//===-- ARMBaseInstrInfo.h - ARM Base Instruction Information ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the Base ARM implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H #define LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H #include "MCTargetDesc/ARMBaseInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsARM.h" #include #include #define GET_INSTRINFO_HEADER #include "ARMGenInstrInfo.inc" namespace llvm { class ARMBaseRegisterInfo; class ARMSubtarget; class ARMBaseInstrInfo : public ARMGenInstrInfo { const ARMSubtarget &Subtarget; protected: // Can be only subclassed. explicit ARMBaseInstrInfo(const ARMSubtarget &STI); void expandLoadStackGuardBase(MachineBasicBlock::iterator MI, unsigned LoadImmOpc, unsigned LoadOpc) const; /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI /// and \p DefIdx. /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of /// the list is modeled as . /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce /// two elements: /// - %1:sub1, sub0 /// - %2<:0>, sub1 /// /// \returns true if it is possible to build such an input sequence /// with the pair \p MI, \p DefIdx. False otherwise. /// /// \pre MI.isRegSequenceLike(). bool getRegSequenceLikeInputs( const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl &InputRegs) const override; /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI /// and \p DefIdx. /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: /// - %1:sub1, sub0 /// /// \returns true if it is possible to build such an input sequence /// with the pair \p MI, \p DefIdx. False otherwise. /// /// \pre MI.isExtractSubregLike(). bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const override; /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI /// and \p DefIdx. /// \p [out] BaseReg and \p [out] InsertedReg contain /// the equivalent inputs of INSERT_SUBREG. /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: /// - BaseReg: %0:sub0 /// - InsertedReg: %1:sub1, sub3 /// /// \returns true if it is possible to build such an input sequence /// with the pair \p MI, \p DefIdx. False otherwise. /// /// \pre MI.isInsertSubregLike(). bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const override; /// Commutes the operands in the given instruction. /// The commutable operands are specified by their indices OpIdx1 and OpIdx2. /// /// Do not call this method for a non-commutable instruction or for /// non-commutable pair of operand indices OpIdx1 and OpIdx2. /// Even though the instruction is commutable, the method may still /// fail to commute the operands, null pointer is returned in such cases. MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const override; /// If the specific machine instruction is an instruction that moves/copies /// value from one register to another register return destination and source /// registers as machine operands. Optional isCopyInstrImpl(const MachineInstr &MI) const override; /// Specialization of \ref TargetInstrInfo::describeLoadedValue, used to /// enhance debug entry value descriptions for ARM targets. Optional describeLoadedValue(const MachineInstr &MI, Register Reg) const override; public: // Return whether the target has an explicit NOP encoding. bool hasNOP() const; // Return the non-pre/post incrementing version of 'Opc'. Return 0 // if there is not such an opcode. virtual unsigned getUnindexedOpcode(unsigned Opc) const = 0; MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override; virtual const ARMBaseRegisterInfo &getRegisterInfo() const = 0; const ARMSubtarget &getSubtarget() const { return Subtarget; } ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const override; ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *II, const ScheduleDAGMI *DAG) const override; ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const override; // Branch analysis. bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify = false) const override; unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved = nullptr) const override; unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded = nullptr) const override; bool reverseBranchCondition(SmallVectorImpl &Cond) const override; // Predication support. bool isPredicated(const