//===- llvm/Support/Unix/Program.cpp -----------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Unix specific portion of the Program class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only generic UNIX code that //=== is guaranteed to work on *all* UNIX variants. //===----------------------------------------------------------------------===// #include "llvm/Support/Program.h" #include "Unix.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Config/config.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/raw_ostream.h" #if HAVE_SYS_STAT_H #include #endif #if HAVE_SYS_RESOURCE_H #include #endif #if HAVE_SIGNAL_H #include #endif #if HAVE_FCNTL_H #include #endif #if HAVE_UNISTD_H #include #endif #ifdef HAVE_POSIX_SPAWN #include #if defined(__APPLE__) #include #endif #if defined(__APPLE__) && !(defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE) #define USE_NSGETENVIRON 1 #else #define USE_NSGETENVIRON 0 #endif #if !USE_NSGETENVIRON extern char **environ; #else #include // _NSGetEnviron #endif #endif using namespace llvm; using namespace sys; ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {} ErrorOr sys::findProgramByName(StringRef Name, ArrayRef Paths) { assert(!Name.empty() && "Must have a name!"); // Use the given path verbatim if it contains any slashes; this matches // the behavior of sh(1) and friends. if (Name.contains('/')) return std::string(Name); SmallVector EnvironmentPaths; if (Paths.empty()) if (const char *PathEnv = std::getenv("PATH")) { SplitString(PathEnv, EnvironmentPaths, ":"); Paths = EnvironmentPaths; } for (auto Path : Paths) { if (Path.empty()) continue; // Check to see if this first directory contains the executable... SmallString<128> FilePath(Path); sys::path::append(FilePath, Name); if (sys::fs::can_execute(FilePath.c_str())) return std::string(FilePath.str()); // Found the executable! } return errc::no_such_file_or_directory; } static bool RedirectIO(Optional Path, int FD, std::string* ErrMsg) { if (!Path) // Noop return false; std::string File; if (Path->empty()) // Redirect empty paths to /dev/null File = "/dev/null"; else File = std::string(*Path); // Open the file int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666); if (InFD == -1) { MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for " + (FD == 0 ? "input" : "output")); return true; } // Install it as the requested FD if (dup2(InFD, FD) == -1) { MakeErrMsg(ErrMsg, "Cannot dup2"); close(InFD); return true; } close(InFD); // Close the original FD return false; } #ifdef HAVE_POSIX_SPAWN static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg, posix_spawn_file_actions_t *FileActions) { if (!Path) // Noop return false; const char *File; if (Path->empty()) // Redirect empty paths to /dev/null File = "/dev/null"; else File = Path->c_str(); if (int Err = posix_spawn_file_actions_addopen( FileActions, FD, File, FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666)) return MakeErrMsg(ErrMsg, "Cannot posix_spawn_file_actions_addopen", Err); return false; } #endif static void TimeOutHandler(int Sig) { } static void SetMemoryLimits(unsigned size) { #if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT struct rlimit r; __typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576; // Heap size getrlimit (RLIMIT_DATA, &r); r.rlim_cur = limit; setrlimit (RLIMIT_DATA, &r); #ifdef RLIMIT_RSS // Resident set size. getrlimit (RLIMIT_RSS, &r); r.rlim_cur = limit; setrlimit (RLIMIT_RSS, &r); #endif #endif } static std::vector toNullTerminatedCStringArray(ArrayRef Strings, StringSaver &Saver) { std::vector Result; for (StringRef S : Strings) Result.push_back(Saver.save(S).data()); Result.push_back(nullptr); return