprc:$rS), "extsh", "$rA, $rS", IIC_IntSimple, [(set i32:$rA, (sext_inreg i32:$rS, i16))]>; let isCommutable = 1 in def CMPB : XForm_6<31, 508, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "cmpb $rA, $rS, $rB", IIC_IntGeneral, [(set i32:$rA, (PPCcmpb i32:$rS, i32:$rB))]>; } let isCompare = 1, hasSideEffects = 0 in { def CMPW : XForm_16_ext<31, 0, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB), "cmpw $crD, $rA, $rB", IIC_IntCompare>; def CMPLW : XForm_16_ext<31, 32, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB), "cmplw $crD, $rA, $rB", IIC_IntCompare>; } } let PPC970_Unit = 3, Predicates = [HasFPU] in { // FPU Operations. let isCompare = 1, mayRaiseFPException = 1, hasSideEffects = 0 in { def FCMPUS : XForm_17<63, 0, (outs crrc:$crD), (ins f4rc:$fA, f4rc:$fB), "fcmpu $crD, $fA, $fB", IIC_FPCompare>; def FCMPOS : XForm_17<63, 32, (outs crrc:$crD), (ins f4rc:$fA, f4rc:$fB), "fcmpo $crD, $fA, $fB", IIC_FPCompare>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in { def FCMPUD : XForm_17<63, 0, (outs crrc:$crD), (ins f8rc:$fA, f8rc:$fB), "fcmpu $crD, $fA, $fB", IIC_FPCompare>; def FCMPOD : XForm_17<63, 32, (outs crrc:$crD), (ins f8rc:$fA, f8rc:$fB), "fcmpo $crD, $fA, $fB", IIC_FPCompare>; } } def FTDIV: XForm_17<63, 128, (outs crrc:$crD), (ins f8rc:$fA, f8rc:$fB), "ftdiv $crD, $fA, $fB", IIC_FPCompare>; def FTSQRT: XForm_17a<63, 160, (outs crrc:$crD), (ins f8rc:$fB), "ftsqrt $crD, $fB", IIC_FPCompare, [(set i32:$crD, (PPCftsqrt f64:$fB))]>; let mayRaiseFPException = 1, hasSideEffects = 0 in { let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FRIND : XForm_26r<63, 392, (outs f8rc:$frD), (ins f8rc:$frB), "frin", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (any_fround f64:$frB))]>; defm FRINS : XForm_26r<63, 392, (outs f4rc:$frD), (ins f4rc:$frB), "frin", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (any_fround f32:$frB))]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FRIPD : XForm_26r<63, 456, (outs f8rc:$frD), (ins f8rc:$frB), "frip", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (any_fceil f64:$frB))]>; defm FRIPS : XForm_26r<63, 456, (outs f4rc:$frD), (ins f4rc:$frB), "frip", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (any_fceil f32:$frB))]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FRIZD : XForm_26r<63, 424, (outs f8rc:$frD), (ins f8rc:$frB), "friz", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (any_ftrunc f64:$frB))]>; defm FRIZS : XForm_26r<63, 424, (outs f4rc:$frD), (ins f4rc:$frB), "friz", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (any_ftrunc f32:$frB))]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FRIMD : XForm_26r<63, 488, (outs f8rc:$frD), (ins f8rc:$frB), "frim", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (any_ffloor f64:$frB))]>; defm FRIMS : XForm_26r<63, 488, (outs f4rc:$frD), (ins f4rc:$frB), "frim", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (any_ffloor f32:$frB))]>; } let Uses = [RM], mayRaiseFPException = 1, hasSideEffects = 0 in { defm FCTIW : XForm_26r<63, 14, (outs f8rc:$frD), (ins f8rc:$frB), "fctiw", "$frD, $frB", IIC_FPGeneral, []>; defm FCTIWU : XForm_26r<63, 142, (outs f8rc:$frD), (ins f8rc:$frB), "fctiwu", "$frD, $frB", IIC_FPGeneral, []>; defm FCTIWZ : XForm_26r<63, 15, (outs f8rc:$frD), (ins f8rc:$frB), "fctiwz", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (PPCany_fctiwz f64:$frB))]>; defm FRSP : XForm_26r<63, 12, (outs f4rc:$frD), (ins f8rc:$frB), "frsp", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (any_fpround f64:$frB))]>; defm FSQRT : XForm_26r<63, 22, (outs f8rc:$frD), (ins f8rc:$frB), "fsqrt", "$frD, $frB", IIC_FPSqrtD, [(set f64:$frD, (any_fsqrt f64:$frB))]>; defm FSQRTS : XForm_26r<59, 22, (outs f4rc:$frD), (ins f4rc:$frB), "fsqrts", "$frD, $frB", IIC_FPSqrtS, [(set f32:$frD, (any_fsqrt f32:$frB))]>; } } def : Pat<(PPCfsqrt f64:$frA), (FSQRT $frA)>; /// Note that FMR is defined as pseudo-ops on the PPC970 because they are /// often coalesced away and we don't want the dispatch group builder to think /// that they will fill slots (which could cause the load of a LSU reject to /// sneak into a d-group with a store). let hasSideEffects = 0, Predicates = [HasFPU] in defm FMR : XForm_26r<63, 72, (outs f4rc:$frD), (ins f4rc:$frB), "fmr", "$frD, $frB", IIC_FPGeneral, []>, // (set f32:$frD, f32:$frB) PPC970_Unit_Pseudo; let PPC970_Unit = 3, hasSideEffects = 0, Predicates = [HasFPU] in { // FPU Operations. // These are artificially split into two different forms, for 4/8 byte FP. defm FABSS : XForm_26r<63, 264, (outs f4rc:$frD), (ins f4rc:$frB), "fabs", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (fabs f32:$frB))]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FABSD : XForm_26r<63, 264, (outs f8rc:$frD), (ins f8rc:$frB), "fabs", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (fabs f64:$frB))]>; defm FNABSS : XForm_26r<63, 136, (outs f4rc:$frD), (ins f4rc:$frB), "fnabs", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (fneg (fabs f32:$frB)))]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FNABSD : XForm_26r<63, 136, (outs f8rc:$frD), (ins f8rc:$frB), "fnabs", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (fneg (fabs f64:$frB)))]>; defm FNEGS : XForm_26r<63, 40, (outs f4rc:$frD), (ins f4rc:$frB), "fneg", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (fneg f32:$frB))]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FNEGD : XForm_26r<63, 40, (outs f8rc:$frD), (ins f8rc:$frB), "fneg", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (fneg f64:$frB))]>; defm FCPSGNS : XForm_28r<63, 8, (outs f4rc:$frD), (ins f4rc:$frA, f4rc:$frB), "fcpsgn", "$frD, $frA, $frB", IIC_FPGeneral, [(set f32:$frD, (fcopysign f32:$frB, f32:$frA))]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FCPSGND : XForm_28r<63, 8, (outs f8rc:$frD), (ins f8rc:$frA, f8rc:$frB), "fcpsgn", "$frD, $frA, $frB", IIC_FPGeneral, [(set f64:$frD, (fcopysign f64:$frB, f64:$frA))]>; // Reciprocal estimates. let mayRaiseFPException = 1 in { defm FRE : XForm_26r<63, 24, (outs f8rc:$frD), (ins f8rc:$frB), "fre", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (PPCfre f64:$frB))]>; defm FRES : XForm_26r<59, 24, (outs f4rc:$frD), (ins f4rc:$frB), "fres", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (PPCfre f32:$frB))]>; defm FRSQRTE : XForm_26r<63, 26, (outs f8rc:$frD), (ins f8rc:$frB), "frsqrte", "$frD, $frB", IIC_FPGeneral, [(set f64:$frD, (PPCfrsqrte f64:$frB))]>; defm FRSQRTES : XForm_26r<59, 26, (outs f4rc:$frD), (ins f4rc:$frB), "frsqrtes", "$frD, $frB", IIC_FPGeneral, [(set f32:$frD, (PPCfrsqrte f32:$frB))]>; } } // XL-Form instructions. condition register logical ops. // let hasSideEffects = 0 in def MCRF : XLForm_3<19, 0, (outs crrc:$BF), (ins crrc:$BFA), "mcrf $BF, $BFA", IIC_BrMCR>, PPC970_DGroup_First, PPC970_Unit_CRU; // FIXME: According to the ISA (section 2.5.1 of version 2.06), the // condition-register logical instructions have preferred forms. Specifically, // it is preferred that the bit specified by the BT field be in the same // condition register as that specified by the bit BB. We might want to account // for this via hinting the register allocator and anti-dep breakers, or we // could constrain the register class to force this constraint and then loosen // it during register allocation via convertToThreeAddress or some similar // mechanism. let isCommutable = 1 in { def CRAND : XLForm_1<19, 257, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "crand $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (and i1:$CRA, i1:$CRB))]>; def CRNAND : XLForm_1<19, 225, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "crnand $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (not (and i1:$CRA, i1:$CRB)))]>; def CROR : XLForm_1<19, 449, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "cror $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (or i1:$CRA, i1:$CRB))]>; def CRXOR : XLForm_1<19, 193, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "crxor $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (xor i1:$CRA, i1:$CRB))]>; def CRNOR : XLForm_1<19, 33, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "crnor $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (not (or i1:$CRA, i1:$CRB)))]>; def CREQV : XLForm_1<19, 289, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "creqv $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (not (xor i1:$CRA, i1:$CRB)))]>; } // isCommutable def CRANDC : XLForm_1<19, 129, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "crandc $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (and i1:$CRA, (not i1:$CRB)))]>; def CRORC : XLForm_1<19, 417, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "crorc $CRD, $CRA, $CRB", IIC_BrCR, [(set i1:$CRD, (or i1:$CRA, (not i1:$CRB)))]>; let isCodeGenOnly = 1 in { let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def CRSET : XLForm_1_ext<19, 289, (outs crbitrc:$dst), (ins), "creqv $dst, $dst, $dst", IIC_BrCR, [(set i1:$dst, 1)]>; def CRUNSET: XLForm_1_ext<19, 193, (outs crbitrc:$dst), (ins), "crxor $dst, $dst, $dst", IIC_BrCR, [(set i1:$dst, 0)]>; } let Defs = [CR1EQ], CRD = 6 in { def CR6SET : XLForm_1_ext<19, 289, (outs), (ins), "creqv 6, 6, 6", IIC_BrCR, [(PPCcr6set)]>; def CR6UNSET: XLForm_1_ext<19, 193, (outs), (ins), "crxor 6, 6, 6", IIC_BrCR, [(PPCcr6unset)]>; } } // XFX-Form instructions. Instructions that deal with SPRs. // def MFSPR : XFXForm_1<31, 339, (outs gprc:$RT), (ins i32imm:$SPR), "mfspr $RT, $SPR", IIC_SprMFSPR>; def MTSPR : XFXForm_1<31, 467, (outs), (ins i32imm:$SPR, gprc:$RT), "mtspr $SPR, $RT", IIC_SprMTSPR>; def MFTB : XFXForm_1<31, 371, (outs gprc:$RT), (ins i32imm:$SPR), "mftb $RT, $SPR", IIC_SprMFTB>; def MFPMR : XFXForm_1<31, 334, (outs gprc:$RT), (ins i32imm:$SPR), "mfpmr $RT, $SPR", IIC_SprMFPMR>; def MTPMR : XFXForm_1<31, 462, (outs), (ins i32imm:$SPR, gprc:$RT), "mtpmr $SPR, $RT", IIC_SprMTPMR>; // A pseudo-instruction used to implement the read of the 64-bit cycle counter // on a 32-bit target. let hasSideEffects = 1 in def ReadTB : PPCCustomInserterPseudo<(outs gprc:$lo, gprc:$hi), (ins), "#ReadTB", []>; let Uses = [CTR] in { def MFCTR : XFXForm_1_ext<31, 339, 9, (outs gprc:$rT), (ins), "mfctr $rT", IIC_SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Defs = [CTR], Pattern = [(PPCmtctr i32:$rS)] in { def MTCTR : XFXForm_7_ext<31, 467, 9, (outs), (ins gprc:$rS), "mtctr $rS", IIC_SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let hasSideEffects = 1, isCodeGenOnly = 1, Defs = [CTR] in { let Pattern = [(int_set_loop_iterations i32:$rS)] in def MTCTRloop : XFXForm_7_ext<31, 467, 9, (outs), (ins gprc:$rS), "mtctr $rS", IIC_SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let hasSideEffects = 0 in { let Defs = [LR] in { def MTLR : XFXForm_7_ext<31, 467, 8, (outs), (ins gprc:$rS), "mtlr $rS", IIC_SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Uses = [LR] in { def MFLR : XFXForm_1_ext<31, 339, 8, (outs gprc:$rT), (ins), "mflr $rT", IIC_SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } } let isCodeGenOnly = 1 in { // Move to/from VRSAVE: despite being a SPR, the VRSAVE register is renamed // like a GPR on the PPC970. As such, copies in and out have the same // performance characteristics as an OR instruction. def MTVRSAVE : XFXForm_7_ext<31, 467, 256, (outs), (ins gprc:$rS), "mtspr 256, $rS", IIC_IntGeneral>, PPC970_DGroup_Single, PPC970_Unit_FXU; def MFVRSAVE : XFXForm_1_ext<31, 339, 256, (outs gprc:$rT), (ins), "mfspr $rT, 256", IIC_IntGeneral>, PPC970_DGroup_First, PPC970_Unit_FXU; def MTVRSAVEv : XFXForm_7_ext<31, 467, 256, (outs VRSAVERC:$reg), (ins gprc:$rS), "mtspr 256, $rS", IIC_IntGeneral>, PPC970_DGroup_Single, PPC970_Unit_FXU; def MFVRSAVEv : XFXForm_1_ext<31, 339, 256, (outs gprc:$rT), (ins VRSAVERC:$reg), "mfspr $rT, 256", IIC_IntGeneral>, PPC970_DGroup_First, PPC970_Unit_FXU; } // Aliases for mtvrsave/mfvrsave to mfspr/mtspr. def : InstAlias<"mtvrsave $rS", (MTVRSAVE gprc:$rS)>; def : InstAlias<"mfvrsave $rS", (MFVRSAVE gprc:$rS)>; let hasSideEffects = 0 in { // mtocrf's input needs to be prepared by shifting by an amount dependent // on the cr register selected. Thus, post-ra anti-dep breaking must not // later change that register assignment. let hasExtraDefRegAllocReq = 1 in { def MTOCRF: XFXForm_5a<31, 144, (outs crbitm:$FXM), (ins gprc:$ST), "mtocrf $FXM, $ST", IIC_BrMCRX>, PPC970_DGroup_First, PPC970_Unit_CRU; // Similarly to mtocrf, the mask for mtcrf must be prepared in a way that // is dependent on the cr fields being set. def MTCRF : XFXForm_5<31, 144, (outs), (ins i32imm:$FXM, gprc:$rS), "mtcrf $FXM, $rS", IIC_BrMCRX>, PPC970_MicroCode, PPC970_Unit_CRU; } // hasExtraDefRegAllocReq = 1 // mfocrf's input needs to be prepared by shifting by an amount dependent // on the cr register selected. Thus, post-ra anti-dep breaking must not // later change that register assignment. let hasExtraSrcRegAllocReq = 1 in { def MFOCRF: XFXForm_5a<31, 19, (outs gprc:$rT), (ins crbitm:$FXM), "mfocrf $rT, $FXM", IIC_SprMFCRF>, PPC970_DGroup_First, PPC970_Unit_CRU; // Similarly to mfocrf, the mask for mfcrf must be prepared in a way that // is dependent on the cr fields being copied. def MFCR : XFXForm_3<31, 19, (outs