MachineInstr &MI) const override; // MIR printer helper function to annotate Operands with a comment. std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const override; ARMCC::CondCodes getPredicate(const MachineInstr &MI) const { int PIdx = MI.findFirstPredOperandIdx(); return PIdx != -1 ? (ARMCC::CondCodes)MI.getOperand(PIdx).getImm() : ARMCC::AL; } bool PredicateInstruction(MachineInstr &MI, ArrayRef Pred) const override; bool SubsumesPredicate(ArrayRef Pred1, ArrayRef Pred2) const override; bool ClobbersPredicate(MachineInstr &MI, std::vector &Pred, bool SkipDead) const override; bool isPredicable(const MachineInstr &MI) const override; // CPSR defined in instruction static bool isCPSRDefined(const MachineInstr &MI); /// GetInstSize - Returns the size of the specified MachineInstr. /// unsigned getInstSizeInBytes(const MachineInstr &MI) const override; unsigned isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override; unsigned isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override; unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override; unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override; void copyToCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool KillSrc, const ARMSubtarget &Subtarget) const; void copyFromCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, bool KillSrc, const ARMSubtarget &Subtarget) const; void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const override; void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const override; void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const override; bool expandPostRAPseudo(MachineInstr &MI) const override; bool shouldSink(const MachineInstr &MI) const override; void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const override; MachineInstr & duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const override; const MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, unsigned Reg, unsigned SubIdx, unsigned State, const TargetRegisterInfo *TRI) const; bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI) const override; /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to /// determine if two loads are loading from the same base address. It should /// only return true if the base pointers are the same and the only /// differences between the two addresses is the offset. It also returns the /// offsets by reference. bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const override; /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads /// should be scheduled togther. On some targets if two loads are loading from /// addresses in the same cache line, it's better if they are scheduled /// together. This function takes two integers that represent the load offsets /// from the common base address. It returns true if it decides it's desirable /// to schedule the two loads together. "NumLoads" is the number of loads that /// have already been scheduled after Load1. bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const override; bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override; bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override; bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT, unsigned ExtraT, MachineBasicBlock &FMBB, unsigned NumF, unsigned ExtraF, BranchProbability Probability) const override; bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const override { return NumCycles == 1; } unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, unsigned NumInsts) const override; unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const override; bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const override; /// analyzeCompare - For a comparison instruction, return the source registers /// in SrcReg and SrcReg2 if having two register operands, and the value it /// compares against in CmpValue. Return true if the comparison instruction /// can be analyzed. bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const override; /// optimizeCompareInstr - Convert the instruction to set the zero flag so /// that we can remove a "comparison with zero"; Remove a redundant CMP /// instruction if the flags can be updated in the same way by an earlier /// instruction such as