Result; } static bool Execute(ProcessInfo &PI, StringRef Program, ArrayRef Args, Optional> Env, ArrayRef> Redirects, unsigned MemoryLimit, std::string *ErrMsg, BitVector *AffinityMask) { if (!llvm::sys::fs::exists(Program)) { if (ErrMsg) *ErrMsg = std::string("Executable \"") + Program.str() + std::string("\" doesn't exist!"); return false; } assert(!AffinityMask && "Starting a process with an affinity mask is " "currently not supported on Unix!"); BumpPtrAllocator Allocator; StringSaver Saver(Allocator); std::vector ArgVector, EnvVector; const char **Argv = nullptr; const char **Envp = nullptr; ArgVector = toNullTerminatedCStringArray(Args, Saver); Argv = ArgVector.data(); if (Env) { EnvVector = toNullTerminatedCStringArray(*Env, Saver); Envp = EnvVector.data(); } // If this OS has posix_spawn and there is no memory limit being implied, use // posix_spawn. It is more efficient than fork/exec. #ifdef HAVE_POSIX_SPAWN if (MemoryLimit == 0) { posix_spawn_file_actions_t FileActionsStore; posix_spawn_file_actions_t *FileActions = nullptr; // If we call posix_spawn_file_actions_addopen we have to make sure the // c strings we pass to it stay alive until the call to posix_spawn, // so we copy any StringRefs into this variable. std::string RedirectsStorage[3]; if (!Redirects.empty()) { assert(Redirects.size() == 3); std::string *RedirectsStr[3] = {nullptr, nullptr, nullptr}; for (int I = 0; I < 3; ++I) { if (Redirects[I]) { RedirectsStorage[I] = std::string(*Redirects[I]); RedirectsStr[I] = &RedirectsStorage[I]; } } FileActions = &FileActionsStore; posix_spawn_file_actions_init(FileActions); // Redirect stdin/stdout. if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) || RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions)) return false; if (!Redirects[1] || !Redirects[2] || *Redirects[1] != *Redirects[2]) { // Just redirect stderr if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions)) return false; } else { // If stdout and stderr should go to the same place, redirect stderr // to the FD already open for stdout. if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2)) return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err); } } if (!Envp) #if !USE_NSGETENVIRON Envp = const_cast(environ); #else // environ is missing in dylibs. Envp = const_cast(*_NSGetEnviron()); #endif constexpr int maxRetries = 8; int retries = 0; pid_t PID; int Err; do { PID = 0; // Make Valgrind happy. Err = posix_spawn(&PID, Program.str().c_str(), FileActions, /*attrp*/ nullptr, const_cast(Argv), const_cast(Envp)); } while (Err == EINTR && ++retries < maxRetries); if (FileActions) posix_spawn_file_actions_destroy(FileActions); if (Err) return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err); PI.Pid = PID; PI.Process = PID; return true; } #endif // Create a child process. int child = fork(); switch (child) { // An error occurred: Return to the caller. case -1: MakeErrMsg(ErrMsg, "Couldn't fork"); return false; // Child process: Execute the program. case 0: { // Redirect file descriptors... if (!Redirects.empty()) { // Redirect stdin if (RedirectIO(Redirects[0], 0, ErrMsg)) { return false; } // Redirect stdout if (RedirectIO(Redirects[1], 1, ErrMsg)) { return false; } if (Redirects[1] && Redirects[2] && *Redirects[1] == *Redirects[2]) { // If stdout and stderr should go to the same place, redirect stderr // to the FD already open for stdout. if (-1 == dup2(1,2)) { MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout"); return false; } } else { // Just redirect stderr if (RedirectIO(Redirects[2], 2, ErrMsg)) { return false; } } } // Set memory limits if (MemoryLimit!