gprc:$rT), (ins), "mfcr $rT", IIC_SprMFCR>, PPC970_MicroCode, PPC970_Unit_CRU; } // hasExtraSrcRegAllocReq = 1 def MCRXRX : X_BF3<31, 576, (outs crrc:$BF), (ins), "mcrxrx $BF", IIC_BrMCRX>, Requires<[IsISA3_0]>; } // hasSideEffects = 0 def : InstAlias<"mtcr $rA", (MTCRF 255, gprc:$rA)>; let Predicates = [HasFPU] in { // Custom inserter instruction to perform FADD in round-to-zero mode. let Uses = [RM], mayRaiseFPException = 1 in { def FADDrtz: PPCCustomInserterPseudo<(outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "", [(set f64:$FRT, (PPCany_faddrtz f64:$FRA, f64:$FRB))]>; } // The above pseudo gets expanded to make use of the following instructions // to manipulate FPSCR. Note that FPSCR is not modeled at the DAG level. // When FM is 30/31, we are setting the 62/63 bit of FPSCR, the implicit-def // RM should be set. let hasSideEffects = 1, Defs = [RM] in { def MTFSB0 : XForm_43<63, 70, (outs), (ins u5imm:$FM), "mtfsb0 $FM", IIC_IntMTFSB0, [(int_ppc_mtfsb0 timm:$FM)]>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MTFSB1 : XForm_43<63, 38, (outs), (ins u5imm:$FM), "mtfsb1 $FM", IIC_IntMTFSB0, [(int_ppc_mtfsb1 timm:$FM)]>, PPC970_DGroup_Single, PPC970_Unit_FPU; } let Defs = [RM], hasSideEffects = 1 in { let isCodeGenOnly = 1 in def MTFSFb : XFLForm<63, 711, (outs), (ins i32imm:$FM, f8rc:$rT), "mtfsf $FM, $rT", IIC_IntMTFSB0, [(int_ppc_mtfsf timm:$FM, f64:$rT)]>, PPC970_DGroup_Single, PPC970_Unit_FPU; } let Uses = [RM], hasSideEffects = 1 in { def MFFS : XForm_42<63, 583, (outs f8rc:$rT), (ins), "mffs $rT", IIC_IntMFFS, [(set f64:$rT, (PPCmffs))]>, PPC970_DGroup_Single, PPC970_Unit_FPU; let Defs = [CR1] in def MFFS_rec : XForm_42<63, 583, (outs f8rc:$rT), (ins), "mffs. $rT", IIC_IntMFFS, []>, isRecordForm; def MFFSCE : X_FRT5_XO2_XO3_XO10<63, 0, 1, 583, (outs f8rc:$rT), (ins), "mffsce $rT", IIC_IntMFFS, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MFFSCDRN : X_FRT5_XO2_XO3_FRB5_XO10<63, 2, 4, 583, (outs f8rc:$rT), (ins f8rc:$FRB), "mffscdrn $rT, $FRB", IIC_IntMFFS, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MFFSCDRNI : X_FRT5_XO2_XO3_DRM3_XO10<63, 2, 5, 583, (outs f8rc:$rT), (ins u3imm:$DRM), "mffscdrni $rT, $DRM", IIC_IntMFFS, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MFFSCRN : X_FRT5_XO2_XO3_FRB5_XO10<63, 2, 6, 583, (outs f8rc:$rT), (ins f8rc:$FRB), "mffscrn $rT, $FRB", IIC_IntMFFS, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MFFSCRNI : X_FRT5_XO2_XO3_RM2_X10<63, 2, 7, 583, (outs f8rc:$rT), (ins u2imm:$RM), "mffscrni $rT, $RM", IIC_IntMFFS, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MFFSL : X_FRT5_XO2_XO3_XO10<63, 3, 0, 583, (outs f8rc:$rT), (ins), "mffsl $rT", IIC_IntMFFS, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; } } let Predicates = [IsISA3_0] in { def MODSW : XForm_8<31, 779, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "modsw $rT, $rA, $rB", IIC_IntDivW, [(set i32:$rT, (srem i32:$rA, i32:$rB))]>; def MODUW : XForm_8<31, 267, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "moduw $rT, $rA, $rB", IIC_IntDivW, [(set i32:$rT, (urem i32:$rA, i32:$rB))]>; let hasSideEffects = 1 in def ADDEX : Z23Form_RTAB5_CY2<31, 170, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB, u2imm:$CY), "addex $rT, $rA, $rB, $CY", IIC_IntGeneral, []>; } let PPC970_Unit = 1, hasSideEffects = 0 in { // FXU Operations. // XO-Form instructions. Arithmetic instructions that can set overflow bit let isCommutable = 1 in defm ADD4 : XOForm_1rx<31, 266, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "add", "$rT, $rA, $rB", IIC_IntSimple, [(set i32:$rT, (add i32:$rA, i32:$rB))]>; let isCodeGenOnly = 1 in def ADD4TLS : XOForm_1<31, 266, 0, (outs gprc:$rT), (ins gprc:$rA, tlsreg32:$rB), "add $rT, $rA, $rB", IIC_IntSimple, [(set i32:$rT, (add i32:$rA, tglobaltlsaddr:$rB))]>; let isCommutable = 1 in defm ADDC : XOForm_1rc<31, 10, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "addc", "$rT, $rA, $rB", IIC_IntGeneral, [(set i32:$rT, (addc i32:$rA, i32:$rB))]>, PPC970_DGroup_Cracked; defm DIVW : XOForm_1rcr<31, 491, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "divw", "$rT, $rA, $rB", IIC_IntDivW, [(set i32:$rT, (sdiv i32:$rA, i32:$rB))]>; defm DIVWU : XOForm_1rcr<31, 459, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "divwu", "$rT, $rA, $rB", IIC_IntDivW, [(set i32:$rT, (udiv i32:$rA, i32:$rB))]>; defm DIVWE : XOForm_1rcr<31, 427, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "divwe", "$rT, $rA, $rB", IIC_IntDivW, [(set i32:$rT, (int_ppc_divwe gprc:$rA, gprc:$rB))]>, Requires<[HasExtDiv]>; defm DIVWEU : XOForm_1rcr<31, 395, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "divweu", "$rT, $rA, $rB", IIC_IntDivW, [(set i32:$rT, (int_ppc_divweu gprc:$rA, gprc:$rB))]>, Requires<[HasExtDiv]>; let isCommutable = 1 in { defm MULHW : XOForm_1r<31, 75, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "mulhw", "$rT, $rA, $rB", IIC_IntMulHW, [(set i32:$rT, (mulhs i32:$rA, i32:$rB))]>; defm MULHWU : XOForm_1r<31, 11, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "mulhwu", "$rT, $rA, $rB", IIC_IntMulHWU, [(set i32:$rT, (mulhu i32:$rA, i32:$rB))]>; defm MULLW : XOForm_1rx<31, 235, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "mullw", "$rT, $rA, $rB", IIC_IntMulHW, [(set i32:$rT, (mul i32:$rA, i32:$rB))]>; } // isCommutable defm SUBF : XOForm_1rx<31, 40, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "subf", "$rT, $rA, $rB", IIC_IntGeneral, [(set i32:$rT, (sub i32:$rB, i32:$rA))]>; defm SUBFC : XOForm_1rc<31, 8, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "subfc", "$rT, $rA, $rB", IIC_IntGeneral, [(set i32:$rT, (subc i32:$rB, i32:$rA))]>, PPC970_DGroup_Cracked; defm NEG : XOForm_3r<31, 104, 0, (outs gprc:$rT), (ins gprc:$rA), "neg", "$rT, $rA", IIC_IntSimple, [(set i32:$rT, (ineg i32:$rA))]>; let Uses = [CARRY] in { let isCommutable = 1 in defm ADDE : XOForm_1rc<31, 138, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "adde", "$rT, $rA, $rB", IIC_IntGeneral, [(set i32:$rT, (adde i32:$rA, i32:$rB))]>; defm ADDME : XOForm_3rc<31, 234, 0, (outs gprc:$rT), (ins gprc:$rA), "addme", "$rT, $rA", IIC_IntGeneral, [(set i32:$rT, (adde i32:$rA, -1))]>; defm ADDZE : XOForm_3rc<31, 202, 0, (outs gprc:$rT), (ins gprc:$rA), "addze", "$rT, $rA", IIC_IntGeneral, [(set i32:$rT, (adde i32:$rA, 0))]>; defm SUBFE : XOForm_1rc<31, 136, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "subfe", "$rT, $rA, $rB", IIC_IntGeneral, [(set i32:$rT, (sube i32:$rB, i32:$rA))]>; defm SUBFME : XOForm_3rc<31, 232, 0, (outs gprc:$rT), (ins gprc:$rA), "subfme", "$rT, $rA", IIC_IntGeneral, [(set i32:$rT, (sube -1, i32:$rA))]>; defm SUBFZE : XOForm_3rc<31, 200, 0, (outs gprc:$rT), (ins gprc:$rA), "subfze", "$rT, $rA", IIC_IntGeneral, [(set i32:$rT, (sube 0, i32:$rA))]>; } } def : InstAlias<"sub $rA, $rB, $rC", (SUBF gprc:$rA, gprc:$rC, gprc:$rB)>; def : InstAlias<"sub. $rA, $rB, $rC", (SUBF_rec gprc:$rA, gprc:$rC, gprc:$rB)>; def : InstAlias<"subc $rA, $rB, $rC", (SUBFC gprc:$rA, gprc:$rC, gprc:$rB)>; def : InstAlias<"subc. $rA, $rB, $rC", (SUBFC_rec gprc:$rA, gprc:$rC, gprc:$rB)>; // A-Form instructions. Most of the instructions executed in the FPU are of // this type. // let PPC970_Unit = 3, hasSideEffects = 0, Predicates = [HasFPU] in { // FPU Operations. let mayRaiseFPException = 1, Uses = [RM] in { let isCommutable = 1 in { defm FMADD : AForm_1r<63, 29, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fmadd", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused, [(set f64:$FRT, (any_fma f64:$FRA, f64:$FRC, f64:$FRB))]>; defm FMADDS : AForm_1r<59, 29, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fmadds", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral, [(set f32:$FRT, (any_fma f32:$FRA, f32:$FRC, f32:$FRB))]>; defm FMSUB : AForm_1r<63, 28, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fmsub", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused, [(set f64:$FRT, (any_fma f64:$FRA, f64:$FRC, (fneg f64:$FRB)))]>; defm FMSUBS : AForm_1r<59, 28, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fmsubs", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral, [(set f32:$FRT, (any_fma f32:$FRA, f32:$FRC, (fneg f32:$FRB)))]>; defm FNMADD : AForm_1r<63, 31, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fnmadd", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused, [(set f64:$FRT, (fneg (any_fma f64:$FRA, f64:$FRC, f64:$FRB)))]>; defm FNMADDS : AForm_1r<59, 31, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fnmadds", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral, [(set f32:$FRT, (fneg (any_fma f32:$FRA, f32:$FRC, f32:$FRB)))]>; defm FNMSUB : AForm_1r<63, 30, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fnmsub", "$FRT, $FRA, $FRC, $FRB", IIC_FPFused, [(set f64:$FRT, (fneg (any_fma f64:$FRA, f64:$FRC, (fneg f64:$FRB))))]>; defm FNMSUBS : AForm_1r<59, 30, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fnmsubs", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral, [(set f32:$FRT, (fneg (any_fma f32:$FRA, f32:$FRC, (fneg f32:$FRB))))]>; } // isCommutable } // FSEL is artificially split into 4 and 8-byte forms for the result. To avoid // having 4 of these, force the comparison to always be an 8-byte double (code // should use an FMRSD if the input comparison value really wants to be a float) // and 4/8 byte forms for the result and operand type.. let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm FSELD : AForm_1r<63, 23, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fsel", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral, [(set f64:$FRT, (PPCfsel f64:$FRA, f64:$FRC, f64:$FRB))]>; defm FSELS : AForm_1r<63, 23, (outs f4rc:$FRT), (ins f8rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fsel", "$FRT, $FRA, $FRC, $FRB", IIC_FPGeneral, [(set f32:$FRT, (PPCfsel f64:$FRA, f32:$FRC, f32:$FRB))]>; let Uses = [RM], mayRaiseFPException = 1 in { let isCommutable = 1 in { defm FADD : AForm_2r<63, 21, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "fadd", "$FRT, $FRA, $FRB", IIC_FPAddSub, [(set f64:$FRT, (any_fadd f64:$FRA, f64:$FRB))]>; defm FADDS : AForm_2r<59, 21, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB), "fadds", "$FRT, $FRA, $FRB", IIC_FPGeneral, [(set f32:$FRT, (any_fadd f32:$FRA, f32:$FRB))]>; } // isCommutable defm FDIV : AForm_2r<63, 18, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "fdiv", "$FRT, $FRA, $FRB", IIC_FPDivD, [(set f64:$FRT, (any_fdiv f64:$FRA, f64:$FRB))]>; defm FDIVS : AForm_2r<59, 18, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB), "fdivs", "$FRT, $FRA, $FRB", IIC_FPDivS, [(set f32:$FRT, (any_fdiv f32:$FRA, f32:$FRB))]>; let isCommutable = 1 in { defm FMUL : AForm_3r<63, 25, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC), "fmul", "$FRT, $FRA, $FRC", IIC_FPFused, [(set f64:$FRT, (any_fmul f64:$FRA, f64:$FRC))]>; defm FMULS : AForm_3r<59, 25, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC), "fmuls", "$FRT, $FRA, $FRC", IIC_FPGeneral, [(set f32:$FRT, (any_fmul f32:$FRA, f32:$FRC))]>; } // isCommutable defm FSUB : AForm_2r<63, 20, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "fsub", "$FRT, $FRA, $FRB", IIC_FPAddSub, [(set f64:$FRT, (any_fsub f64:$FRA, f64:$FRB))]>; defm FSUBS : AForm_2r<59, 20, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB), "fsubs", "$FRT, $FRA, $FRB", IIC_FPGeneral, [(set f32:$FRT, (any_fsub f32:$FRA, f32:$FRB))]>; } } let hasSideEffects = 0 in { let PPC970_Unit = 1 in { // FXU Operations. let isSelect = 1 in def ISEL : AForm_4<31, 15, (outs gprc:$rT), (ins gprc_nor0:$rA, gprc:$rB, crbitrc:$cond), "isel $rT, $rA, $rB, $cond", IIC_IntISEL, []>; } let PPC970_Unit = 1 in { // FXU Operations. // M-Form instructions. rotate and mask instructions. // let isCommutable = 1 in { // RLWIMI can be commuted if the rotate amount is zero. defm RLWIMI : MForm_2r<20, (outs gprc:$rA), (ins gprc:$rSi, gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwimi", "$rA, $rS, $SH, $MB, $ME", IIC_IntRotate, []>, PPC970_DGroup_Cracked, RegConstraint<"$rSi = $rA">, NoEncode<"$rSi">; } let BaseName = "rlwinm" in { def RLWINM : MForm_2<21, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm $rA, $rS, $SH, $MB, $ME", IIC_IntGeneral, []>, RecFormRel; let Defs = [CR0] in def RLWINM_rec : MForm_2<21, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm. $rA, $rS, $SH, $MB, $ME", IIC_IntGeneral, []>, isRecordForm, RecFormRel, PPC970_DGroup_Cracked; } defm RLWNM : MForm_2r<23, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB, u5imm:$MB, u5imm:$ME), "rlwnm", "$rA, $rS, $rB, $MB, $ME", IIC_IntGeneral, []>; } } // hasSideEffects = 0 //===----------------------------------------------------------------------===// // PowerPC Instruction Patterns // // Arbitrary immediate support. Implement in terms of LIS/ORI. def : Pat<(i32 imm:$imm), (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>; // Implement the 'not' operation with the NOR instruction. def i32not : OutPatFrag<(ops node:$in), (NOR $in, $in)>; def : Pat<(not i32:$in), (i32not $in)>; // ADD an arbitrary immediate. def : Pat<(add i32:$in, imm:$imm), (ADDIS (ADDI $in, (LO16 imm:$imm)), (HA16 imm:$imm))>; // OR an arbitrary immediate. def : Pat<(or i32:$in, imm:$imm), (ORIS (ORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // XOR an arbitrary immediate. def : Pat<(xor i32:$in, imm:$imm), (XORIS (XORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // SUBFIC def : Pat<(sub imm32SExt16:$imm, i32:$in), (SUBFIC $in, imm:$imm)>; // SHL/SRL def : Pat<(shl i32:$in, (i32 imm:$imm)), (RLWINM $in, imm:$imm, 0, (SHL32 imm:$imm))>; def : Pat<(srl i32:$in, (i32 imm:$imm)), (RLWINM $in, (SRL32 imm:$imm), imm:$imm, 31)>; // ROTL def : Pat<(rotl i32:$in, i32:$sh), (RLWNM $in, $sh, 0, 31)>; def : Pat<(rotl i32:$in, (i32 imm:$imm)), (RLWINM $in, imm:$imm, 0, 31)>; // RLWNM def : Pat<(and (rotl i32:$in, i32:$sh), maskimm32:$imm), (RLWNM $in, $sh, (MB maskimm32:$imm), (ME maskimm32:$imm))>; // Calls def : Pat<(PPCcall (i32 tglobaladdr:$dst)), (BL tglobaladdr:$dst)>; def : Pat<(PPCcall (i32 texternalsym:$dst)), (BL texternalsym:$dst)>; def : Pat<(PPCcall_rm (i32 tglobaladdr:$dst)), (BL_RM tglobaladdr:$dst)>; def : Pat<(PPCcall_rm (i32 texternalsym:$dst)), (BL_RM texternalsym:$dst)>; // Calls for AIX only def : Pat<(PPCcall (i32 mcsym:$dst)), (BL mcsym:$dst)>; def : Pat<(PPCcall_nop (i32 mcsym:$dst)), (BL_NOP mcsym:$dst)>; def : Pat<(PPCcall_nop (i32 texternalsym:$dst)), (BL_NOP texternalsym:$dst)>; def : Pat<(PPCcall_rm (i32 mcsym:$dst)), (BL_RM mcsym:$dst)>; def : Pat<(PPCcall_nop_rm (i32 mcsym:$dst)), (BL_NOP_RM mcsym:$dst)>; def : Pat<(PPCcall_nop_rm (i32 texternalsym:$dst)), (BL_NOP_RM texternalsym:$dst)>; def : Pat<(PPCtc_return (i32 tglobaladdr:$dst), imm:$imm), (TCRETURNdi tglobaladdr:$dst, imm:$imm)>; def : Pat<(PPCtc_return (i32 texternalsym:$dst), imm:$imm), (TCRETURNdi texternalsym:$dst, imm:$imm)>; def : Pat<(PPCtc_return CTRRC:$dst, imm:$imm), (TCRETURNri CTRRC:$dst, imm:$imm)>; def : Pat<(int_ppc_readflm), (MFFS)>; // Hi and Lo for Darwin Global Addresses. def : Pat<(PPChi tglobaladdr:$in, 0), (LIS tglobaladdr:$in)>; def : Pat<(PPClo tglobaladdr:$in, 0), (LI tglobaladdr:$in)>; def : Pat<(PPChi tconstpool:$in, 0), (LIS tconstpool:$in)>; def : Pat<(PPClo tconstpool:$in, 0), (LI tconstpool:$in)>; def : Pat<(PPChi tjumptable:$in, 0), (LIS tjumptable:$in)>; def : Pat<(PPClo tjumptable:$in, 0), (LI tjumptable:$in)>; def : Pat<(PPChi tblockaddress:$in, 0), (LIS tblockaddress:$in)>; def : Pat<(PPClo tblockaddress:$in, 0), (LI tblockaddress:$in)>; def : Pat<(PPChi tglobaltlsaddr:$g, i32:$in), (ADDIS $in, tglobaltlsaddr:$g)>; def : Pat<(PPClo tglobaltlsaddr:$g, i32:$in), (ADDI $in, tglobaltlsaddr:$g)>; def : Pat<(add i32:$in, (PPChi tglobaladdr:$g, 0)), (ADDIS $in, tglobaladdr:$g)>; def : Pat<(add i32:$in, (PPChi tconstpool:$g, 0)), (ADDIS $in, tconstpool:$g)>; def : Pat<(add i32:$in, (PPChi tjumptable:$g, 0)), (ADDIS $in, tjumptable:$g)>; def : Pat<(add i32:$in, (PPChi tblockaddress:$g, 0)), (ADDIS $in, tblockaddress:$g)>; // Support for thread-local storage. def PPC32GOT: PPCEmitTimePseudo<(outs gprc:$rD), (ins), "#PPC32GOT", [(set i32:$rD, (PPCppc32GOT))]>; // Get the _GLOBAL_OFFSET_TABLE_ in PIC mode. // This uses two output registers, the first as the real output, the second as a // temporary register, used internally in code generation. def PPC32PICGOT: PPCEmitTimePseudo<(outs gprc:$rD, gprc:$rT), (ins), "#PPC32PICGOT", []>, NoEncode<"$rT">; def LDgotTprelL32: PPCEmitTimePseudo<(outs gprc_nor0:$rD), (ins s16imm:$disp, gprc_nor0:$reg), "#LDgotTprelL32", [(set i32:$rD, (PPCldGotTprelL tglobaltlsaddr:$disp, i32:$reg))]>; def : Pat<(PPCaddTls i32:$in, tglobaltlsaddr:$g), (ADD4TLS $in, tglobaltlsaddr:$g)>; def ADDItlsgdL32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp), "#ADDItlsgdL32", [(set i32:$rD, (PPCaddiTlsgdL i32:$reg, tglobaltlsaddr:$disp))]>; // LR is a true define, while the rest of the Defs are clobbers. R3 is // explicitly defined when this op is created, so not mentioned here. let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1, Defs = [R0,R4,R5,R6,R7,R8,R9,R10,R11,R12,LR,CTR,CR0,CR1,CR5,CR6,CR7] in def GETtlsADDR32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc:$reg, tlsgd32:$sym), "GETtlsADDR32", [(set i32:$rD, (PPCgetTlsAddr i32:$reg, tglobaltlsaddr:$sym))]>; // R3 is explicitly defined when this op is created, so not mentioned here. // The rest of the Defs are the exact set of registers that will be clobbered by // the call. let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1, Defs = [R0,R4,R5,R11,LR,CR0] in def GETtlsADDR32AIX : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc:$offset, gprc:$handle), "GETtlsADDR32AIX", [(set i32:$rD, (PPCgetTlsAddr i32:$offset, i32:$handle))]>; // Combined op for ADDItlsgdL32 and GETtlsADDR32, late expanded. R3 and LR // are true defines while the rest of the Defs are clobbers. let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1, Defs = [R0,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,LR,CTR,CR0,CR1,CR5,CR6,CR7] in def ADDItlsgdLADDR32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp, tlsgd32:$sym), "#ADDItlsgdLADDR32", [(set i32:$rD, (PPCaddiTlsgdLAddr i32:$reg, tglobaltlsaddr:$disp, tglobaltlsaddr:$sym))]>; def ADDItlsldL32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp), "#ADDItlsldL32", [(set i32:$rD, (PPCaddiTlsldL i32:$reg, tglobaltlsaddr:$disp))]>; // This pseudo is expanded to two copies to put the variable offset in R4 and // the region handle in R3 and GETtlsADDR32AIX. def TLSGDAIX : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc:$offset, gprc:$handle), "#TLSGDAIX", [(set i32:$rD, (PPCTlsgdAIX i32:$offset, i32:$handle))]>; // LR is a true define, while the rest of the Defs are clobbers. R3 is // explicitly defined when this op is created, so not mentioned here. let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1, Defs = [R0,R4,R5,R6,R7,R8,R9,R10,R11,R12,LR,CTR,CR0,CR1,CR5,CR6,CR7] in def GETtlsldADDR32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc:$reg, tlsgd32:$sym), "GETtlsldADDR32", [(set i32:$rD, (PPCgetTlsldAddr i32:$reg, tglobaltlsaddr:$sym))]>; // Combined op for ADDItlsldL32 and GETtlsADDR32, late expanded. R3 and LR // are true defines while the rest of the Defs are clobbers. let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1, Defs = [R0,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,LR,CTR,CR0,CR1,CR5,CR6,CR7] in def ADDItlsldLADDR32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp, tlsgd32:$sym), "#ADDItlsldLADDR32", [(set i32:$rD, (PPCaddiTlsldLAddr i32:$reg, tglobaltlsaddr:$disp, tglobaltlsaddr:$sym))]>; def ADDIdtprelL32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp), "#ADDIdtprelL32", [(set i32:$rD, (PPCaddiDtprelL i32:$reg, tglobaltlsaddr:$disp))]>; def ADDISdtprelHA32 : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, s16imm:$disp), "#ADDISdtprelHA32", [(set i32:$rD, (PPCaddisDtprelHA i32:$reg, tglobaltlsaddr:$disp))]>; // Support for Position-independent code def LWZtoc : PPCEmitTimePseudo<(outs gprc:$rD), (ins tocentry32:$disp, gprc:$reg), "#LWZtoc", [(set i32:$rD, (PPCtoc_entry tglobaladdr:$disp, i32:$reg))]>; def LWZtocL : PPCEmitTimePseudo<(outs gprc:$rD), (ins tocentry32:$disp, gprc_nor0:$reg), "#LWZtocL", [(set i32:$rD, (PPCtoc_entry tglobaladdr:$disp, i32:$reg))]>; def ADDIStocHA : PPCEmitTimePseudo<(outs gprc:$rD), (ins gprc_nor0:$reg, tocentry32:$disp), "#ADDIStocHA", [(set i32:$rD, (PPCtoc_entry i32:$reg, tglobaladdr:$disp))]>; // Local Data Transform def ADDItoc : PPCEmitTimePseudo<(outs gprc:$rD), (ins tocentry32:$disp, gprc:$reg), "#ADDItoc", [(set i32:$rD, (PPCtoc_entry tglobaladdr:$disp, i32:$reg))]>; // Get Global (GOT) Base Register offset, from the word immediately preceding // the function label. def UpdateGBR : PPCEmitTimePseudo<(outs gprc:$rD, gprc:$rT), (ins gprc:$rI), "#UpdateGBR", []>; // Pseudo-instruction marked for deletion. When deleting the instruction would // cause iterator invalidation in MIR transformation passes, this pseudo can be // used instead. It will be removed unconditionally at pre-emit time (prior to // branch selection). def UNENCODED_NOP: PPCEmitTimePseudo<(outs), (ins), "#UNENCODED_NOP", []>; // Standard shifts. These are represented separately from the real shifts above // so that we can distinguish between shifts that allow 5-bit and 6-bit shift // amounts. def : Pat<(sra i32:$rS, i32:$rB), (SRAW $rS, $rB)>; def : Pat<(srl i32:$rS, i32:$rB), (SRW $rS, $rB)>; def : Pat<(shl i32:$rS, i32:$rB), (SLW $rS, $rB)>; def : Pat<(i32 (zextloadi1 DForm:$src)), (LBZ DForm:$src)>; def : Pat<(i32 (zextloadi1 XForm:$src)), (LBZX XForm:$src)>; def : Pat<(i32 (extloadi1 DForm:$src)), (LBZ DForm:$src)>; def : Pat<(i32 (extloadi1 XForm:$src)), (LBZX XForm:$src)>; def : Pat<(i32 (extloadi8 DForm:$src)), (LBZ DForm:$src)>; def : Pat<(i32 (extloadi8 XForm:$src)), (LBZX XForm:$src)>; def : Pat<(i32 (extloadi16 DForm:$src)), (LHZ DForm:$src)>; def : Pat<(i32 (extloadi16 XForm:$src)), (LHZX XForm:$src)>; let Predicates = [HasFPU] in { def : Pat<(f64 (extloadf32 DForm:$src)), (COPY_TO_REGCLASS (LFS DForm:$src), F8RC)>; def : Pat<(f64 (extloadf32 XForm:$src)), (COPY_TO_REGCLASS (LFSX XForm:$src), F8RC)>; def : Pat<(f64 (any_fpextend f32:$src)), (COPY_TO_REGCLASS $src, F8RC)>; } // Only seq_cst fences require the heavyweight sync (SYNC 0). // All others can use the lightweight sync (SYNC 1). // source: http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html // The rule for seq_cst is duplicated to work with both 64 bits and 32 bits // versions of Power. def : Pat<(atomic_fence (i64 7), (timm)), (SYNC 0)>, Requires<[HasSYNC]>; def : Pat<(atomic_fence (i32 7), (timm)), (SYNC 0)>, Requires<[HasSYNC]>; def : Pat<(atomic_fence (timm), (timm)), (SYNC 1)>, Requires<[HasSYNC]>; def : Pat<(atomic_fence (timm), (timm)), (MSYNC)>, Requires<[HasOnlyMSYNC]>; let Predicates = [HasFPU] in { // Additional fnmsub patterns for custom node def : Pat<(PPCfnmsub f64:$A, f64:$B, f64:$C), (FNMSUB $A, $B, $C)>; def : Pat<(PPCfnmsub f32:$A, f32:$B, f32:$C), (FNMSUBS $A, $B, $C)>; def : Pat<(fneg (PPCfnmsub f64:$A, f64:$B, f64:$C)), (FMSUB $A, $B, $C)>; def : Pat<(fneg (PPCfnmsub f32:$A, f32:$B, f32:$C)), (FMSUBS $A, $B, $C)>; def : Pat<(PPCfnmsub f64:$A, f64:$B, (fneg f64:$C)), (FNMADD $A, $B, $C)>; def : Pat<(PPCfnmsub f32:$A, f32:$B, (fneg f32:$C)), (FNMADDS $A, $B, $C)>; // FCOPYSIGN's operand types need not agree. def : Pat<(fcopysign f64:$frB, f32:$frA), (FCPSGND (COPY_TO_REGCLASS $frA, F8RC), $frB)>; def : Pat<(fcopysign f32:$frB, f64:$frA), (FCPSGNS (COPY_TO_REGCLASS $frA, F4RC), $frB)>; } // XL Compat intrinsics. def : Pat<(int_ppc_fmsub f64:$A, f64:$B, f64:$C), (FMSUB $A, $B, $C)>; def : Pat<(int_ppc_fmsubs f32:$A, f32:$B, f32:$C), (FMSUBS $A, $B, $C)>; def : Pat<(int_ppc_fnmsub f64:$A, f64:$B, f64:$C), (FNMSUB $A, $B, $C)>; def : Pat<(int_ppc_fnmsubs f32:$A, f32:$B, f32:$C), (FNMSUBS $A, $B, $C)>; def : Pat<(int_ppc_fnmadd f64:$A, f64:$B, f64:$C), (FNMADD $A, $B, $C)>; def : Pat<(int_ppc_fnmadds f32:$A, f32:$B, f32:$C), (FNMADDS $A, $B, $C)>; def : Pat<(int_ppc_fre f64:$A), (FRE $A)>; def : Pat<(int_ppc_fres f32:$A), (FRES $A)>; include "PPCInstrAltivec.td" include "PPCInstrSPE.td" include "PPCInstr64Bit.td" include "PPCInstrVSX.td" include "PPCInstrHTM.td" def crnot : OutPatFrag<(ops node:$in), (CRNOR $in, $in)>; def : Pat<(not i1:$in), (crnot $in)>; // Prefixed instructions may require access to the above defs at a later // time so we include this after the def. include "PPCInstrPrefix.td" // Patterns for arithmetic i1 operations. def : Pat<(add i1:$a, i1:$b), (CRXOR $a, $b)>; def : Pat<(sub i1:$a, i1:$b), (CRXOR $a, $b)>; def : Pat<(mul i1:$a, i1:$b), (CRAND $a, $b)>; // We're sometimes asked to materialize i1 -1, which is just 1 in this case // (-1 is used to mean all bits set). def : Pat<(i1 -1), (CRSET)>; // i1 extensions, implemented in terms of isel. def : Pat<(i32 (zext i1:$in)), (SELECT_I4 $in, (LI 1), (LI 0))>; def : Pat<(i32 (sext i1:$in)), (SELECT_I4 $in, (LI -1), (LI 0))>; def : Pat<(i64 (zext i1:$in)), (SELECT_I8 $in, (LI8 1), (LI8 0))>; def : Pat<(i64 (sext i1:$in)), (SELECT_I8 $in, (LI8 -1), (LI8 0))>; // FIXME: We should choose either a zext or a sext based on other constants // already around. def : Pat<(i32 (anyext i1:$in)), (SELECT_I4 $in, (LI 1), (LI 0))>; def : Pat<(i64 (anyext i1:$in)), (SELECT_I8 $in, (LI8 1), (LI8 0))>; // match setcc on i1 variables. // CRANDC is: // 1 1 : F // 1 0 : T // 0 1 : F // 0 0 : F // // LT is: // -1 -1 : F // -1 0 : T // 0 -1 : F // 0 0 : F // // ULT is: // 1 1 : F // 1 0 : F // 0 1 : T // 0 0 : F def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETLT)), (CRANDC $s1, $s2)>; def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETULT)), (CRANDC $s2, $s1)>; // CRORC is: // 1 1 : T // 1 0 : T // 0 1 : F // 0 0 : T // // LE is: // -1 -1 : T // -1 0 : T // 0 -1 : F // 0 0 : T // // ULE is: // 1 1 : T // 1 0 : F // 0 1 : T // 0 0 : T def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETLE)), (CRORC $s1, $s2)>; def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETULE)), (CRORC $s2, $s1)>; def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETEQ)), (CREQV $s1, $s2)>; // GE is: // -1 -1 : T // -1 0 : F // 0 -1 : T // 0 0 : T // // UGE is: // 1 1 : T // 1 0 : T // 0 1 : F // 0 0 : T def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETGE)), (CRORC $s2, $s1)>; def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETUGE)), (CRORC $s1, $s2)>; // GT is: // -1 -1 : F // -1 0 : F // 0 -1 : T // 0 0 : F // // UGT is: // 1 1 : F // 1 0 : T // 0 1 : F // 0 0 : F def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETGT)), (CRANDC $s2, $s1)>; def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETUGT)), (CRANDC $s1, $s2)>; def : Pat<(i1 (setcc i1:$s1, i1:$s2, SETNE)), (CRXOR $s1, $s2)>; // match setcc on non-i1 (non-vector) variables. Note that SETUEQ, SETOGE, // SETOLE, SETONE, SETULT and SETUGT should be expanded by legalize for // floating-point types. multiclass CRNotPat { def : Pat; def : Pat<(not pattern), result>; // We can also fold the crnot into an extension: def : Pat<(i32 (zext pattern)), (SELECT_I4 result, (LI 0), (LI 1))>; def : Pat<(i32 (sext pattern)), (SELECT_I4 result, (LI 0), (LI -1))>; // We can also fold the crnot into an extension: def : Pat<(i64 (zext pattern)), (SELECT_I8 result, (LI8 0), (LI8 1))>; def : Pat<(i64 (sext pattern)), (SELECT_I8 result, (LI8 0), (LI8 -1))>; // FIXME: We should choose either a zext or a sext based on other constants // already around. def : Pat<(i32 (anyext pattern)), (SELECT_I4 result, (LI 0), (LI 1))>; def : Pat<(i64 (anyext pattern)), (SELECT_I8 result, (LI8 0), (LI8 1))>; } // FIXME: Because of what seems like a bug in TableGen's type-inference code, // we need to write imm:$imm in the output patterns below, not just $imm, or // else the resulting matcher will not correctly add the immediate operand // (making it a register operand instead). // extended SETCC. multiclass ExtSetCCPat { def : Pat<(i32 (zext (i1 (pfrag i32:$s1, cc)))), (rfrag $s1)>; def : Pat<(i64 (zext (i1 (pfrag i64:$s1, cc)))), (rfrag8 $s1)>; def : Pat<(i64 (zext (i1 (pfrag i32:$s1, cc)))), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (rfrag $s1), sub_32)>; def : Pat<(i32 (zext (i1 (pfrag i64:$s1, cc)))), (EXTRACT_SUBREG (rfrag8 $s1), sub_32)>; def : Pat<(i32 (anyext (i1 (pfrag i32:$s1, cc)))), (rfrag $s1)>; def : Pat<(i64 (anyext (i1 (pfrag i64:$s1, cc)))), (rfrag8 $s1)>; def : Pat<(i64 (anyext (i1 (pfrag i32:$s1, cc)))), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (rfrag $s1), sub_32)>; def : Pat<(i32 (anyext (i1 (pfrag i64:$s1, cc)))), (EXTRACT_SUBREG (rfrag8 $s1), sub_32)>; } // Note that we do all inversions below with i(32|64)not, instead of using // (xori x, 1) because on the A2 nor has single-cycle latency while xori // has 2-cycle latency. defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (CNTLZW $in), 27, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (CNTLZD $in), 58, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (i32not (CNTLZW $in)), 27, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (i64not (CNTLZD $in)), 58, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM $in, 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL $in, 1, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (i32not $in), 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (i64not $in), 1, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (ANDC (NEG $in), $in), 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (ANDC8 (NEG8 $in), $in), 1, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (ORC $in, (NEG $in)), 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (ORC8 $in, (NEG8 $in)), 1, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (AND $in, (ADDI $in, 1)), 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (AND8 $in, (ADDI8 $in, 1)), 1, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (NAND $in, (ADDI $in, 1)), 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (NAND8 $in, (ADDI8 $in, 1)), 1, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM (i32not $in), 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL (i64not $in), 1, 63)> >; defm : ExtSetCCPat, OutPatFrag<(ops node:$in), (RLWINM $in, 1, 31, 31)>, OutPatFrag<(ops node:$in), (RLDICL $in, 1, 63)> >; // An extended SETCC with shift amount. multiclass ExtSetCCShiftPat { def : Pat<(i32 (zext (i1 (pfrag i32:$s1, i32:$sa, cc)))), (rfrag $s1, $sa)>; def : Pat<(i64 (zext (i1 (pfrag i64:$s1, i32:$sa, cc)))), (rfrag8 $s1, $sa)>; def : Pat<(i64 (zext (i1 (pfrag i32:$s1, i32:$sa, cc)))), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (rfrag $s1, $sa), sub_32)>; def : Pat<(i32 (zext (i1 (pfrag i64:$s1, i32:$sa, cc)))), (EXTRACT_SUBREG (rfrag8 $s1, $sa), sub_32)>; def : Pat<(i32 (anyext (i1 (pfrag i32:$s1, i32:$sa, cc)))), (rfrag $s1, $sa)>; def : Pat<(i64 (anyext (i1 (pfrag i64:$s1, i32:$sa, cc)))), (rfrag8 $s1, $sa)>; def : Pat<(i64 (anyext (i1 (pfrag i32:$s1, i32:$sa, cc)))), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (rfrag $s1, $sa), sub_32)>; def : Pat<(i32 (anyext (i1 (pfrag i64:$s1, i32:$sa, cc)))), (EXTRACT_SUBREG (rfrag8 $s1, $sa), sub_32)>; } defm : ExtSetCCShiftPat, OutPatFrag<(ops node:$in, node:$sa), (RLWNM $in, (SUBFIC $sa, 32), 31, 31)>, OutPatFrag<(ops node:$in, node:$sa), (RLDCL $in, (SUBFIC $sa, 64), 63)> >; defm : ExtSetCCShiftPat, OutPatFrag<(ops node:$in, node:$sa), (RLWNM (i32not $in), (SUBFIC $sa, 32), 31, 31)>, OutPatFrag<(ops node:$in, node:$sa), (RLDCL (i64not $in), (SUBFIC $sa, 64), 63)> >; // SETCC for i32. def : Pat<(i1 (setcc i32:$s1, immZExt16:$imm, SETULT)), (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_lt)>; def : Pat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETLT)), (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_lt)>; def : Pat<(i1 (setcc i32:$s1, immZExt16:$imm, SETUGT)), (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_gt)>; def : Pat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETGT)), (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_gt)>; def : Pat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETEQ)), (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_eq)>; def : Pat<(i1 (setcc i32:$s1, immZExt16:$imm, SETEQ)), (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_eq)>; // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpw cr0, r3, r2 // beq cr0,L6 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmplwi cr0,r0,0x5678 // beq cr0,L6 def : Pat<(i1 (setcc i32:$s1, imm:$imm, SETEQ)), (EXTRACT_SUBREG (CMPLWI (XORIS $s1, (HI16 imm:$imm)), (LO16 imm:$imm)), sub_eq)>; def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETULT)), (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_lt)>; def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETLT)), (EXTRACT_SUBREG (CMPW $s1, $s2), sub_lt)>; def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETUGT)), (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_gt)>; def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETGT)), (EXTRACT_SUBREG (CMPW $s1, $s2), sub_gt)>; def : Pat<(i1 (setcc i32:$s1, i32:$s2, SETEQ)), (EXTRACT_SUBREG (CMPW $s1, $s2), sub_eq)>; // SETCC for i64. def : Pat<(i1 (setcc i64:$s1, immZExt16:$imm, SETULT)), (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_lt)>; def : Pat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETLT)), (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_lt)>; def : Pat<(i1 (setcc i64:$s1, immZExt16:$imm, SETUGT)), (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_gt)>; def : Pat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETGT)), (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_gt)>; def : Pat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETEQ)), (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_eq)>; def : Pat<(i1 (setcc i64:$s1, immZExt16:$imm, SETEQ)), (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_eq)>; // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpd cr0, r3, r2 // beq cr0,L6 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmpldi cr0,r0,0x5678 // beq cr0,L6 def : Pat<(i1 (setcc i64:$s1, imm64ZExt32:$imm, SETEQ)), (EXTRACT_SUBREG (CMPLDI (XORIS8 $s1, (HI16 imm:$imm)), (LO16 imm:$imm)), sub_eq)>; def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETULT)), (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_lt)>; def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETLT)), (EXTRACT_SUBREG (CMPD $s1, $s2), sub_lt)>; def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETUGT)), (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_gt)>; def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETGT)), (EXTRACT_SUBREG (CMPD $s1, $s2), sub_gt)>; def : Pat<(i1 (setcc i64:$s1, i64:$s2, SETEQ)), (EXTRACT_SUBREG (CMPD $s1, $s2), sub_eq)>; let Predicates = [IsNotISA3_1] in { // Instantiations of CRNotPat for i32. defm : CRNotPat<(i1 (setcc i32:$s1, immZExt16:$imm, SETUGE)), (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_lt)>; defm : CRNotPat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETGE)), (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_lt)>; defm : CRNotPat<(i1 (setcc i32:$s1, immZExt16:$imm, SETULE)), (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_gt)>; defm : CRNotPat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETLE)), (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_gt)>; defm : CRNotPat<(i1 (setcc i32:$s1, imm32SExt16:$imm, SETNE)), (EXTRACT_SUBREG (CMPWI $s1, imm:$imm), sub_eq)>; defm : CRNotPat<(i1 (setcc i32:$s1, immZExt16:$imm, SETNE)), (EXTRACT_SUBREG (CMPLWI $s1, imm:$imm), sub_eq)>; defm : CRNotPat<(i1 (setcc i32:$s1, imm:$imm, SETNE)), (EXTRACT_SUBREG (CMPLWI (XORIS $s1, (HI16 imm:$imm)), (LO16 imm:$imm)), sub_eq)>; defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETUGE)), (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_lt)>; defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETGE)), (EXTRACT_SUBREG (CMPW $s1, $s2), sub_lt)>; defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETULE)), (EXTRACT_SUBREG (CMPLW $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETLE)), (EXTRACT_SUBREG (CMPW $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (setcc i32:$s1, i32:$s2, SETNE)), (EXTRACT_SUBREG (CMPW $s1, $s2), sub_eq)>; // Instantiations of CRNotPat for i64. defm : CRNotPat<(i1 (setcc i64:$s1, immZExt16:$imm, SETUGE)), (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_lt)>; defm : CRNotPat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETGE)), (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_lt)>; defm : CRNotPat<(i1 (setcc i64:$s1, immZExt16:$imm, SETULE)), (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_gt)>; defm : CRNotPat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETLE)), (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_gt)>; defm : CRNotPat<(i1 (setcc i64:$s1, imm64SExt16:$imm, SETNE)), (EXTRACT_SUBREG (CMPDI $s1, imm:$imm), sub_eq)>; defm : CRNotPat<(i1 (setcc i64:$s1, immZExt16:$imm, SETNE)), (EXTRACT_SUBREG (CMPLDI $s1, imm:$imm), sub_eq)>; defm : CRNotPat<(i1 (setcc i64:$s1, imm64ZExt32:$imm, SETNE)), (EXTRACT_SUBREG (CMPLDI (XORIS8 $s1, (HI16 imm:$imm)), (LO16 imm:$imm)), sub_eq)>; defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETUGE)), (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_lt)>; defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETGE)), (EXTRACT_SUBREG (CMPD $s1, $s2), sub_lt)>; defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETULE)), (EXTRACT_SUBREG (CMPLD $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETLE)), (EXTRACT_SUBREG (CMPD $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (setcc i64:$s1, i64:$s2, SETNE)), (EXTRACT_SUBREG (CMPD $s1, $s2), sub_eq)>; } multiclass FSetCCPat { defm : CRNotPat<(i1 (SetCC Ty:$s1, Ty:$s2, SETUGE)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_lt)>; defm : CRNotPat<(i1 (SetCC Ty:$s1, Ty:$s2, SETGE)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_lt)>; defm : CRNotPat<(i1 (SetCC Ty:$s1, Ty:$s2, SETULE)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (SetCC Ty:$s1, Ty:$s2, SETLE)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (SetCC Ty:$s1, Ty:$s2, SETUNE)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_eq)>; defm : CRNotPat<(i1 (SetCC Ty:$s1, Ty:$s2, SETNE)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_eq)>; defm : CRNotPat<(i1 (SetCC Ty:$s1, Ty:$s2, SETO)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_un)>; def : Pat<(i1 (SetCC Ty:$s1, Ty:$s2, SETOLT)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_lt)>; def : Pat<(i1 (SetCC Ty:$s1, Ty:$s2, SETLT)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_lt)>; def : Pat<(i1 (SetCC Ty:$s1, Ty:$s2, SETOGT)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_gt)>; def : Pat<(i1 (SetCC Ty:$s1, Ty:$s2, SETGT)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_gt)>; def : Pat<(i1 (SetCC Ty:$s1, Ty:$s2, SETOEQ)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_eq)>; def : Pat<(i1 (SetCC Ty:$s1, Ty:$s2, SETEQ)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_eq)>; def : Pat<(i1 (SetCC Ty:$s1, Ty:$s2, SETUO)), (EXTRACT_SUBREG (FCmp $s1, $s2), sub_un)>; } let Predicates = [HasFPU] in { // FCMPU: If either of the operands is a Signaling NaN, then VXSNAN is set. // SETCC for f32. defm : FSetCCPat; // SETCC for f64. defm : FSetCCPat; // SETCC for f128. defm : FSetCCPat; // FCMPO: If either of the operands is a Signaling NaN, then VXSNAN is set and, // if neither operand is a Signaling NaN but at least one operand is a Quiet NaN, // then VXVC is set. // SETCCS for