SUB. bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const override; bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const override; MachineInstr *optimizeSelect(MachineInstr &MI, SmallPtrSetImpl &SeenMIs, bool) const override; /// FoldImmediate - 'Reg' is known to be defined by a move immediate /// instruction, try to fold the immediate into the use instruction. bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const override; unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const override; int getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override; int getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const override; /// VFP/NEON execution domains. std::pair getExecutionDomain(const MachineInstr &MI) const override; void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override; unsigned getPartialRegUpdateClearance(const MachineInstr &, unsigned, const TargetRegisterInfo *) const override; void breakPartialRegDependency(MachineInstr &, unsigned, const TargetRegisterInfo *TRI) const override; /// Get the number of addresses by LDM or VLDM or zero for unknown. unsigned getNumLDMAddresses(const MachineInstr &MI) const; std::pair decomposeMachineOperandsTargetFlags(unsigned TF) const override; ArrayRef> getSerializableDirectMachineOperandTargetFlags() const override; ArrayRef> getSerializableBitmaskMachineOperandTargetFlags() const override; /// ARM supports the MachineOutliner. bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const override; outliner::OutlinedFunction getOutliningCandidateInfo( std::vector &RepeatedSequenceLocs) const override; void mergeOutliningCandidateAttributes( Function &F, std::vector &Candidates) const override; outliner::InstrType getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override; bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const override; void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const override; MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, const outliner::Candidate &C) const override; /// Enable outlining by default at -Oz. bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const override; bool isUnspillableTerminatorImpl(const MachineInstr *MI) const override { return MI->getOpcode() == ARM::t2LoopEndDec || MI->getOpcode() == ARM::t2DoLoopStartTP || MI->getOpcode() == ARM::t2WhileLoopStartLR || MI->getOpcode() == ARM::t2WhileLoopStartTP; } private: /// Returns an unused general-purpose register which can be used for /// constructing an outlined call if one exists. Returns 0 otherwise. unsigned findRegisterToSaveLRTo(const outliner::Candidate &C) const; /// Adds an instruction which saves the link register on top of the stack into /// the MachineBasicBlock \p MBB at position \p It. If \p Auth is true, /// compute and store an authentication code alongiside the link register. /// If \p CFI is true, emit CFI instructions. void saveLROnStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator It, bool CFI, bool Auth) const; /// Adds an instruction which restores the link register from the top the /// stack into the MachineBasicBlock \p MBB at position \p It. If \p Auth is /// true, restore an authentication code and authenticate LR. /// If \p CFI is true, emit CFI instructions. void restoreLRFromStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator It, bool CFI, bool Auth) const; /// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It, /// for the case when the LR is saved in the register \p Reg. void emitCFIForLRSaveToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator It, Register Reg) const; /// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It, /// after the LR is was restored from a register. void emitCFIForLRRestoreFromReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const; /// \brief Sets the offsets on outlined instructions in \p MBB which use SP /// so that they will be valid post-outlining. /// /// \param MBB A \p MachineBasicBlock in an outlined function. void fixupPostOutline(MachineBasicBlock &MBB) const; /// Returns true if the machine instruction offset can handle the stack fixup /// and updates it if requested. bool checkAndUpdateStackOffset(MachineInstr *MI, int64_t Fixup, bool Updt) const; unsigned