=0) { SetMemoryLimits(MemoryLimit); } // Execute! std::string PathStr = std::string(Program); if (Envp != nullptr) execve(PathStr.c_str(), const_cast(Argv), const_cast(Envp)); else execv(PathStr.c_str(), const_cast(Argv)); // If the execve() failed, we should exit. Follow Unix protocol and // return 127 if the executable was not found, and 126 otherwise. // Use _exit rather than exit so that atexit functions and static // object destructors cloned from the parent process aren't // redundantly run, and so that any data buffered in stdio buffers // cloned from the parent aren't redundantly written out. _exit(errno == ENOENT ? 127 : 126); } // Parent process: Break out of the switch to do our processing. default: break; } PI.Pid = child; PI.Process = child; return true; } namespace llvm { namespace sys { #ifndef _AIX using ::wait4; #else static pid_t (wait4)(pid_t pid, int *status, int options, struct rusage *usage); #endif } // namespace sys } // namespace llvm #ifdef _AIX #ifndef _ALL_SOURCE extern "C" pid_t (wait4)(pid_t pid, int *status, int options, struct rusage *usage); #endif pid_t (llvm::sys::wait4)(pid_t pid, int *status, int options, struct rusage *usage) { assert(pid > 0 && "Only expecting to handle actual PID values!"); assert((options & ~WNOHANG) == 0 && "Expecting WNOHANG at most!"); assert(usage && "Expecting usage collection!"); // AIX wait4 does not work well with WNOHANG. if (!(options & WNOHANG)) return ::wait4(pid, status, options, usage); // For WNOHANG, we use waitid (which supports WNOWAIT) until the child process // has terminated. siginfo_t WaitIdInfo; WaitIdInfo.si_pid = 0; int WaitIdRetVal = waitid(P_PID, pid, &WaitIdInfo, WNOWAIT | WEXITED | options); if (WaitIdRetVal == -1 || WaitIdInfo.si_pid == 0) return WaitIdRetVal; assert(WaitIdInfo.si_pid == pid); // The child has already terminated, so a blocking wait on it is okay in the // absence of indiscriminate `wait` calls from the current process (which // would cause the call here to fail with ECHILD). return ::wait4(pid, status, options & ~WNOHANG, usage); } #endif ProcessInfo llvm::sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait, bool WaitUntilTerminates, std::string *ErrMsg, Optional *ProcStat) { struct sigaction Act, Old; assert(PI.Pid && "invalid pid to wait on, process not started?"); int WaitPidOptions = 0; pid_t ChildPid = PI.Pid; if (WaitUntilTerminates) { SecondsToWait = 0; } else if (SecondsToWait) { // Install a timeout handler. The handler itself does nothing, but the // simple fact of having a handler at all causes the wait below to return // with EINTR, unlike if we used SIG_IGN. memset(&Act, 0, sizeof(Act)); Act.sa_handler = TimeOutHandler; sigemptyset(&Act.sa_mask); sigaction(SIGALRM, &Act, &Old); // FIXME The alarm signal may be delivered to another thread. alarm(SecondsToWait); } else if (SecondsToWait == 0) WaitPidOptions = WNOHANG; // Parent process: Wait for the child process to terminate. int status; ProcessInfo WaitResult; rusage Info; if (ProcStat) ProcStat->reset(); do { WaitResult.Pid = sys::wait4(ChildPid, &status, WaitPidOptions, &Info); } while (WaitUntilTerminates && WaitResult.Pid == -1 && errno == EINTR); if (WaitResult.Pid != PI.Pid) { if (WaitResult.Pid == 0) { // Non-blocking wait. return WaitResult; } else { if (SecondsToWait && errno == EINTR) { // Kill the child. kill(PI.Pid, SIGKILL); // Turn off the alarm and restore the signal handler alarm(0); sigaction(SIGALRM, &Old, nullptr); // Wait for child to die // FIXME This could grab some other child process out from another // waiting thread and then leave a zombie anyway. if (wait(&status) != ChildPid) MakeErrMsg(ErrMsg, "Child