f32. defm : FSetCCPat; // SETCCS for f64. defm : FSetCCPat; // SETCCS for f128. defm : FSetCCPat; } // This must be in this file because it relies on patterns defined in this file // after the inclusion of the instruction sets. let Predicates = [HasSPE] in { // SETCC for f32. def : Pat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETOLT)), (EXTRACT_SUBREG (EFSCMPLT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETLT)), (EXTRACT_SUBREG (EFSCMPLT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETOGT)), (EXTRACT_SUBREG (EFSCMPGT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETGT)), (EXTRACT_SUBREG (EFSCMPGT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETOEQ)), (EXTRACT_SUBREG (EFSCMPEQ $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETEQ)), (EXTRACT_SUBREG (EFSCMPEQ $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETUGE)), (EXTRACT_SUBREG (EFSCMPLT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETGE)), (EXTRACT_SUBREG (EFSCMPLT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETULE)), (EXTRACT_SUBREG (EFSCMPGT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETLE)), (EXTRACT_SUBREG (EFSCMPGT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETUNE)), (EXTRACT_SUBREG (EFSCMPEQ $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f32:$s1, f32:$s2, SETNE)), (EXTRACT_SUBREG (EFSCMPEQ $s1, $s2), sub_gt)>; // SETCC for f64. def : Pat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETOLT)), (EXTRACT_SUBREG (EFDCMPLT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETLT)), (EXTRACT_SUBREG (EFDCMPLT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETOGT)), (EXTRACT_SUBREG (EFDCMPGT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETGT)), (EXTRACT_SUBREG (EFDCMPGT $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETOEQ)), (EXTRACT_SUBREG (EFDCMPEQ $s1, $s2), sub_gt)>; def : Pat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETEQ)), (EXTRACT_SUBREG (EFDCMPEQ $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETUGE)), (EXTRACT_SUBREG (EFDCMPLT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETGE)), (EXTRACT_SUBREG (EFDCMPLT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETULE)), (EXTRACT_SUBREG (EFDCMPGT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETLE)), (EXTRACT_SUBREG (EFDCMPGT $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETUNE)), (EXTRACT_SUBREG (EFDCMPEQ $s1, $s2), sub_gt)>; defm : CRNotPat<(i1 (any_fsetccs f64:$s1, f64:$s2, SETNE)), (EXTRACT_SUBREG (EFDCMPEQ $s1, $s2), sub_gt)>; } // match select on i1 variables: def : Pat<(i1 (select i1:$cond, i1:$tval, i1:$fval)), (CROR (CRAND $cond , $tval), (CRAND (crnot $cond), $fval))>; // match selectcc on i1 variables: // select (lhs == rhs), tval, fval is: // ((lhs == rhs) & tval) | (!(lhs == rhs) & fval) def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETLT)), (CROR (CRAND (CRANDC $lhs, $rhs), $tval), (CRAND (CRORC $rhs, $lhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETULT)), (CROR (CRAND (CRANDC $rhs, $lhs), $tval), (CRAND (CRORC $lhs, $rhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETLE)), (CROR (CRAND (CRORC $lhs, $rhs), $tval), (CRAND (CRANDC $rhs, $lhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETULE)), (CROR (CRAND (CRORC $rhs, $lhs), $tval), (CRAND (CRANDC $lhs, $rhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETEQ)), (CROR (CRAND (CREQV $lhs, $rhs), $tval), (CRAND (CRXOR $lhs, $rhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETGE)), (CROR (CRAND (CRORC $rhs, $lhs), $tval), (CRAND (CRANDC $lhs, $rhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETUGE)), (CROR (CRAND (CRORC $lhs, $rhs), $tval), (CRAND (CRANDC $rhs, $lhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETGT)), (CROR (CRAND (CRANDC $rhs, $lhs), $tval), (CRAND (CRORC $lhs, $rhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETUGT)), (CROR (CRAND (CRANDC $lhs, $rhs), $tval), (CRAND (CRORC $rhs, $lhs), $fval))>; def : Pat <(i1 (selectcc i1:$lhs, i1:$rhs, i1:$tval, i1:$fval, SETNE)), (CROR (CRAND (CREQV $lhs, $rhs), $fval), (CRAND (CRXOR $lhs, $rhs), $tval))>; // match selectcc on i1 variables with non-i1 output. def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETLT)), (SELECT_I4 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETULT)), (SELECT_I4 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETLE)), (SELECT_I4 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETULE)), (SELECT_I4 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETEQ)), (SELECT_I4 (CREQV $lhs, $rhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETGE)), (SELECT_I4 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETUGE)), (SELECT_I4 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETGT)), (SELECT_I4 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETUGT)), (SELECT_I4 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(i32 (selectcc i1:$lhs, i1:$rhs, i32:$tval, i32:$fval, SETNE)), (SELECT_I4 (CRXOR $lhs, $rhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETLT)), (SELECT_I8 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETULT)), (SELECT_I8 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETLE)), (SELECT_I8 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETULE)), (SELECT_I8 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETEQ)), (SELECT_I8 (CREQV $lhs, $rhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETGE)), (SELECT_I8 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETUGE)), (SELECT_I8 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETGT)), (SELECT_I8 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETUGT)), (SELECT_I8 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(i64 (selectcc i1:$lhs, i1:$rhs, i64:$tval, i64:$fval, SETNE)), (SELECT_I8 (CRXOR $lhs, $rhs), $tval, $fval)>; let Predicates = [HasFPU] in { def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLT)), (SELECT_F4 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETULT)), (SELECT_F4 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLE)), (SELECT_F4 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETULE)), (SELECT_F4 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETEQ)), (SELECT_F4 (CREQV $lhs, $rhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGE)), (SELECT_F4 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETUGE)), (SELECT_F4 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGT)), (SELECT_F4 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETUGT)), (SELECT_F4 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETNE)), (SELECT_F4 (CRXOR $lhs, $rhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLT)), (SELECT_F8 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETULT)), (SELECT_F8 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLE)), (SELECT_F8 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETULE)), (SELECT_F8 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETEQ)), (SELECT_F8 (CREQV $lhs, $rhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGE)), (SELECT_F8 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETUGE)), (SELECT_F8 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGT)), (SELECT_F8 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETUGT)), (SELECT_F8 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETNE)), (SELECT_F8 (CRXOR $lhs, $rhs), $tval, $fval)>; } def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETLT)), (SELECT_F16 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETULT)), (SELECT_F16 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETLE)), (SELECT_F16 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETULE)), (SELECT_F16 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETEQ)), (SELECT_F16 (CREQV $lhs, $rhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETGE)), (SELECT_F16 (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETUGE)), (SELECT_F16 (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETGT)), (SELECT_F16 (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETUGT)), (SELECT_F16 (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(f128 (selectcc i1:$lhs, i1:$rhs, f128:$tval, f128:$fval, SETNE)), (SELECT_F16 (CRXOR $lhs, $rhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETLT)), (SELECT_VRRC (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETULT)), (SELECT_VRRC (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETLE)), (SELECT_VRRC (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETULE)), (SELECT_VRRC (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETEQ)), (SELECT_VRRC (CREQV $lhs, $rhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETGE)), (SELECT_VRRC (CRORC $rhs, $lhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETUGE)), (SELECT_VRRC (CRORC $lhs, $rhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETGT)), (SELECT_VRRC (CRANDC $rhs, $lhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETUGT)), (SELECT_VRRC (CRANDC $lhs, $rhs), $tval, $fval)>; def : Pat<(v4i32 (selectcc i1:$lhs, i1:$rhs, v4i32:$tval, v4i32:$fval, SETNE)), (SELECT_VRRC (CRXOR $lhs, $rhs), $tval, $fval)>; def ANDI_rec_1_EQ_BIT : PPCCustomInserterPseudo<(outs crbitrc:$dst), (ins gprc:$in), "#ANDI_rec_1_EQ_BIT", [(set i1:$dst, (trunc (not i32:$in)))]>; def ANDI_rec_1_GT_BIT : PPCCustomInserterPseudo<(outs crbitrc:$dst), (ins gprc:$in), "#ANDI_rec_1_GT_BIT", [(set i1:$dst, (trunc i32:$in))]>; def ANDI_rec_1_EQ_BIT8 : PPCCustomInserterPseudo<(outs crbitrc:$dst), (ins g8rc:$in), "#ANDI_rec_1_EQ_BIT8", [(set i1:$dst, (trunc (not i64:$in)))]>; def ANDI_rec_1_GT_BIT8 : PPCCustomInserterPseudo<(outs crbitrc:$dst), (ins g8rc:$in), "#ANDI_rec_1_GT_BIT8", [(set i1:$dst, (trunc i64:$in))]>; def : Pat<(i1 (not (trunc i32:$in))), (ANDI_rec_1_EQ_BIT $in)>; def : Pat<(i1 (not (trunc i64:$in))), (ANDI_rec_1_EQ_BIT8 $in)>; def : Pat<(int_ppc_fsel f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), (FSELD $FRA, $FRC, $FRB)>; def : Pat<(int_ppc_frsqrte f8rc:$frB), (FRSQRTE $frB)>; def : Pat<(int_ppc_frsqrtes f4rc:$frB), (FRSQRTES $frB)>; //===----------------------------------------------------------------------===// // PowerPC Instructions used for assembler/disassembler only // // FIXME: For B=0 or B > 8, the registers following RT are used. // WARNING: Do not add patterns for this instruction without fixing this. def LSWI : XForm_base_r3xo_memOp<31, 597, (outs gprc:$RT), (ins gprc:$A, u5imm:$B), "lswi $RT, $A, $B", IIC_LdStLoad, []>; // FIXME: For B=0 or B > 8, the registers following RT are used. // WARNING: Do not add patterns for this instruction without fixing this. def STSWI : XForm_base_r3xo_memOp<31, 725, (outs), (ins gprc:$RT, gprc:$A, u5imm:$B), "stswi $RT, $A, $B", IIC_LdStLoad, []>; def ISYNC : XLForm_2_ext<19, 150, 0, 0, 0, (outs), (ins), "isync", IIC_SprISYNC, []>; def ICBI : XForm_1a<31, 982, (outs), (ins memrr:$src), "icbi $src", IIC_LdStICBI, []>; def WAIT : XForm_24_sync<31, 30, (outs), (ins u2imm:$L), "wait $L", IIC_LdStLoad, []>; def MBAR : XForm_mbar<31, 854, (outs), (ins u5imm:$MO), "mbar $MO", IIC_LdStLoad>, Requires<[IsBookE]>; def MTSR: XForm_sr<31, 210, (outs), (ins gprc:$RS, u4imm:$SR), "mtsr $SR, $RS", IIC_SprMTSR>; def MFSR: XForm_sr<31, 595, (outs gprc:$RS), (ins u4imm:$SR), "mfsr $RS, $SR", IIC_SprMFSR>; def MTSRIN: XForm_srin<31, 242, (outs), (ins gprc:$RS, gprc:$RB), "mtsrin $RS, $RB", IIC_SprMTSR>; def MFSRIN: XForm_srin<31, 659, (outs gprc:$RS), (ins gprc:$RB), "mfsrin $RS, $RB", IIC_SprMFSR>; def MTMSR: XForm_mtmsr<31, 146, (outs), (ins gprc:$RS, u1imm:$L), "mtmsr $RS, $L", IIC_SprMTMSR>; def WRTEE: XForm_mtmsr<31, 131, (outs), (ins gprc:$RS), "wrtee $RS", IIC_SprMTMSR>, Requires<[IsBookE]> { let L = 0; } def WRTEEI: I<31, (outs), (ins i1imm:$E), "wrteei $E", IIC_SprMTMSR>, Requires<[IsBookE]> { bits<1> E; let Inst{16} = E; let Inst{21-30} = 163; } def DCCCI : XForm_tlb<454, (outs), (ins gprc:$A, gprc:$B), "dccci $A, $B", IIC_LdStLoad>, Requires<[IsPPC4xx]>; def ICCCI : XForm_tlb<966, (outs), (ins gprc:$A, gprc:$B), "iccci $A, $B", IIC_LdStLoad>, Requires<[IsPPC4xx]>; def : InstAlias<"dci 0", (DCCCI R0, R0)>, Requires<[IsPPC4xx]>; def : InstAlias<"dccci", (DCCCI R0, R0)>, Requires<[IsPPC4xx]>; def : InstAlias<"ici 0", (ICCCI R0, R0)>, Requires<[IsPPC4xx]>; def : InstAlias<"iccci", (ICCCI R0, R0)>, Requires<[IsPPC4xx]>; def MFMSR : XForm_rs<31, 83, (outs gprc:$RT), (ins), "mfmsr $RT", IIC_SprMFMSR, []>; def MTMSRD : XForm_mtmsr<31, 178, (outs), (ins gprc:$RS, u1imm:$L), "mtmsrd $RS, $L", IIC_SprMTMSRD>; def MCRFS : XLForm_3<63, 64, (outs crrc:$BF), (ins crrc:$BFA), "mcrfs $BF, $BFA", IIC_BrMCR>; // All MTFSF variants may change the rounding mode so conservatively set it // as an implicit def for all of them. let Predicates = [HasFPU] in { let Defs = [RM], hasSideEffects = 1 in { let isCodeGenOnly = 1, Pattern = [(int_ppc_mtfsfi timm:$BF, timm:$U)], W = 0 in def MTFSFIb : XLForm_4<63, 134, (outs), (ins u3imm:$BF, u4imm:$U), "mtfsfi $BF, $U", IIC_IntMFFS>; def MTFSFI : XLForm_4<63, 134, (outs), (ins u3imm:$BF, u4imm:$U, i32imm:$W), "mtfsfi $BF, $U, $W", IIC_IntMFFS>; let Defs = [CR1] in def MTFSFI_rec : XLForm_4<63, 134, (outs), (ins u3imm:$BF, u4imm:$U, u1imm:$W), "mtfsfi. $BF, $U, $W", IIC_IntMFFS>, isRecordForm; def MTFSF : XFLForm_1<63, 