getInstBundleLength(const MachineInstr &MI) const; int getVLDMDefCycle(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const; int getLDMDefCycle(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefClass, unsigned DefIdx, unsigned DefAlign) const; int getVSTMUseCycle(const InstrItineraryData *ItinData, const MCInstrDesc &UseMCID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const; int getSTMUseCycle(const InstrItineraryData *ItinData, const MCInstrDesc &UseMCID, unsigned UseClass, unsigned UseIdx, unsigned UseAlign) const; int getOperandLatency(const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID, unsigned UseIdx, unsigned UseAlign) const; int getOperandLatencyImpl(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const; unsigned getPredicationCost(const MachineInstr &MI) const override; unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost = nullptr) const override; int getInstrLatency(const InstrItineraryData *ItinData, SDNode *Node) const override; bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override; bool hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const override; /// verifyInstruction - Perform target specific instruction verification. bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override; virtual void expandLoadStackGuard(MachineBasicBlock::iterator MI) const = 0; void expandMEMCPY(MachineBasicBlock::iterator) const; /// Identify instructions that can be folded into a MOVCC instruction, and /// return the defining instruction. MachineInstr *canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, const TargetInstrInfo *TII) const; bool isReallyTriviallyReMaterializable(const MachineInstr &MI, AAResults *AA) const override; private: /// Modeling special VFP / NEON fp MLA / MLS hazards. /// MLxEntryMap - Map fp MLA / MLS to the corresponding entry in the internal /// MLx table. DenseMap MLxEntryMap; /// MLxHazardOpcodes - Set of add / sub and multiply opcodes that would cause /// stalls when scheduled together with fp MLA / MLS opcodes. SmallSet MLxHazardOpcodes; public: /// isFpMLxInstruction - Return true if the specified opcode is a fp MLA / MLS /// instruction. bool isFpMLxInstruction(unsigned Opcode) const { return MLxEntryMap.count(Opcode); } /// isFpMLxInstruction - This version also returns the multiply opcode and the /// addition / subtraction opcode to expand to. Return true for 'HasLane' for /// the MLX instructions with an extra lane operand. bool isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, unsigned &AddSubOpc, bool &NegAcc, bool &HasLane) const; /// canCauseFpMLxStall - Return true if an instruction of the specified opcode /// will cause stalls when scheduled after (within 4-cycle window) a fp /// MLA / MLS instruction. bool canCauseFpMLxStall(unsigned Opcode) const { return MLxHazardOpcodes.count(Opcode); } /// Returns true if the instruction has a shift by immediate that can be /// executed in one cycle less. bool isSwiftFastImmShift(const MachineInstr *MI) const; /// Returns predicate register associated with the given frame instruction. unsigned getFramePred(const MachineInstr &MI) const { assert(isFrameInstr(MI)); // Operands of ADJCALLSTACKDOWN/ADJCALLSTACKUP: // - argument declared in the pattern: // 0 - frame size // 1 - arg of CALLSEQ_START/CALLSEQ_END // 2 - predicate code (like ARMCC::AL) // - added by predOps: // 3 - predicate reg return MI.getOperand(3).getReg(); } Optional isAddImmediate(const MachineInstr &MI, Register Reg) const override; }; /// Get the operands corresponding to the given \p Pred value. By default, the /// predicate register is assumed to be 0 (no register), but you can pass in a /// \p PredReg if that is not the case. static inline std::array predOps(ARMCC::CondCodes Pred, unsigned PredReg = 0) { return {{MachineOperand::CreateImm(static_cast(Pred)), MachineOperand::CreateReg(PredReg, false)}}; } /// Get the operand corresponding to the conditional code result. By default, /// this is 0 (no register). static inline MachineOperand condCodeOp(unsigned CCReg = 0) { return MachineOperand::CreateReg(CCReg, false); } /// Get the operand corresponding to the conditional code result for Thumb1. /// This operand will always refer to CPSR and it will have the Define