timed out but wouldn't die"); else MakeErrMsg(ErrMsg, "Child timed out", 0); WaitResult.ReturnCode = -2; // Timeout detected return WaitResult; } else if (errno != EINTR) { MakeErrMsg(ErrMsg, "Error waiting for child process"); WaitResult.ReturnCode = -1; return WaitResult; } } } // We exited normally without timeout, so turn off the timer. if (SecondsToWait && !WaitUntilTerminates) { alarm(0); sigaction(SIGALRM, &Old, nullptr); } if (ProcStat) { std::chrono::microseconds UserT = toDuration(Info.ru_utime); std::chrono::microseconds KernelT = toDuration(Info.ru_stime); uint64_t PeakMemory = 0; #ifndef __HAIKU__ PeakMemory = static_cast(Info.ru_maxrss); #endif *ProcStat = ProcessStatistics{UserT + KernelT, UserT, PeakMemory}; } // Return the proper exit status. Detect error conditions // so we can return -1 for them and set ErrMsg informatively. int result = 0; if (WIFEXITED(status)) { result = WEXITSTATUS(status); WaitResult.ReturnCode = result; if (result == 127) { if (ErrMsg) *ErrMsg = llvm::sys::StrError(ENOENT); WaitResult.ReturnCode = -1; return WaitResult; } if (result == 126) { if (ErrMsg) *ErrMsg = "Program could not be executed"; WaitResult.ReturnCode = -1; return WaitResult; } } else if (WIFSIGNALED(status)) { if (ErrMsg) { *ErrMsg = strsignal(WTERMSIG(status)); #ifdef WCOREDUMP if (WCOREDUMP(status)) *ErrMsg += " (core dumped)"; #endif } // Return a special value to indicate that the process received an unhandled // signal during execution as opposed to failing to execute. WaitResult.ReturnCode = -2; } return WaitResult; } std::error_code llvm::sys::ChangeStdinMode(fs::OpenFlags Flags){ if (!(Flags & fs::OF_Text)) return ChangeStdinToBinary(); return std::error_code(); } std::error_code llvm::sys::ChangeStdoutMode(fs::OpenFlags Flags){ if (!(Flags & fs::OF_Text)) return ChangeStdoutToBinary(); return std::error_code(); } std::error_code llvm::sys::ChangeStdinToBinary() { // Do nothing, as Unix doesn't differentiate between text and binary. return std::error_code(); } std::error_code llvm::sys::ChangeStdoutToBinary() { // Do nothing, as Unix doesn't differentiate between text and binary. return std::error_code(); } std::error_code llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents, WindowsEncodingMethod Encoding /*unused*/) { std::error_code EC; llvm::raw_fd_ostream OS(FileName, EC, llvm::sys::fs::OpenFlags::OF_TextWithCRLF); if (EC) return EC; OS << Contents; if (OS.has_error()) return make_error_code(errc::io_error); return EC; } bool llvm::sys::commandLineFitsWithinSystemLimits(StringRef Program, ArrayRef Args) { static long ArgMax = sysconf(_SC_ARG_MAX); // POSIX requires that _POSIX_ARG_MAX is 4096, which is the lowest possible // value for ARG_MAX on a POSIX compliant system. static long ArgMin = _POSIX_ARG_MAX; // This the same baseline used by xargs. long EffectiveArgMax = 128 * 1024; if (EffectiveArgMax > ArgMax) EffectiveArgMax = ArgMax; else if (EffectiveArgMax < ArgMin) EffectiveArgMax = ArgMin; // System says no practical limit. if (ArgMax == -1) return true; // Conservatively account for space required by environment variables. long HalfArgMax = EffectiveArgMax / 2; size_t ArgLength = Program.size() + 1; for (StringRef Arg : Args) { // Ensure that we do not exceed the MAX_ARG_STRLEN constant on Linux, which // does not have a constant unlike what the man pages would have you // believe. Since this limit is pretty high, perform the check // unconditionally rather than trying to be aggressive and limiting it to // Linux only. if (Arg.size() >= (32 * 4096)) return false; ArgLength += Arg.size() + 1; if (ArgLength > size_t(HalfArgMax)) { return false; } } return true; }