711, (outs), (ins i32imm:$FLM, f8rc:$FRB, u1imm:$L, i32imm:$W), "mtfsf $FLM, $FRB, $L, $W", IIC_IntMFFS, []>; let Defs = [CR1] in def MTFSF_rec : XFLForm_1<63, 711, (outs), (ins i32imm:$FLM, f8rc:$FRB, u1imm:$L, i32imm:$W), "mtfsf. $FLM, $FRB, $L, $W", IIC_IntMFFS, []>, isRecordForm; } def : InstAlias<"mtfsfi $BF, $U", (MTFSFI u3imm:$BF, u4imm:$U, 0)>; def : InstAlias<"mtfsfi. $BF, $U", (MTFSFI_rec u3imm:$BF, u4imm:$U, 0)>; def : InstAlias<"mtfsf $FLM, $FRB", (MTFSF i32imm:$FLM, f8rc:$FRB, 0, 0)>; def : InstAlias<"mtfsf. $FLM, $FRB", (MTFSF_rec i32imm:$FLM, f8rc:$FRB, 0, 0)>; } def SLBIE : XForm_16b<31, 434, (outs), (ins gprc:$RB), "slbie $RB", IIC_SprSLBIE, []>; def SLBMTE : XForm_26<31, 402, (outs), (ins gprc:$RS, gprc:$RB), "slbmte $RS, $RB", IIC_SprSLBMTE, []>; def SLBMFEE : XForm_26<31, 915, (outs gprc:$RT), (ins gprc:$RB), "slbmfee $RT, $RB", IIC_SprSLBMFEE, []>; def SLBMFEV : XLForm_1_gen<31, 851, (outs gprc:$RT), (ins gprc:$RB), "slbmfev $RT, $RB", IIC_SprSLBMFEV, []>; def SLBIA : XForm_0<31, 498, (outs), (ins), "slbia", IIC_SprSLBIA, []>; let Defs = [CR0] in def SLBFEE_rec : XForm_26<31, 979, (outs gprc:$RT), (ins gprc:$RB), "slbfee. $RT, $RB", IIC_SprSLBFEE, []>, isRecordForm; def TLBIA : XForm_0<31, 370, (outs), (ins), "tlbia", IIC_SprTLBIA, []>; def TLBSYNC : XForm_0<31, 566, (outs), (ins), "tlbsync", IIC_SprTLBSYNC, []>; def TLBIEL : XForm_16b<31, 274, (outs), (ins gprc:$RB), "tlbiel $RB", IIC_SprTLBIEL, []>; def TLBLD : XForm_16b<31, 978, (outs), (ins gprc:$RB), "tlbld $RB", IIC_LdStLoad, []>, Requires<[IsPPC6xx]>; def TLBLI : XForm_16b<31, 1010, (outs), (ins gprc:$RB), "tlbli $RB", IIC_LdStLoad, []>, Requires<[IsPPC6xx]>; def TLBIE : XForm_26<31, 306, (outs), (ins gprc:$RS, gprc:$RB), "tlbie $RB,$RS", IIC_SprTLBIE, []>; def TLBSX : XForm_tlb<914, (outs), (ins gprc:$A, gprc:$B), "tlbsx $A, $B", IIC_LdStLoad>, Requires<[IsBookE]>; def TLBIVAX : XForm_tlb<786, (outs), (ins gprc:$A, gprc:$B), "tlbivax $A, $B", IIC_LdStLoad>, Requires<[IsBookE]>; def TLBRE : XForm_24_eieio<31, 946, (outs), (ins), "tlbre", IIC_LdStLoad, []>, Requires<[IsBookE]>; def TLBWE : XForm_24_eieio<31, 978, (outs), (ins), "tlbwe", IIC_LdStLoad, []>, Requires<[IsBookE]>; def TLBRE2 : XForm_tlbws<31, 946, (outs gprc:$RS), (ins gprc:$A, i1imm:$WS), "tlbre $RS, $A, $WS", IIC_LdStLoad, []>, Requires<[IsPPC4xx]>; def TLBWE2 : XForm_tlbws<31, 978, (outs), (ins gprc:$RS, gprc:$A, i1imm:$WS), "tlbwe $RS, $A, $WS", IIC_LdStLoad, []>, Requires<[IsPPC4xx]>; def TLBSX2 : XForm_base_r3xo<31, 914, (outs), (ins gprc:$RST, gprc:$A, gprc:$B), "tlbsx $RST, $A, $B", IIC_LdStLoad, []>, Requires<[IsPPC4xx]>; def TLBSX2D : XForm_base_r3xo<31, 914, (outs), (ins gprc:$RST, gprc:$A, gprc:$B), "tlbsx. $RST, $A, $B", IIC_LdStLoad, []>, Requires<[IsPPC4xx]>, isRecordForm; def RFID : XForm_0<19, 18, (outs), (ins), "rfid", IIC_IntRFID, []>; def RFI : XForm_0<19, 50, (outs), (ins), "rfi", IIC_SprRFI, []>, Requires<[IsBookE]>; def RFCI : XForm_0<19, 51, (outs), (ins), "rfci", IIC_BrB, []>, Requires<[IsBookE]>; def RFDI : XForm_0<19, 39, (outs), (ins), "rfdi", IIC_BrB, []>, Requires<[IsE500]>; def RFMCI : XForm_0<19, 38, (outs), (ins), "rfmci", IIC_BrB, []>, Requires<[IsE500]>; def MFDCR : XFXForm_1<31, 323, (outs gprc:$RT), (ins i32imm:$SPR), "mfdcr $RT, $SPR", IIC_SprMFSPR>, Requires<[IsPPC4xx]>; def MTDCR : XFXForm_1<31, 451, (outs), (ins gprc:$RT, i32imm:$SPR), "mtdcr $SPR, $RT", IIC_SprMTSPR>, Requires<[IsPPC4xx]>; def HRFID : XLForm_1_np<19, 274, (outs), (ins), "hrfid", IIC_BrB, []>; def NAP : XLForm_1_np<19, 434, (outs), (ins), "nap", IIC_BrB, []>; def ATTN : XForm_attn<0, 256, (outs), (ins), "attn", IIC_BrB>; def LBZCIX : XForm_base_r3xo_memOp<31, 853, (outs gprc:$RST), (ins gprc:$A, gprc:$B), "lbzcix $RST, $A, $B", IIC_LdStLoad, []>; def LHZCIX : XForm_base_r3xo_memOp<31, 821, (outs gprc:$RST), (ins gprc:$A, gprc:$B), "lhzcix $RST, $A, $B", IIC_LdStLoad, []>; def LWZCIX : XForm_base_r3xo_memOp<31, 789, (outs gprc:$RST), (ins gprc:$A, gprc:$B), "lwzcix $RST, $A, $B", IIC_LdStLoad, []>; def LDCIX : XForm_base_r3xo_memOp<31, 885, (outs gprc:$RST), (ins gprc:$A, gprc:$B), "ldcix $RST, $A, $B", IIC_LdStLoad, []>; def STBCIX : XForm_base_r3xo_memOp<31, 981, (outs), (ins gprc:$RST, gprc:$A, gprc:$B), "stbcix $RST, $A, $B", IIC_LdStLoad, []>; def STHCIX : XForm_base_r3xo_memOp<31, 949, (outs), (ins gprc:$RST, gprc:$A, gprc:$B), "sthcix $RST, $A, $B", IIC_LdStLoad, []>; def STWCIX : XForm_base_r3xo_memOp<31, 917, (outs), (ins gprc:$RST, gprc:$A, gprc:$B), "stwcix $RST, $A, $B", IIC_LdStLoad, []>; def STDCIX : XForm_base_r3xo_memOp<31, 1013, (outs), (ins gprc:$RST, gprc:$A, gprc:$B), "stdcix $RST, $A, $B", IIC_LdStLoad, []>; // External PID Load Store Instructions def LBEPX : XForm_1<31, 95, (outs gprc:$rD), (ins memrr:$src), "lbepx $rD, $src", IIC_LdStLoad, []>, Requires<[IsE500]>; def LFDEPX : XForm_25<31, 607, (outs f8rc:$frD), (ins memrr:$src), "lfdepx $frD, $src", IIC_LdStLFD, []>, Requires<[IsE500]>; def LHEPX : XForm_1<31, 287, (outs gprc:$rD), (ins memrr:$src), "lhepx $rD, $src", IIC_LdStLoad, []>, Requires<[IsE500]>; def LWEPX : XForm_1<31, 31, (outs gprc:$rD), (ins memrr:$src), "lwepx $rD, $src", IIC_LdStLoad, []>, Requires<[IsE500]>; def STBEPX : XForm_8<31, 223, (outs), (ins gprc:$rS, memrr:$dst), "stbepx $rS, $dst", IIC_LdStStore, []>, Requires<[IsE500]>; def STFDEPX : XForm_28_memOp<31, 735, (outs), (ins f8rc:$frS, memrr:$dst), "stfdepx $frS, $dst", IIC_LdStSTFD, []>, Requires<[IsE500]>; def STHEPX : XForm_8<31, 415, (outs), (ins gprc:$rS, memrr:$dst), "sthepx $rS, $dst", IIC_LdStStore, []>, Requires<[IsE500]>; def STWEPX : XForm_8<31, 159, (outs), (ins gprc:$rS, memrr:$dst), "stwepx $rS, $dst", IIC_LdStStore, []>, Requires<[IsE500]>; def DCBFEP : DCB_Form<127, 0, (outs), (ins memrr:$dst), "dcbfep $dst", IIC_LdStDCBF, []>, Requires<[IsE500]>; def DCBSTEP : DCB_Form<63, 0, (outs), (ins memrr:$dst), "dcbstep $dst", IIC_LdStDCBF, []>, Requires<[IsE500]>; def DCBTEP : DCB_Form_hint<319, (outs), (ins memrr:$dst, u5imm:$TH), "dcbtep $TH, $dst", IIC_LdStDCBF, []>, Requires<[IsE500]>; def DCBTSTEP : DCB_Form_hint<255, (outs), (ins memrr:$dst, u5imm:$TH), "dcbtstep $TH, $dst", IIC_LdStDCBF, []>, Requires<[IsE500]>; def DCBZEP : DCB_Form<1023, 0, (outs), (ins memrr:$dst), "dcbzep $dst", IIC_LdStDCBF, []>, Requires<[IsE500]>; def DCBZLEP : DCB_Form<1023, 1, (outs), (ins memrr:$dst), "dcbzlep $dst", IIC_LdStDCBF, []>, Requires<[IsE500]>; def ICBIEP : XForm_1a<31, 991, (outs), (ins memrr:$src), "icbiep $src", IIC_LdStICBI, []>, Requires<[IsE500]>; //===----------------------------------------------------------------------===// // PowerPC Assembler Instruction Aliases // // Pseudo-instructions for alternate assembly syntax (never used by codegen). // These are aliases that require C++ handling to convert to the target // instruction, while InstAliases can be handled directly by tblgen. class PPCAsmPseudo : Instruction { let Namespace = "PPC"; bit PPC64 = 0; // Default value, override with isPPC64 let OutOperandList = (outs); let InOperandList = iops; let Pattern = []; let AsmString = asm; let isAsmParserOnly = 1; let isPseudo = 1; let hasNoSchedulingInfo = 1; } def : InstAlias<"sc", (SC 0)>; def : InstAlias<"sync", (SYNC 0)>, Requires<[HasSYNC]>; def : InstAlias<"hwsync", (SYNC 0), 0>, Requires<[HasSYNC]>; def : InstAlias<"msync", (SYNC 0), 0>, Requires<[HasSYNC]>; def : InstAlias<"lwsync", (SYNC 1)>, Requires<[HasSYNC]>; def : InstAlias<"ptesync", (SYNC 2)>, Requires<[HasSYNC]>; def : InstAlias<"wait", (WAIT 0)>; def : InstAlias<"waitrsv", (WAIT 1)>; def : InstAlias<"waitimpl", (WAIT 2)>; def : InstAlias<"mbar", (MBAR 0)>, Requires<[IsBookE]>; def DCBTx : PPCAsmPseudo<"dcbt $dst", (ins memrr:$dst)>; def DCBTSTx : PPCAsmPseudo<"dcbtst $dst", (ins memrr:$dst)>; def DCBTCT : PPCAsmPseudo<"dcbtct $dst, $TH", (ins memrr:$dst, u5imm:$TH)>; def DCBTDS : PPCAsmPseudo<"dcbtds $dst, $TH", (ins memrr:$dst, u5imm:$TH)>; def DCBTT : PPCAsmPseudo<"dcbtt $dst", (ins memrr:$dst)>; def DCBTSTCT : PPCAsmPseudo<"dcbtstct $dst, $TH", (ins memrr:$dst, u5imm:$TH)>; def DCBTSTDS : PPCAsmPseudo<"dcbtstds $dst, $TH", (ins memrr:$dst, u5imm:$TH)>; def DCBTSTT : PPCAsmPseudo<"dcbtstt $dst", (ins memrr:$dst)>; def DCBFx : PPCAsmPseudo<"dcbf $dst", (ins memrr:$dst)>; def DCBFL : PPCAsmPseudo<"dcbfl $dst", (ins memrr:$dst)>; def DCBFLP : PPCAsmPseudo<"dcbflp $dst", (ins memrr:$dst)>; def : Pat<(int_ppc_isync), (ISYNC)>; def : Pat<(int_ppc_dcbfl xoaddr:$dst), (DCBF 1, xoaddr:$dst)>; def : Pat<(int_ppc_dcbflp xoaddr:$dst), (DCBF 3, xoaddr:$dst)>; let Predicates = [IsISA3_1] in { def DCBFPS : PPCAsmPseudo<"dcbfps $dst", (ins memrr:$dst)>; def DCBSTPS : PPCAsmPseudo<"dcbstps $dst", (ins memrr:$dst)>; def : Pat<(int_ppc_dcbfps xoaddr:$dst), (DCBF 4, xoaddr:$dst)>; def : Pat<(int_ppc_dcbstps xoaddr:$dst), (DCBF 6, xoaddr:$dst)>; } def : InstAlias<"crset $bx", (CREQV crbitrc:$bx, crbitrc:$bx, crbitrc:$bx)>; def : InstAlias<"crclr $bx", (CRXOR crbitrc:$bx, crbitrc:$bx, crbitrc:$bx)>; def : InstAlias<"crmove $bx, $by", (CROR crbitrc:$bx, crbitrc:$by, crbitrc:$by)>; def : InstAlias<"crnot $bx, $by", (CRNOR crbitrc:$bx, crbitrc:$by, crbitrc:$by)>; def : InstAlias<"mftb $Rx", (MFTB gprc:$Rx, 268)>; def : InstAlias<"mftbl $Rx", (MFTB gprc:$Rx, 268)>; def : InstAlias<"mftbu $Rx", (MFTB gprc:$Rx, 269)>; def : InstAlias<"xnop", (XORI R0, R0, 0)>; def : InstAlias<"mtxer $Rx", (MTSPR 1, gprc:$Rx)>; def : InstAlias<"mfxer $Rx", (MFSPR gprc:$Rx, 1)>; //Disable this alias on AIX for now because as does not support them. let Predicates = [ModernAs] in { foreach BR = 0-7 in { def : InstAlias<"mfbr"#BR#" $Rx", (MFDCR gprc:$Rx, !add(BR, 0x80))>, Requires<[IsPPC4xx]>; def : InstAlias<"mtbr"#BR#" $Rx", (MTDCR gprc:$Rx, !add(BR, 0x80))>, Requires<[IsPPC4xx]>; } def : InstAlias<"mtmsrd $RS", (MTMSRD gprc:$RS, 0)>; def : InstAlias<"mtmsr $RS", (MTMSR gprc:$RS, 0)>; def : InstAlias<"mtudscr $Rx", (MTSPR 3, gprc:$Rx)>; def : InstAlias<"mfudscr $Rx", (MFSPR gprc:$Rx, 3)>; def : InstAlias<"mfrtcu $Rx", (MFSPR gprc:$Rx, 4)>; def : InstAlias<"mfrtcl $Rx", (MFSPR gprc:$Rx, 5)>; def : InstAlias<"mtlr $Rx", (MTSPR 8, gprc:$Rx)>; def : InstAlias<"mflr $Rx", (MFSPR gprc:$Rx, 8)>; def : InstAlias<"mtctr $Rx", (MTSPR 9, gprc:$Rx)>; def : InstAlias<"mfctr $Rx", (MFSPR gprc:$Rx, 9)>; def : InstAlias<"mtuamr $Rx", (MTSPR 13, gprc:$Rx)>; def : InstAlias<"mfuamr $Rx", (MFSPR gprc:$Rx, 13)>; def : InstAlias<"mtdscr $Rx", (MTSPR 17, gprc:$Rx)>; def : InstAlias<"mfdscr $Rx", (MFSPR gprc:$Rx, 17)>; def : InstAlias<"mtdsisr $Rx", (MTSPR 18, gprc:$Rx)>; def : InstAlias<"mfdsisr $Rx", (MFSPR gprc:$Rx, 18)>; def : InstAlias<"mtdar $Rx", (MTSPR 19, gprc:$Rx)>; def : InstAlias<"mfdar $Rx", (MFSPR gprc:$Rx, 19)>; def : InstAlias<"mtdec $Rx", (MTSPR 22, gprc:$Rx)>; def : InstAlias<"mfdec $Rx", (MFSPR gprc:$Rx, 22)>; def : InstAlias<"mtsdr1 $Rx", (MTSPR 25, gprc:$Rx)>; def : InstAlias<"mfsdr1 $Rx", (MFSPR gprc:$Rx, 25)>; def : InstAlias<"mtsrr0 $Rx", (MTSPR 26, gprc:$Rx)>; def : InstAlias<"mfsrr0 $Rx", (MFSPR gprc:$Rx, 26)>; def : InstAlias<"mtsrr1 $Rx", (MTSPR 27, gprc:$Rx)>; def : InstAlias<"mfsrr1 $Rx", (MFSPR gprc:$Rx, 27)>; def : InstAlias<"mtcfar $Rx", (MTSPR 28, gprc:$Rx)>; def : InstAlias<"mfcfar $Rx", (MFSPR gprc:$Rx, 28)>; def : InstAlias<"mtamr $Rx", (MTSPR 29, gprc:$Rx)>; def : InstAlias<"mfamr $Rx", (MFSPR gprc:$Rx, 29)>; def : InstAlias<"mtpid $Rx", (MTSPR 48, gprc:$Rx)>, Requires<[IsBookE]>; def : InstAlias<"mfpid $Rx", (MFSPR gprc:$Rx, 48)>, Requires<[IsBookE]>; foreach SPRG = 4-7 in { def : InstAlias<"mfsprg $RT, "#SPRG, (MFSPR gprc:$RT, !add(SPRG, 256))>, Requires<[IsBookE]>; def : InstAlias<"mfsprg"#SPRG#" $RT", (MFSPR gprc:$RT, !add(SPRG, 256))>, Requires<[IsBookE]>; def : InstAlias<"mtsprg "#SPRG#", $RT", (MTSPR !add(SPRG, 256), gprc:$RT)>, Requires<[IsBookE]>; def : InstAlias<"mtsprg"#SPRG#" $RT", (MTSPR !add(SPRG, 256), gprc:$RT)>, Requires<[IsBookE]>; } foreach SPRG = 0-3 in { def : InstAlias<"mfsprg $RT, "#SPRG, (MFSPR gprc:$RT, !add(SPRG, 272))>; def : InstAlias<"mfsprg"#SPRG#" $RT", (MFSPR gprc:$RT, !add(SPRG, 272))>; def : InstAlias<"mtsprg "#SPRG#", $RT", (MTSPR !add(SPRG, 272), gprc:$RT)>; def : InstAlias<"mtsprg"#SPRG#" $RT", (MTSPR !add(SPRG, 272), gprc:$RT)>; } def : InstAlias<"mfasr $RT", (MFSPR gprc:$RT, 280)>; def : InstAlias<"mtasr $RT", (MTSPR 280, gprc:$RT)>; def : InstAlias<"mttbl $Rx", (MTSPR 284, gprc:$Rx)>; def : InstAlias<"mttbu $Rx", (MTSPR 285, gprc:$Rx)>; def : InstAlias<"mfpvr $RT", (MFSPR gprc:$RT, 287)>; def : InstAlias<"mfspefscr $Rx", (MFSPR gprc:$Rx, 512)>; def : InstAlias<"mtspefscr $Rx", (MTSPR 512, gprc:$Rx)>; foreach BATR = 0-3 in { def : InstAlias<"mtdbatu "#BATR#", $Rx", (MTSPR !add(BATR, !add(BATR, 536)), gprc:$Rx)>, Requires<[IsPPC6xx]>; def : InstAlias<"mfdbatu $Rx, "#BATR, (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 536)))>, Requires<[IsPPC6xx]>; def : InstAlias<"mtdbatl "#BATR#", $Rx", (MTSPR !add(BATR, !add(BATR, 537)), gprc:$Rx)>, Requires<[IsPPC6xx]>; def : InstAlias<"mfdbatl $Rx, "#BATR, (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 537)))>, Requires<[IsPPC6xx]>; def : InstAlias<"mtibatu "#BATR#", $Rx", (MTSPR !add(BATR, !add(BATR, 528)), gprc:$Rx)>, Requires<[IsPPC6xx]>; def : InstAlias<"mfibatu $Rx, "#BATR, (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 528)))>, Requires<[IsPPC6xx]>; def : InstAlias<"mtibatl "#BATR#", $Rx", (MTSPR !add(BATR, !add(BATR, 529)), gprc:$Rx)>, Requires<[IsPPC6xx]>; def : InstAlias<"mfibatl $Rx, "#BATR, (MFSPR gprc:$Rx, !add(BATR, !add(BATR, 529)))>, Requires<[IsPPC6xx]>; } def : InstAlias<"mtppr $RT", (MTSPR 896, gprc:$RT)>; def : InstAlias<"mfppr $RT", (MFSPR gprc:$RT, 896)>; def : InstAlias<"mtesr $Rx", (MTSPR 980, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mfesr $Rx", (MFSPR gprc:$Rx, 980)>, Requires<[IsPPC4xx]>; def : InstAlias<"mtdear $Rx", (MTSPR 981, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mfdear $Rx", (MFSPR gprc:$Rx, 981)>, Requires<[IsPPC4xx]>; def : InstAlias<"mttcr $Rx", (MTSPR 986, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mftcr $Rx", (MFSPR gprc:$Rx, 986)>, Requires<[IsPPC4xx]>; def : InstAlias<"mftbhi $Rx", (MFSPR gprc:$Rx, 988)>, Requires<[IsPPC4xx]>; def : InstAlias<"mttbhi $Rx", (MTSPR 988, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mftblo $Rx", (MFSPR gprc:$Rx, 989)>, Requires<[IsPPC4xx]>; def : InstAlias<"mttblo $Rx", (MTSPR 989, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mtsrr2 $Rx", (MTSPR 990, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mfsrr2 $Rx", (MFSPR gprc:$Rx, 990)>, Requires<[IsPPC4xx]>; def : InstAlias<"mtsrr3 $Rx", (MTSPR 991, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mfsrr3 $Rx", (MFSPR gprc:$Rx, 991)>, Requires<[IsPPC4xx]>; def : InstAlias<"mtdccr $Rx", (MTSPR 1018, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mfdccr $Rx", (MFSPR gprc:$Rx, 1018)>, Requires<[IsPPC4xx]>; def : InstAlias<"mticcr $Rx", (MTSPR 1019, gprc:$Rx)>, Requires<[IsPPC4xx]>; def : InstAlias<"mficcr $Rx", (MFSPR gprc:$Rx, 1019)>, Requires<[IsPPC4xx]>; } def : InstAlias<"tlbie $RB", (TLBIE R0, gprc:$RB)>; def : InstAlias<"tlbrehi $RS, $A", (TLBRE2 gprc:$RS, gprc:$A, 0)>, Requires<[IsPPC4xx]>; def : InstAlias<"tlbrelo $RS, $A", (TLBRE2 gprc:$RS, gprc:$A, 1)>, Requires<[IsPPC4xx]>; def : InstAlias<"tlbwehi $RS, $A", (TLBWE2 gprc:$RS, gprc:$A, 0)>, Requires<[IsPPC4xx]>; def : InstAlias<"tlbwelo $RS, $A", (TLBWE2 gprc:$RS, gprc:$A, 1)>, Requires<[IsPPC4xx]>; def LAx : PPCAsmPseudo<"la $rA, $addr", (ins gprc:$rA, memri:$addr)>; def SUBI : PPCAsmPseudo<"subi $rA, $rB, $imm", (ins gprc:$rA, gprc:$rB, s16imm:$imm)>; def SUBIS : PPCAsmPseudo<"subis $rA, $rB, $imm", (ins gprc:$rA, gprc:$rB, s16imm:$imm)>; def SUBIC : PPCAsmPseudo<"subic $rA, $rB, $imm", (ins gprc:$rA, gprc:$rB, s16imm:$imm)>; def SUBIC_rec : PPCAsmPseudo<"subic. $rA, $rB, $imm", (ins gprc:$rA, gprc:$rB, s16imm:$imm)>; def EXTLWI : PPCAsmPseudo<"extlwi $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def EXTLWI_rec : PPCAsmPseudo<"extlwi. $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def EXTRWI : PPCAsmPseudo<"extrwi $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def EXTRWI_rec : PPCAsmPseudo<"extrwi. $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def INSLWI : PPCAsmPseudo<"inslwi $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def INSLWI_rec : PPCAsmPseudo<"inslwi. $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def INSRWI : PPCAsmPseudo<"insrwi $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def INSRWI_rec : PPCAsmPseudo<"insrwi. $rA, $rS, $n, $b", (ins gprc:$rA, gprc:$rS, u5imm:$n, u5imm:$b)>; def ROTRWI : PPCAsmPseudo<"rotrwi $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def ROTRWI_rec : PPCAsmPseudo<"rotrwi. $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def SLWI : PPCAsmPseudo<"slwi $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def SLWI_rec : PPCAsmPseudo<"slwi. $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def SRWI : PPCAsmPseudo<"srwi $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def SRWI_rec : PPCAsmPseudo<"srwi. $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def CLRRWI : PPCAsmPseudo<"clrrwi $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def CLRRWI_rec : PPCAsmPseudo<"clrrwi. $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def CLRLSLWI : PPCAsmPseudo<"clrlslwi $rA, $rS, $b, $n", (ins gprc:$rA, gprc:$rS, u5imm:$b, u5imm:$n)>; def CLRLSLWI_rec : PPCAsmPseudo<"clrlslwi. $rA, $rS, $b, $n", (ins gprc:$rA, gprc:$rS, u5imm:$b, u5imm:$n)>; def : InstAlias<"isellt $rT, $rA, $rB", (ISEL gprc:$rT, gprc_nor0:$rA, gprc:$rB, CR0LT)>; def : InstAlias<"iselgt $rT, $rA, $rB", (ISEL gprc:$rT, gprc_nor0:$rA, gprc:$rB, CR0GT)>; def : InstAlias<"iseleq $rT, $rA, $rB", (ISEL gprc:$rT, gprc_nor0:$rA, gprc:$rB, CR0EQ)>; def : InstAlias<"rotlwi $rA, $rS, $n", (RLWINM gprc:$rA, gprc:$rS, u5imm:$n, 0, 31)>; def : InstAlias<"rotlwi. $rA, $rS, $n", (RLWINM_rec gprc:$rA, gprc:$rS, u5imm:$n, 0, 31)>; def : InstAlias<"rotlw $rA, $rS, $rB", (RLWNM gprc:$rA, gprc:$rS, gprc:$rB, 0, 31)>; def : InstAlias<"rotlw. $rA, $rS, $rB", (RLWNM_rec gprc:$rA, gprc:$rS, gprc:$rB, 0, 31)>; def : InstAlias<"clrlwi $rA, $rS, $n", (RLWINM gprc:$rA, gprc:$rS, 0, u5imm:$n, 31)>; def : InstAlias<"clrlwi. $rA, $rS, $n", (RLWINM_rec gprc:$rA, gprc:$rS, 0, u5imm:$n, 31)>; def : InstAlias<"cntlzw $rA, $rS", (CNTLZW gprc:$rA, gprc:$rS)>; def : InstAlias<"cntlzw. $rA, $rS", (CNTLZW_rec gprc:$rA, gprc:$rS)>; // The POWER variant def : MnemonicAlias<"cntlz", "cntlzw">; def : MnemonicAlias<"cntlz.", "cntlzw.">; def EXTLDI : PPCAsmPseudo<"extldi $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>; def EXTLDI_rec : PPCAsmPseudo<"extldi. $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>; def EXTRDI : PPCAsmPseudo<"extrdi $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>; def EXTRDI_rec : PPCAsmPseudo<"extrdi. $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>; def INSRDI : PPCAsmPseudo<"insrdi $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>; def INSRDI_rec : PPCAsmPseudo<"insrdi. $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u6imm:$n, u6imm:$b)>; def ROTRDI : PPCAsmPseudo<"rotrdi $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def ROTRDI_rec : PPCAsmPseudo<"rotrdi. $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def SLDI : PPCAsmPseudo<"sldi $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def SLDI_rec : PPCAsmPseudo<"sldi. $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def SRDI : PPCAsmPseudo<"srdi $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def SRDI_rec : PPCAsmPseudo<"srdi. $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def CLRRDI : PPCAsmPseudo<"clrrdi $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def CLRRDI_rec : PPCAsmPseudo<"clrrdi. $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def CLRLSLDI : PPCAsmPseudo<"clrlsldi $rA, $rS, $b, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$b, u6imm:$n)>; def CLRLSLDI_rec : PPCAsmPseudo<"clrlsldi. $rA, $rS, $b, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$b, u6imm:$n)>; def SUBPCIS : PPCAsmPseudo<"subpcis $RT, $D", (ins g8rc:$RT, s16imm:$D)>; def : InstAlias<"rotldi $rA, $rS, $n", (RLDICL g8rc:$rA, g8rc:$rS, u6imm:$n, 0)>; def : InstAlias<"rotldi $rA, $rS, $n", (RLDICL_32_64 g8rc:$rA, gprc:$rS, u6imm:$n, 0)>; def : InstAlias<"rotldi. $rA, $rS, $n", (RLDICL_rec g8rc:$rA, g8rc:$rS, u6imm:$n, 0)>; def : InstAlias<"rotld $rA, $rS, $rB", (RLDCL g8rc:$rA, g8rc:$rS, gprc:$rB, 0)>; def : InstAlias<"rotld. $rA, $rS, $rB", (RLDCL_rec g8rc:$rA, g8rc:$rS, gprc:$rB, 0)>; def : InstAlias<"clrldi $rA, $rS, $n", (RLDICL g8rc:$rA, g8rc:$rS, 0, u6imm:$n)>; def : InstAlias<"clrldi $rA, $rS, $n", (RLDICL_32_64 g8rc:$rA, gprc:$rS, 0, u6imm:$n)>; def : InstAlias<"clrldi. $rA, $rS, $n", (RLDICL_rec g8rc:$rA, g8rc:$rS, 0, u6imm:$n)>; def : InstAlias<"lnia $RT", (ADDPCIS g8rc:$RT, 0)>; def RLWINMbm : PPCAsmPseudo<"rlwinm $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u5imm:$n, i32imm:$b)>; def RLWINMbm_rec : PPCAsmPseudo<"rlwinm. $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u5imm:$n, i32imm:$b)>; def RLWIMIbm : PPCAsmPseudo<"rlwimi $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u5imm:$n, i32imm:$b)>; def RLWIMIbm_rec : PPCAsmPseudo<"rlwimi. $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u5imm:$n, i32imm:$b)>; def RLWNMbm : PPCAsmPseudo<"rlwnm $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u5imm:$n, i32imm:$b)>; def RLWNMbm_rec : PPCAsmPseudo<"rlwnm. $rA, $rS, $n, $b", (ins g8rc:$rA, g8rc:$rS, u5imm:$n, i32imm:$b)>; // These generic branch instruction forms are used for the assembler parser only. // Defs and Uses are conservative, since we don't know the BO value. let PPC970_Unit = 7, isBranch = 1, hasSideEffects = 0 in { let Defs = [CTR], Uses = [CTR, RM] in { def gBC : BForm_3<16, 0, 0, (outs), (ins u5imm:$bo, crbitrc:$bi, condbrtarget:$dst), "bc $bo, $bi, $dst">; def gBCA : BForm_3<16, 1, 0, (outs), (ins u5imm:$bo, crbitrc:$bi, abscondbrtarget:$dst), "bca $bo, $bi, $dst">; let isAsmParserOnly = 1 in { def gBCat : BForm_3_at<16, 0, 0, (outs), (ins u5imm:$bo, atimm:$at, crbitrc:$bi, condbrtarget:$dst), "bc$at $bo, $bi, $dst">; def gBCAat : BForm_3_at<16, 1, 0, (outs), (ins u5imm:$bo, atimm:$at, crbitrc:$bi, abscondbrtarget:$dst), "bca$at $bo, $bi, $dst">; } // isAsmParserOnly = 1 } let Defs = [LR, CTR], Uses = [CTR, RM] in { def gBCL : BForm_3<16, 0, 1, (outs), (ins u5imm:$bo, crbitrc:$bi, condbrtarget:$dst), "bcl $bo, $bi, $dst">; def gBCLA : BForm_3<16, 1, 1, (outs), (ins u5imm:$bo, crbitrc:$bi, abscondbrtarget:$dst), "bcla $bo, $bi, $dst">; let isAsmParserOnly = 1 in { def gBCLat : BForm_3_at<16, 0, 1, (outs), (ins u5imm:$bo, atimm:$at, crbitrc:$bi, condbrtarget:$dst), "bcl$at $bo, $bi, $dst">; def gBCLAat : BForm_3_at<16, 1, 1, (outs), (ins u5imm:$bo, atimm:$at, crbitrc:$bi, abscondbrtarget:$dst), "bcla$at $bo, $bi, $dst">; } // // isAsmParserOnly = 1 } let Defs = [CTR], Uses = [CTR, LR, RM] in def gBCLR : XLForm_2<19, 16, 0, (outs), (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh), "bclr $bo, $bi, $bh", IIC_BrB, []>; let Defs = [LR, CTR], Uses = [CTR, LR, RM] in def gBCLRL : XLForm_2<19, 16, 1, (outs), (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh), "bclrl $bo, $bi, $bh", IIC_BrB, []>; let Defs = [CTR], Uses = [CTR, LR, RM] in def gBCCTR : XLForm_2<19, 528, 0, (outs), (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh), "bcctr $bo, $bi, $bh", IIC_BrB, []>; let Defs = [LR, CTR], Uses = [CTR, LR, RM] in def gBCCTRL : XLForm_2<19, 528, 1, (outs), (ins u5imm:$bo, crbitrc:$bi, i32imm:$bh), "bcctrl $bo, $bi, $bh", IIC_BrB, []>; } multiclass BranchSimpleMnemonicAT { def : InstAlias<"bc"#pm#" $bo, $bi, $dst", (gBCat u5imm:$bo, at, crbitrc:$bi, condbrtarget:$dst)>; def : InstAlias<"bca"#pm#" $bo, $bi, $dst", (gBCAat u5imm:$bo, at, crbitrc:$bi, condbrtarget:$dst)>; def : InstAlias<"bcl"#pm#" $bo, $bi, $dst", (gBCLat u5imm:$bo, at, crbitrc:$bi, condbrtarget:$dst)>; def : InstAlias<"bcla"#pm#" $bo, $bi, $dst", (gBCLAat u5imm:$bo, at, crbitrc:$bi, condbrtarget:$dst)>; } defm : BranchSimpleMnemonicAT<"+", 3>; defm : BranchSimpleMnemonicAT<"-", 2>; def : InstAlias<"bclr $bo, $bi", (gBCLR u5imm:$bo, crbitrc:$bi, 0)>; def : InstAlias<"bclrl $bo, $bi", (gBCLRL u5imm:$bo, crbitrc:$bi, 0)>; def : InstAlias<"bcctr $bo, $bi", (gBCCTR u5imm:$bo, crbitrc:$bi, 0)>; def : InstAlias<"bcctrl $bo, $bi", (gBCCTRL u5imm:$bo, crbitrc:$bi, 0)>; multiclass BranchSimpleMnemonic1 { def : InstAlias<"b"#name#pm#" $bi, $dst", (gBC bo, crbitrc:$bi, condbrtarget:$dst)>; def : InstAlias<"b"#name#"a"#pm#" $bi, $dst", (gBCA bo, crbitrc:$bi, abscondbrtarget:$dst)>; def : InstAlias<"b"#name#"lr"#pm#" $bi", (gBCLR bo, crbitrc:$bi, 0)>; def : InstAlias<"b"#name#"l"#pm#" $bi, $dst", (gBCL bo, crbitrc:$bi, condbrtarget:$dst)>; def : InstAlias<"b"#name#"la"#pm#" $bi, $dst", (gBCLA bo, crbitrc:$bi, abscondbrtarget:$dst)>; def : InstAlias<"b"#name#"lrl"#pm#" $bi", (gBCLRL bo, crbitrc:$bi, 0)>; } multiclass BranchSimpleMnemonic2 : BranchSimpleMnemonic1 { def : InstAlias<"b"#name#"ctr"#pm#" $bi", (gBCCTR bo, crbitrc:$bi, 0)>; def : InstAlias<"b"#name#"ctrl"#pm#" $bi", (gBCCTRL bo, crbitrc:$bi, 0)>; } defm : BranchSimpleMnemonic2<"t", "", 12>; defm : BranchSimpleMnemonic2<"f", "", 4>; defm : BranchSimpleMnemonic2<"t", "-", 14>; defm : BranchSimpleMnemonic2<"f", "-", 6>; defm : BranchSimpleMnemonic2<"t", "+", 15>; defm : BranchSimpleMnemonic2<"f", "+", 7>; defm : BranchSimpleMnemonic1<"dnzt", "", 8>; defm : BranchSimpleMnemonic1<"dnzf", "", 0>; defm : BranchSimpleMnemonic1<"dzt", "", 10>; defm : BranchSimpleMnemonic1<"dzf", "", 2>; multiclass BranchExtendedMnemonicPM { def : InstAlias<"b"#name#pm#" $cc, $dst", (BCC bibo, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"b"#name#pm#" $dst", (BCC bibo, CR0, condbrtarget:$dst)>; def : InstAlias<"b"#name#"a"#pm#" $cc, $dst", (BCCA bibo, crrc:$cc, abscondbrtarget:$dst)>; def : InstAlias<"b"#name#"a"#pm#" $dst", (BCCA bibo, CR0, abscondbrtarget:$dst)>; def : InstAlias<"b"#name#"lr"#pm#" $cc", (BCCLR bibo, crrc:$cc)>; def : InstAlias<"b"#name#"lr"#pm, (BCCLR bibo, CR0)>; def : InstAlias<"b"#name#"ctr"#pm#" $cc", (BCCCTR bibo, crrc:$cc)>; def : InstAlias<"b"#name#"ctr"#pm, (BCCCTR bibo, CR0)>; def : InstAlias<"b"#name#"l"#pm#" $cc, $dst", (BCCL bibo, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"b"#name#"l"#pm#" $dst", (BCCL bibo, CR0, condbrtarget:$dst)>; def : InstAlias<"b"#name#"la"#pm#" $cc, $dst", (BCCLA bibo, crrc:$cc, abscondbrtarget:$dst)>; def : InstAlias<"b"#name#"la"#pm#" $dst", (BCCLA bibo, CR0, abscondbrtarget:$dst)>; def : InstAlias<"b"#name#"lrl"#pm#" $cc", (BCCLRL bibo, crrc:$cc)>; def : InstAlias<"b"#name#"lrl"#pm, (BCCLRL bibo, CR0)>; def : InstAlias<"b"#name#"ctrl"#pm#" $cc", (BCCCTRL bibo, crrc:$cc)>; def : InstAlias<"b"#name#"ctrl"#pm, (BCCCTRL bibo, CR0)>; } multiclass BranchExtendedMnemonic { defm : BranchExtendedMnemonicPM; defm : BranchExtendedMnemonicPM; defm : BranchExtendedMnemonicPM; } defm : BranchExtendedMnemonic<"lt", 12>; defm : BranchExtendedMnemonic<"gt", 44>; defm : BranchExtendedMnemonic<"eq", 76>; defm : BranchExtendedMnemonic<"un", 108>; defm : BranchExtendedMnemonic<"so", 108>; defm : BranchExtendedMnemonic<"ge", 4>; defm : BranchExtendedMnemonic<"nl", 4>; defm : BranchExtendedMnemonic<"le", 36>; defm : BranchExtendedMnemonic<"ng", 36>; defm : BranchExtendedMnemonic<"ne", 68>; defm : BranchExtendedMnemonic<"nu", 100>; defm : BranchExtendedMnemonic<"ns", 100>; def : InstAlias<"cmpwi $rA, $imm", (CMPWI CR0, gprc:$rA, s16imm:$imm)>; def : InstAlias<"cmpw $rA, $rB", (CMPW CR0, gprc:$rA, gprc:$rB)>; def : InstAlias<"cmplwi $rA, $imm", (CMPLWI CR0, gprc:$rA, u16imm:$imm)>; def : InstAlias<"cmplw $rA, $rB", (CMPLW CR0, gprc:$rA, gprc:$rB)>; def : InstAlias<"cmpdi $rA, $imm", (CMPDI CR0, g8rc:$rA, s16imm64:$imm)>; def : InstAlias<"cmpd $rA, $rB", (CMPD CR0, g8rc:$rA, g8rc:$rB)>; def : InstAlias<"cmpldi $rA, $imm", (CMPLDI CR0, g8rc:$rA, u16imm64:$imm)>; def : InstAlias<"cmpld $rA, $rB", (CMPLD CR0, g8rc:$rA, g8rc:$rB)>; def : InstAlias<"cmpi $bf, 0, $rA, $imm", (CMPWI crrc:$bf, gprc:$rA, s16imm:$imm)>; def : InstAlias<"cmp $bf, 0, $rA, $rB", (CMPW crrc:$bf, gprc:$rA, gprc:$rB)>; def : InstAlias<"cmpli $bf, 0, $rA, $imm", (CMPLWI crrc:$bf, gprc:$rA, u16imm:$imm)>; def : InstAlias<"cmpl $bf, 0, $rA, $rB", (CMPLW crrc:$bf, gprc:$rA, gprc:$rB)>; def : InstAlias<"cmpi $bf, 1, $rA, $imm", (CMPDI crrc:$bf, g8rc:$rA, s16imm64:$imm)>; def : InstAlias<"cmp $bf, 1, $rA, $rB", (CMPD crrc:$bf, g8rc:$rA, g8rc:$rB)>; def : InstAlias<"cmpli $bf, 1, $rA, $imm", (CMPLDI crrc:$bf, g8rc:$rA, u16imm64:$imm)>; def : InstAlias<"cmpl $bf, 1, $rA, $rB", (CMPLD crrc:$bf, g8rc:$rA, g8rc:$rB)>; def : InstAlias<"trap", (TW 31, R0, R0)>; multiclass TrapExtendedMnemonic { def : InstAlias<"td"#name#"i $rA, $imm", (TDI to, g8rc:$rA, s16imm:$imm)>; def : InstAlias<"td"#name#" $rA, $rB", (TD to, g8rc:$rA, g8rc:$rB)>; def : InstAlias<"tw"#name#"i $rA, $imm", (TWI to, gprc:$rA, s16imm:$imm)>; def : InstAlias<"tw"#name#" $rA, $rB", (TW to, gprc:$rA, gprc:$rB)>; } defm : TrapExtendedMnemonic<"lt", 16>; defm : TrapExtendedMnemonic<"le", 20>; defm : TrapExtendedMnemonic<"eq", 4>; defm : TrapExtendedMnemonic<"ge", 12>; defm : TrapExtendedMnemonic<"gt", 8>; defm : TrapExtendedMnemonic<"nl", 12>; defm : TrapExtendedMnemonic<"ne", 24>; defm : TrapExtendedMnemonic<"ng", 20>; defm : TrapExtendedMnemonic<"llt", 2>; defm : TrapExtendedMnemonic<"lle", 6>; defm : TrapExtendedMnemonic<"lge", 5>; defm : TrapExtendedMnemonic<"lgt", 1>; defm : TrapExtendedMnemonic<"lnl", 5>; defm : TrapExtendedMnemonic<"lng", 6>; defm : TrapExtendedMnemonic<"u", 31>; // Atomic loads def : Pat<(atomic_load_8 DForm:$src), (LBZ memri:$src)>; def : Pat<(atomic_load_16 DForm:$src), (LHZ memri:$src)>; def : Pat<(atomic_load_32 DForm:$src), (LWZ memri:$src)>; def : Pat<(atomic_load_8 XForm:$src), (LBZX memrr:$src)>; def : Pat<(atomic_load_16 XForm:$src), (LHZX memrr:$src)>; def : Pat<(atomic_load_32 XForm:$src), (LWZX memrr:$src)>; // Atomic stores def : Pat<(atomic_store_8 DForm:$ptr, i32:$val), (STB gprc:$val, memri:$ptr)>; def : Pat<(atomic_store_16 DForm:$ptr, i32:$val), (STH gprc:$val, memri:$ptr)>; def : Pat<(atomic_store_32 DForm:$ptr, i32:$val), (STW gprc:$val, memri:$ptr)>; def : Pat<(atomic_store_8 XForm:$ptr, i32:$val), (STBX gprc:$val, memrr:$ptr)>; def : Pat<(atomic_store_16 XForm:$ptr, i32:$val), (STHX gprc:$val, memrr:$ptr)>; def : Pat<(atomic_store_32 XForm:$ptr, i32:$val), (STWX gprc:$val, memrr:$ptr)>; let Predicates = [IsISA3_0] in { // Copy-Paste Facility // We prefix 'CP' to COPY due to name conflict in Target.td. We also prefix to // PASTE for naming consistency. let mayLoad = 1 in def CP_COPY : X_RA5_RB5<31, 774, "copy" , gprc, IIC_LdStCOPY, []>; let mayStore = 1, Defs = [CR0] in def CP_PASTE_rec : X_L1_RA5_RB5<31, 902, "paste.", gprc, IIC_LdStPASTE, []>, isRecordForm; def : InstAlias<"paste. $RA, $RB", (CP_PASTE_rec gprc:$RA, gprc:$RB, 1)>; def CP_ABORT : XForm_0<31, 838, (outs), (ins), "cpabort", IIC_SprABORT, []>; // Message Synchronize def MSGSYNC : XForm_0<31, 886, (outs), (ins), "msgsync", IIC_SprMSGSYNC, []>; // Power-Saving Mode Instruction: def STOP : XForm_0<19, 370, (outs), (ins), "stop", IIC_SprSTOP, []>; def SETB : XForm_44<31, 128, (outs gprc:$RT), (ins crrc:$BFA), "setb $RT, $BFA", IIC_IntGeneral>; } // IsISA3_0 let Predicates = [IsISA3_0] in { def : Pat<(i32 (int_ppc_cmprb i32:$a, gprc:$b, gprc:$c)), (i32 (SETB (CMPRB u1imm:$a, $b, $c)))>; } def : Pat<(i32 (int_ppc_mulhw gprc:$a, gprc:$b)), (i32 (MULHW $a, $b))>; def : Pat<(i32 (int_ppc_mulhwu gprc:$a, gprc:$b)), (i32 (MULHWU $a, $b))>; def : Pat<(i32 (int_ppc_cmpb gprc:$a, gprc:$b)), (i32 (CMPB $a, $b))>; def : Pat<(int_ppc_load2r ForceXForm:$ptr), (LHBRX ForceXForm:$ptr)>; def : Pat<(int_ppc_load4r ForceXForm:$ptr), (LWBRX ForceXForm:$ptr)>; def : Pat<(int_ppc_store2r gprc:$a, ForceXForm:$ptr), (STHBRX gprc:$a, ForceXForm:$ptr)>; def : Pat<(int_ppc_store4r gprc:$a, ForceXForm:$ptr), (STWBRX gprc:$a, ForceXForm:$ptr)>; // Fast 32-bit reverse bits algorithm: // Step 1: 1-bit swap (swap odd 1-bit and even 1-bit): // n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xAAAAAAAA); // Step 2: 2-bit swap (swap odd 2-bit and even 2-bit): // n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xCCCCCCCC); // Step 3: 4-bit swap (swap odd 4-bit and even 4-bit): // n = ((n >> 4) & 0x0F0F0F0F) | ((n << 4) & 0xF0F0F0F0); // Step 4: byte reverse (Suppose n = [B1,B2,B3,B4]): // Step 4.1: Put B4,B2 in the right position (rotate left 3 bytes): // n' = (n rotl 24); After which n' = [B4, B1, B2, B3] // Step 4.2: Insert B3 to the right position: // n' = rlwimi n', n, 8, 8, 15; After which n' = [B4, B3, B2, B3] // Step 4.3: Insert B1 to the right position: // n' = rlwimi n', n, 8, 24, 31; After which n' = [B4, B3, B2, B1] def MaskValues { dag Lo1 = (ORI (LIS 0x5555), 0x5555); dag Hi1 = (ORI (LIS 0xAAAA), 0xAAAA); dag Lo2 = (ORI (LIS 0x3333), 0x3333); dag Hi2 = (ORI (LIS 0xCCCC), 0xCCCC); dag Lo4 = (ORI (LIS 0x0F0F), 0x0F0F); dag Hi4 = (ORI (LIS 0xF0F0), 0xF0F0); } def Shift1 { dag Right = (RLWINM $A, 31, 1, 31); dag Left = (RLWINM $A, 1, 0, 30); } def Swap1 { dag Bit = (OR (AND Shift1.Right, MaskValues.Lo1), (AND Shift1.Left, MaskValues.Hi1)); } def Shift2 { dag Right = (RLWINM Swap1.Bit, 30, 2, 31); dag Left = (RLWINM Swap1.Bit, 2, 0, 29); } def Swap2 { dag Bits = (OR (AND Shift2.Right, MaskValues.Lo2), (AND Shift2.Left, MaskValues.Hi2)); } def Shift4 { dag Right = (RLWINM Swap2.Bits, 28, 4, 31); dag Left = (RLWINM Swap2.Bits, 4, 0, 27); } def Swap4 { dag Bits = (OR (AND Shift4.Right, MaskValues.Lo4), (AND Shift4.Left, MaskValues.Hi4)); } def Rotate { dag Left3Bytes = (RLWINM Swap4.Bits, 24, 0, 31); } def RotateInsertByte3 { dag Left = (RLWIMI Rotate.Left3Bytes, Swap4.Bits, 8, 8, 15); } def RotateInsertByte1 { dag Left = (RLWIMI RotateInsertByte3.Left, Swap4.Bits, 8, 24, 31); } // Clear the upper half of the register when in 64-bit mode let Predicates = [In64BitMode] in def : Pat<(i32 (bitreverse i32:$A)), (RLDICL_32 RotateInsertByte1.Left, 0, 32)>; let Predicates = [In32BitMode] in def : Pat<(i32 (bitreverse i32:$A)), RotateInsertByte1.Left>; // Fast 64-bit reverse bits algorithm: // Step 1: 1-bit swap (swap odd 1-bit and even 1-bit): // n = ((n >> 1) & 0x5555555555555555) | ((n << 1) & 0xAAAAAAAAAAAAAAAA); // Step 2: 2-bit swap (swap odd 2-bit and even 2-bit): // n = ((n >> 2) & 0x3333333333333333) | ((n << 2) & 0xCCCCCCCCCCCCCCCC); // Step 3: 4-bit swap (swap odd 4-bit and even 4-bit): // n = ((n >> 4) & 0x0F0F0F0F0F0F0F0F) | ((n << 4) & 0xF0F0F0F0F0F0F0F0); // Step 4: byte reverse (Suppose n = [B0,B1,B2,B3,B4,B5,B6,B7]): // Apply the same byte reverse algorithm mentioned above for the fast 32-bit // reverse to both the high 32 bit and low 32 bit of the 64 bit value. And // then OR them together to get the final result. def MaskValues64 { dag Lo1 = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), MaskValues.Lo1, sub_32)); dag Hi1 = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), MaskValues.Hi1, sub_32)); dag Lo2 = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), MaskValues.Lo2, sub_32)); dag Hi2 = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), MaskValues.Hi2, sub_32)); dag Lo4 = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), MaskValues.Lo4, sub_32)); dag Hi4 = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), MaskValues.Hi4, sub_32)); } def DWMaskValues { dag Lo1 = (ORI8 (ORIS8 (RLDICR MaskValues64.Lo1, 32, 31), 0x5555), 0x5555); dag Hi1 = (ORI8 (ORIS8 (RLDICR MaskValues64.Hi1, 32, 31), 0xAAAA), 0xAAAA); dag Lo2 = (ORI8 (ORIS8 (RLDICR MaskValues64.Lo2, 32, 31), 0x3333), 0x3333); dag Hi2 = (ORI8 (ORIS8 (RLDICR MaskValues64.Hi2, 32, 31), 0xCCCC), 0xCCCC); dag Lo4 = (ORI8 (ORIS8 (RLDICR MaskValues64.Lo4, 32, 31), 0x0F0F), 0x0F0F); dag Hi4 = (ORI8 (ORIS8 (RLDICR MaskValues64.Hi4, 32, 31), 0xF0F0), 0xF0F0); } def DWSwapInByte { dag Swap1 = (OR8 (AND8 (RLDICL $A, 63, 1), DWMaskValues.Lo1), (AND8 (RLDICR $A, 1, 62), DWMaskValues.Hi1)); dag Swap2 = (OR8 (AND8 (RLDICL Swap1, 62, 2), DWMaskValues.Lo2), (AND8 (RLDICR Swap1, 2, 61), DWMaskValues.Hi2)); dag Swap4 = (OR8 (AND8 (RLDICL Swap2, 60, 4), DWMaskValues.Lo4), (AND8 (RLDICR Swap2, 4, 59), DWMaskValues.Hi4)); } // Intra-byte swap is done, now start inter-byte swap. def DWBytes4567 { dag Word = (i32 (EXTRACT_SUBREG DWSwapInByte.Swap4, sub_32)); } def DWBytes7456 { dag Word = (RLWINM DWBytes4567.Word, 24, 0, 31); } def DWBytes7656 { dag Word = (RLWIMI DWBytes7456.Word, DWBytes4567.Word, 8, 8, 15); } // B7 B6 B5 B4 in the right order def DWBytes7654 { dag Word = (RLWIMI DWBytes7656.Word, DWBytes4567.Word, 8, 24, 31); dag DWord = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), Word, sub_32)); } def DWBytes0123 { dag Word = (i32 (EXTRACT_SUBREG (RLDICL DWSwapInByte.Swap4, 32, 32), sub_32)); } def DWBytes3012 { dag Word = (RLWINM DWBytes0123.Word, 24, 0, 31); } def DWBytes3212 { dag Word = (RLWIMI DWBytes3012.Word, DWBytes0123.Word, 8, 8, 15); } // B3 B2 B1 B0 in the right order def DWBytes3210 { dag Word = (RLWIMI DWBytes3212.Word, DWBytes0123.Word, 8, 24, 31); dag DWord = (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), Word, sub_32)); } // These instructions store a hash computed from the value of the link register // and the value of the stack pointer. let mayStore = 1 in { def HASHST : XForm_XD6_RA5_RB5<31, 722, (outs), (ins gprc:$RB, memrihash:$D_RA_XD), "hashst $RB, $D_RA_XD", IIC_IntGeneral, []>; def HASHSTP : XForm_XD6_RA5_RB5<31, 658, (outs), (ins gprc:$RB, memrihash:$D_RA_XD), "hashstp $RB, $D_RA_XD", IIC_IntGeneral, []>; } // These instructions check a hash computed from the value of the link register // and the value of the stack pointer. The hasSideEffects flag is needed as the // instruction may TRAP if the hash does not match the hash stored at the // specified address. let mayLoad = 1, hasSideEffects = 1 in { def HASHCHK : XForm_XD6_RA5_RB5<31, 754, (outs), (ins gprc:$RB, memrihash:$D_RA_XD), "hashchk $RB, $D_RA_XD", IIC_IntGeneral, []>; def HASHCHKP : XForm_XD6_RA5_RB5<31, 690, (outs), (ins gprc:$RB, memrihash:$D_RA_XD), "hashchkp $RB, $D_RA_XD", IIC_IntGeneral, []>; } // Now both high word and low word are reversed, next // swap the high word and low word. def : Pat<(i64 (bitreverse i64:$A)), (OR8 (RLDICR DWBytes7654.DWord, 32, 31), DWBytes3210.DWord)>; def : Pat<(int_ppc_stwcx ForceXForm:$dst, gprc:$A), (STWCX gprc:$A, ForceXForm:$dst)>; def : Pat<(int_ppc_stbcx ForceXForm:$dst, gprc:$A), (STBCX gprc:$A, ForceXForm:$dst)>; def : Pat<(int_ppc_trap gprc:$A), (TWI 24, $A, 0)>; def : Pat<(int_ppc_fcfid f64:$A), (XSCVSXDDP $A)>; def : Pat<(int_ppc_fcfud f64:$A), (XSCVUXDDP $A)>; def : Pat<(int_ppc_fctid f64:$A), (FCTID $A)>; def : Pat<(int_ppc_fctidz f64:$A), (XSCVDPSXDS $A)>; def : Pat<(int_ppc_fctiw f64:$A), (FCTIW $A)>; def : Pat<(int_ppc_fctiwz f64:$A), (XSCVDPSXWS $A)>; def : Pat<(int_ppc_fctudz f64:$A), (XSCVDPUXDS $A)>; def : Pat<(int_ppc_fctuwz f64:$A), (XSCVDPUXWS $A)>; def : Pat<(int_ppc_mfmsr), (MFMSR)>; def : Pat<(int_ppc_mftbu), (MFTB 269)>; def : Pat<(i32 (int_ppc_mfspr timm:$SPR)), (MFSPR $SPR)>; def : Pat<(int_ppc_mtspr timm:$SPR, gprc:$RT), (MTSPR $SPR, $RT)>; def : Pat<(int_ppc_mtmsr gprc:$RS), (MTMSR $RS, 0)>; let Predicates = [IsISA2_07] in { def : Pat<(int_ppc_sthcx ForceXForm:$dst, gprc:$A), (STHCX gprc:$A, ForceXForm:$dst)>; } def : Pat<(int_ppc_dcbtstt ForceXForm:$dst), (DCBTST 16, ForceXForm:$dst)>; def : Pat<(int_ppc_dcbtt ForceXForm:$dst), (DCBT 16, ForceXForm:$dst)>; def : Pat<(int_ppc_stfiw ForceXForm:$dst, f64:$XT), (STFIWX f64:$XT, ForceXForm:$dst)>;