flag set. /// You can optionally set the Dead flag by means of \p isDead. static inline MachineOperand t1CondCodeOp(bool isDead = false) { return MachineOperand::CreateReg(ARM::CPSR, /*Define*/ true, /*Implicit*/ false, /*Kill*/ false, isDead); } static inline bool isUncondBranchOpcode(int Opc) { return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B; } // This table shows the VPT instruction variants, i.e. the different // mask field encodings, see also B5.6. Predication/conditional execution in // the ArmARM. static inline bool isVPTOpcode(int Opc) { return Opc == ARM::MVE_VPTv16i8 || Opc == ARM::MVE_VPTv16u8 || Opc == ARM::MVE_VPTv16s8 || Opc == ARM::MVE_VPTv8i16 || Opc == ARM::MVE_VPTv8u16 || Opc == ARM::MVE_VPTv8s16 || Opc == ARM::MVE_VPTv4i32 || Opc == ARM::MVE_VPTv4u32 || Opc == ARM::MVE_VPTv4s32 || Opc == ARM::MVE_VPTv4f32 || Opc == ARM::MVE_VPTv8f16 || Opc == ARM::MVE_VPTv16i8r || Opc == ARM::MVE_VPTv16u8r || Opc == ARM::MVE_VPTv16s8r || Opc == ARM::MVE_VPTv8i16r || Opc == ARM::MVE_VPTv8u16r || Opc == ARM::MVE_VPTv8s16r || Opc == ARM::MVE_VPTv4i32r || Opc == ARM::MVE_VPTv4u32r || Opc == ARM::MVE_VPTv4s32r || Opc == ARM::MVE_VPTv4f32r || Opc == ARM::MVE_VPTv8f16r || Opc == ARM::MVE_VPST; } static inline unsigned VCMPOpcodeToVPT(unsigned Opcode) { switch (Opcode) { default: return 0; case ARM::MVE_VCMPf32: return ARM::MVE_VPTv4f32; case ARM::MVE_VCMPf16: return ARM::MVE_VPTv8f16; case ARM::MVE_VCMPi8: return ARM::MVE_VPTv16i8; case ARM::MVE_VCMPi16: return ARM::MVE_VPTv8i16; case ARM::MVE_VCMPi32: return ARM::MVE_VPTv4i32; case ARM::MVE_VCMPu8: return ARM::MVE_VPTv16u8; case ARM::MVE_VCMPu16: return ARM::MVE_VPTv8u16; case ARM::MVE_VCMPu32: return ARM::MVE_VPTv4u32; case ARM::MVE_VCMPs8: return ARM::MVE_VPTv16s8; case ARM::MVE_VCMPs16: return ARM::MVE_VPTv8s16; case ARM::MVE_VCMPs32: return ARM::MVE_VPTv4s32; case ARM::MVE_VCMPf32r: return ARM::MVE_VPTv4f32r; case ARM::MVE_VCMPf16r: return ARM::MVE_VPTv8f16r; case ARM::MVE_VCMPi8r: return ARM::MVE_VPTv16i8r; case ARM::MVE_VCMPi16r: return ARM::MVE_VPTv8i16r; case ARM::MVE_VCMPi32r: return ARM::MVE_VPTv4i32r; case ARM::MVE_VCMPu8r: return ARM::MVE_VPTv16u8r; case ARM::MVE_VCMPu16r: return ARM::MVE_VPTv8u16r; case ARM::MVE_VCMPu32r: return ARM::MVE_VPTv4u32r; case ARM::MVE_VCMPs8r: return ARM::MVE_VPTv16s8r; case ARM::MVE_VCMPs16r: return ARM::MVE_VPTv8s16r; case ARM::MVE_VCMPs32r: return ARM::MVE_VPTv4s32r; } } static inline bool isCondBranchOpcode(int Opc) { return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc; } static inline bool isJumpTableBranchOpcode(int Opc) { return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm_i12 || Opc == ARM::BR_JTm_rs || Opc == ARM::BR_JTadd || Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT; } static inline bool isIndirectBranchOpcode(int Opc) { return Opc == ARM::BX || Opc == ARM::MOVPCRX || Opc == ARM::tBRIND; } static inline bool isIndirectCall(const MachineInstr &MI) { int Opc = MI.getOpcode(); switch (Opc) { // indirect calls: case ARM::BLX: case ARM::BLX_noip: case ARM::BLX_pred: case ARM::BLX_pred_noip: case ARM::BX_CALL: case ARM::BMOVPCRX_CALL: case ARM::TCRETURNri: case ARM::TAILJMPr: case ARM::TAILJMPr4: case ARM::tBLXr: case ARM::tBLXr_noip: case ARM::tBLXNSr: case ARM::tBLXNS_CALL: case ARM::tBX_CALL: case ARM::tTAILJMPr: assert(MI.isCall(MachineInstr::IgnoreBundle)); return true; // direct calls: case ARM::BL: case ARM::BL_pred: case ARM::BMOVPCB_CALL: case ARM::BL_PUSHLR: case ARM::BLXi: case ARM::TCRETURNdi: case ARM::TAILJMPd: case ARM::SVC: case ARM::HVC: case ARM::TPsoft: case ARM::tTAILJMPd: case ARM::t2SMC: case ARM::t2HVC: case ARM::tBL: case ARM::tBLXi: case ARM::tBL_PUSHLR: case ARM::tTAILJMPdND: case ARM::tSVC: case ARM::tTPsoft: assert(MI.isCall(MachineInstr::IgnoreBundle)); return false; } assert(!MI.isCall(MachineInstr::IgnoreBundle)); return false; } static inline bool isIndirectControlFlowNotComingBack(const MachineInstr &MI) { int opc = MI.getOpcode(); return MI.isReturn() || isIndirectBranchOpcode(MI.getOpcode()) || isJumpTableBranchOpcode(opc); } static inline bool isSpeculationBarrierEndBBOpcode(int Opc) { return Opc == ARM::SpeculationBarrierISBDSBEndBB || Opc == ARM::SpeculationBarrierSBEndBB || Opc == ARM::t2SpeculationBarrierISBDSBEndBB || Opc == ARM::t2SpeculationBarrierSBEndBB; } static inline bool isPopOpcode(int Opc) { return Opc == ARM::tPOP_RET || Opc == ARM::LDMIA_RET || Opc == ARM::t2LDMIA_RET || Opc == ARM::tPOP || Opc == ARM::LDMIA_UPD || Opc == ARM::t2LDMIA_UPD || Opc == ARM::VLDMDIA_UPD; } static inline bool isPushOpcode(int Opc) { return Opc == ARM::tPUSH || Opc == ARM::t2STMDB_UPD || Opc == ARM::STMDB_UPD || Opc == ARM::VSTMDDB_UPD; } static inline bool isSubImmOpcode(int Opc) { return Opc == ARM::SUBri || Opc == ARM::tSUBi3 || Opc == ARM::tSUBi8 || Opc == ARM::tSUBSi3 || Opc == ARM::tSUBSi8 || Opc == ARM::t2SUBri || Opc == ARM::t2SUBri12 || Opc == ARM::t2SUBSri; } static inline bool isMovRegOpcode(int Opc) { return Opc == ARM::MOVr || Opc == ARM::tMOVr || Opc == ARM::t2MOVr; } /// isValidCoprocessorNumber - decide whether an explicit coprocessor /// number is legal in generic instructions like CDP. The answer can /// vary with the subtarget. static inline bool isValidCoprocessorNumber(unsigned Num, const FeatureBitset& featureBits) { // In Armv7 and Armv8-M CP10 and CP11 clash with VFP/NEON, however, the // coprocessor is still valid for CDP/MCR/MRC and friends. Allowing it is // useful for code which is shared with older architectures which do not know // the new VFP/NEON mnemonics. // Armv8-A disallows everything *other* than 111x (CP14 and CP15). if (featureBits[ARM::HasV8Ops] && (Num & 0xE) != 0xE) return false; // Armv8.1-M disallows 100x (CP8,CP9) and 111x (CP14,CP15) // which clash with MVE. if (featureBits[ARM::HasV8_1MMainlineOps] && ((Num & 0xE) == 0x8 || (Num & 0xE) == 0xE)) return false; return true; } /// getInstrPredicate - If instruction is predicated, returns its predicate /// condition, otherwise returns AL. It also returns the condition code /// register by reference. ARMCC::CondCodes getInstrPredicate(const MachineInstr &MI, Register &PredReg); unsigned getMatchingCondBranchOpcode(unsigned Opc); /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether /// the instruction is encoded with an 'S' bit is determined by the optional /// CPSR def operand. unsigned convertAddSubFlagsOpcode(unsigned OldOpc); /// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of /// instructions to materializea destreg = basereg + immediate in ARM / Thumb2 /// code. void emitARMRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, Register DestReg, Register BaseReg, int NumBytes, ARMCC::CondCodes Pred, Register PredReg, const ARMBaseInstrInfo &TII, unsigned MIFlags = 0); void emitT2RegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, Register DestReg, Register BaseReg, int NumBytes, ARMCC::CondCodes Pred, Register PredReg, const ARMBaseInstrInfo &TII, unsigned MIFlags = 0); void emitThumbRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, Register DestReg, Register BaseReg, int NumBytes, const TargetInstrInfo &TII, const ARMBaseRegisterInfo &MRI, unsigned MIFlags = 0); /// Tries to add registers to the reglist of a given base-updating /// push/pop instruction to adjust the stack by an additional /// NumBytes. This can save a few bytes per function in code-size, but /// obviously generates more memory traffic. As such, it only takes /// effect in functions being optimised for size. bool tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, MachineFunction &MF, MachineInstr *MI, unsigned NumBytes); /// rewriteARMFrameIndex / rewriteT2FrameIndex - /// Rewrite MI to access 'Offset' bytes from the FP. Return false if the /// offset could not be handled directly in MI, and return the left-over /// portion by reference. bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, Register FrameReg, int &Offset, const ARMBaseInstrInfo &TII); bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, Register FrameReg, int &Offset, const ARMBaseInstrInfo &TII, const TargetRegisterInfo *TRI); /// Return true if Reg is defd between From and To bool registerDefinedBetween(unsigned Reg, MachineBasicBlock::iterator From, MachineBasicBlock::iterator To, const TargetRegisterInfo *TRI); /// Search backwards from a tBcc to find a tCMPi8 against 0, meaning /// we can convert them to a tCBZ or tCBNZ. Return nullptr if not found. MachineInstr *findCMPToFoldIntoCBZ(MachineInstr *Br, const TargetRegisterInfo *TRI); void addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB); void addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, Register DestReg); void addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond); void addPredicatedMveVpredROp(MachineInstrBuilder &MIB, unsigned Cond, unsigned Inactive); /// Returns the number of instructions required to materialize the given /// constant in a register, or 3 if a literal pool load is needed. /// If ForCodesize is specified, an approximate cost in bytes is returned. unsigned ConstantMaterializationCost(unsigned Val, const ARMSubtarget *Subtarget, bool ForCodesize = false); /// Returns true if Val1 has a lower Constant Materialization Cost than Val2. /// Uses the cost from ConstantMaterializationCost, first with ForCodesize as /// specified. If the scores are equal, return the comparison for !ForCodesize. bool HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, const ARMSubtarget *Subtarget, bool ForCodesize = false); // Return the immediate if this is ADDri or SUBri, scaled as appropriate. // Returns 0 for unknown instructions. inline int getAddSubImmediate(MachineInstr &MI) { int Scale = 1; unsigned ImmOp; switch (MI.getOpcode()) { case ARM::t2ADDri: ImmOp = 2; break; case ARM::t2SUBri: case ARM::t2SUBri12: ImmOp = 2; Scale = -1; break; case ARM::tSUBi3: case ARM::tSUBi8: ImmOp = 3; Scale = -1; break; default: return 0; } return Scale * MI.getOperand(ImmOp).getImm(); } // Given a memory access Opcode, check that the give Imm would be a valid Offset // for this instruction using its addressing mode. inline bool isLegalAddressImm(unsigned Opcode, int Imm, const TargetInstrInfo *TII) { const MCInstrDesc &Desc = TII->get(Opcode); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); switch (AddrMode) { case ARMII::AddrModeT2_i7: return std::abs(Imm) < ((1 << 7) * 1); case ARMII::AddrModeT2_i7s2: return std::abs(Imm) < ((1 << 7) * 2) && Imm % 2 == 0; case ARMII::AddrModeT2_i7s4: return std::abs(Imm) < ((1 << 7) * 4) && Imm % 4 == 0; case ARMII::AddrModeT2_i8: return std::abs(Imm) < ((1 << 8) * 1); case ARMII::AddrModeT2_i8pos: return Imm >= 0 && Imm < ((1 << 8) * 1); case ARMII::AddrModeT2_i8neg: return Imm < 0 && -Imm < ((1 << 8) * 1); case ARMII::AddrModeT2_i8s4: return std::abs(Imm) < ((1 << 8) * 4) && Imm % 4 == 0; case ARMII::AddrModeT2_i12: return Imm >= 0 && Imm < ((1 << 12) * 1); case ARMII::AddrMode2: return std::abs(Imm) < ((1 << 12) * 1); default: llvm_unreachable("Unhandled Addressing mode"); } } // Return true if the given intrinsic is a gather inline bool isGather(IntrinsicInst *IntInst) { if (IntInst == nullptr) return false; unsigned IntrinsicID = IntInst->getIntrinsicID(); return (IntrinsicID == Intrinsic::masked_gather || IntrinsicID == Intrinsic::arm_mve_vldr_gather_base || IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_predicated || IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_wb || IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated || IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset || IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset_predicated); } // Return true if the given intrinsic is a scatter inline bool isScatter(IntrinsicInst *IntInst) { if (IntInst == nullptr) return false; unsigned IntrinsicID = IntInst->getIntrinsicID(); return (IntrinsicID == Intrinsic::masked_scatter || IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base || IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_predicated || IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_wb || IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_wb_predicated || IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset || IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset_predicated); } // Return true if the given intrinsic is a gather or scatter inline bool isGatherScatter(IntrinsicInst *IntInst) { if (IntInst == nullptr) return false; return isGather(IntInst) || isScatter(IntInst); } unsigned getBLXOpcode(const MachineFunction &MF); unsigned gettBLXrOpcode(const MachineFunction &MF); unsigned getBLXpredOpcode(const MachineFunction &MF); } // end namespace llvm #endif // LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H