//===- CoverageMapping.cpp - Code coverage mapping support ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for clang's and llvm's instrumentation based // code coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/Coverage/CoverageMapping.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace coverage; #define DEBUG_TYPE "coverage-mapping" Counter CounterExpressionBuilder::get(const CounterExpression &E) { auto It = ExpressionIndices.find(E); if (It != ExpressionIndices.end()) return Counter::getExpression(It->second); unsigned I = Expressions.size(); Expressions.push_back(E); ExpressionIndices[E] = I; return Counter::getExpression(I); } void CounterExpressionBuilder::extractTerms(Counter C, int Factor, SmallVectorImpl &Terms) { switch (C.getKind()) { case Counter::Zero: break; case Counter::CounterValueReference: Terms.emplace_back(C.getCounterID(), Factor); break; case Counter::Expression: const auto &E = Expressions[C.getExpressionID()]; extractTerms(E.LHS, Factor, Terms); extractTerms( E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); break; } } Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { // Gather constant terms. SmallVector Terms; extractTerms(ExpressionTree, +1, Terms); // If there are no terms, this is just a zero. The algorithm below assumes at // least one term. if (Terms.size() == 0) return Counter::getZero(); // Group the terms by counter ID. llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { return LHS.CounterID < RHS.CounterID; }); // Combine terms by counter ID to eliminate counters that sum to zero. auto Prev = Terms.begin(); for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { if (I->CounterID == Prev->CounterID) { Prev->Factor += I->Factor; continue; } ++Prev; *Prev = *I; } Terms.erase(++Prev, Terms.end()); Counter C; // Create additions. We do this before subtractions to avoid constructs like // ((0 - X) + Y), as opposed to (Y - X). for (auto T : Terms) { if (T.Factor <= 0) continue; for (int I = 0; I < T.Factor; ++I) if (C.isZero()) C = Counter::getCounter(T.CounterID); else C = get(CounterExpression(CounterExpression::Add, C, Counter::getCounter(T.CounterID))); } // Create subtractions. for (auto T : Terms) { if (T.Factor >= 0) continue; for (int I = 0; I < -T.Factor; ++I) C = get(CounterExpression(CounterExpression::Subtract, C, Counter::getCounter(T.CounterID))); } return C; } Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) { return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS))); } Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) { return simplify( get(CounterExpression(CounterExpression::Subtract, LHS, RHS))); } void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { switch (C.getKind()) { case Counter::Zero: OS << '0'; return; case Counter::CounterValueReference: OS << '#' << C.getCounterID(); break; case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return; const auto &E = Expressions[C.getExpressionID()]; OS << '('; dump(E.LHS, OS); OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); dump(E.RHS, OS); OS << ')'; break; } } if (CounterValues.empty()) return; Expected Value = evaluate(C); if (auto E = Value.takeError()) { consumeError(std::move(E)); return; } OS << '[' << *Value << ']'; } Expected CounterMappingContext::evaluate(const Counter &C) const { switch (C.getKind()) { case Counter::Zero: return 0; case Counter::CounterValueReference: if (C.getCounterID() >= CounterValues.size()) return errorCodeToError(errc::argument_out_of_domain); return CounterValues[C.getCounterID()]; case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return errorCodeToError(errc::argument_out_of_domain); const auto &E = Expressions[C.getExpressionID()]; Expected LHS = evaluate(E.LHS); if (!LHS) return LHS; Expected RHS = evaluate(E.RHS); if (!RHS) return RHS; return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS; } } llvm_unreachable("Unhandled CounterKind"); } unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { switch (C.getKind()) { case Counter::Zero: return 0; case Counter::CounterValueReference: return C.getCounterID(); case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return 0; const auto &E = Expressions[C.getExpressionID()]; return std::max(getMaxCounterID(E.LHS), getMaxCounterID(E.RHS)); } } llvm_unreachable("Unhandled CounterKind"); } void FunctionRecordIterator::skipOtherFiles() { while (Current != Records.end() && !Filename.empty() && Filename != Current->Filenames[0]) ++Current; if (Current == Records.end()) *this = FunctionRecordIterator(); } ArrayRef CoverageMapping::getImpreciseRecordIndicesForFilename( StringRef Filename) const { size_t FilenameHash = hash_value(Filename); auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); if (RecordIt == FilenameHash2RecordIndices.end()) return {}; return RecordIt->second; } static unsigned getMaxCounterID(const CounterMappingContext &Ctx, const CoverageMappingRecord &Record) { unsigned MaxCounterID = 0; for (const auto &Region : Record.MappingRegions) { MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); } return MaxCounterID; } Error CoverageMapping::loadFunctionRecord( const CoverageMappingRecord &Record, IndexedInstrProfReader &ProfileReader) { StringRef OrigFuncName = Record.FunctionName; if (OrigFuncName.empty()) return make_error(coveragemap_error::malformed); if (Record.Filenames.empty()) OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); else OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); CounterMappingContext Ctx(Record.Expressions); std::vector Counts; if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, Record.FunctionHash, Counts)) { instrprof_error IPE = InstrProfError::take(std::move(E)); if (IPE == instrprof_error::hash_mismatch) { FuncHashMismatches.emplace_back(std::string(Record.FunctionName), Record.FunctionHash); return Error::success(); } else if (IPE != instrprof_error::unknown_function) return make_error(IPE); Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); } Ctx.setCounts(Counts); assert(!Record.MappingRegions.empty() && "Function has no regions"); // This coverage record is a zero region for a function that's unused in // some TU, but used in a different TU. Ignore it. The coverage maps from the // the other TU will either be loaded (providing full region counts) or they // won't (in which case we don't unintuitively report functions as uncovered // when they have non-zero counts in the profile). if (Record.MappingRegions.size() == 1 && Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) return Error::success(); FunctionRecord Function(OrigFuncName, Record.Filenames); for (const auto &Region : Record.MappingRegions) { Expected ExecutionCount = Ctx.evaluate(Region.Count); if (auto E = ExecutionCount.takeError()) { consumeError(std::move(E)); return Error::success(); } Expected AltExecutionCount = Ctx.evaluate(Region.FalseCount); if (auto E = AltExecutionCount.takeError()) { consumeError(std::move(E)); return Error::success(); } Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); } // Don't create records for (filenames, function) pairs we've already seen. auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), Record.Filenames.end()); if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) return Error::success(); Functions.push_back(std::move(Function)); // Performance optimization: keep track of the indices of the function records // which correspond to each filename. This can be used to substantially speed // up queries for coverage info in a file. unsigned RecordIndex = Functions.size() - 1; for (StringRef Filename : Record.Filenames) { auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; // Note that there may be duplicates in the filename set for a function // record, because of e.g. macro expansions in the function in which both // the macro and the function are defined in the same file. if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) RecordIndices.push_back(RecordIndex); } return Error::success(); } // This function is for memory optimization by shortening the lifetimes // of CoverageMappingReader instances. Error CoverageMapping::loadFromReaders( ArrayRef> CoverageReaders, IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { for (const auto &CoverageReader : CoverageReaders) { for (auto RecordOrErr : *CoverageReader) { if (Error E = RecordOrErr.takeError()) return E; const auto &Record = *RecordOrErr; if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) return E; } } return Error::success(); } Expected> CoverageMapping::load( ArrayRef> CoverageReaders, IndexedInstrProfReader &ProfileReader) { auto Coverage = std::unique_ptr(new CoverageMapping()); if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) return std::move(E); return std::move(Coverage); } // If E is a no_data_found error, returns success. Otherwise returns E. static Error handleMaybeNoDataFoundError(Error E) { return handleErrors( std::move(E), [](const CoverageMapError &CME) { if (CME.get() == coveragemap_error::no_data_found) return static_cast(Error::success()); return make_error(CME.get()); }); } Expected> CoverageMapping::load(ArrayRef ObjectFilenames, StringRef ProfileFilename, ArrayRef Arches, StringRef CompilationDir) { auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename); if (Error E = ProfileReaderOrErr.takeError()) return std::move(E); auto ProfileReader = std::move(ProfileReaderOrErr.get()); auto Coverage = std::unique_ptr(new CoverageMapping()); bool DataFound = false; for (const auto &File : llvm::enumerate(ObjectFilenames)) { auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( File.value(), /*IsText=*/false, /*RequiresNullTerminator=*/false); if (std::error_code EC = CovMappingBufOrErr.getError()) return errorCodeToError(EC); StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()]; MemoryBufferRef CovMappingBufRef = CovMappingBufOrErr.get()->getMemBufferRef(); SmallVector, 4> Buffers; auto CoverageReadersOrErr = BinaryCoverageReader::create( CovMappingBufRef, Arch, Buffers, CompilationDir); if (Error E = CoverageReadersOrErr.takeError()) { E = handleMaybeNoDataFoundError(std::move(E)); if (E) return std::move(E); // E == success (originally a no_data_found error). continue; } SmallVector, 4> Readers; for (auto &Reader : CoverageReadersOrErr.get()) Readers.push_back(std::move(Reader)); DataFound |= !Readers.empty(); if (Error E = loadFromReaders(Readers, *ProfileReader, *Coverage)) return std::move(E); } // If no readers were created, either no objects were provided or none of them // had coverage data. Return an error in the latter case. if (!DataFound && !ObjectFilenames.empty()) return make_error(coveragemap_error::no_data_found); return std::move(Coverage); } namespace { /// Distributes functions into instantiation sets. /// /// An instantiation set is a collection of functions that have the same source /// code, ie, template functions specializations. class FunctionInstantiationSetCollector { using MapT = std::map>; MapT InstantiatedFunctions; public: void insert(const FunctionRecord &Function, unsigned FileID) { auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); while (I != E && I->FileID != FileID) ++I; assert(I != E && "function does not cover the given file"); auto &Functions = InstantiatedFunctions[I->startLoc()]; Functions.push_back(&Function); } MapT::iterator begin() { return InstantiatedFunctions.begin(); } MapT::iterator end() { return InstantiatedFunctions.end(); } }; class SegmentBuilder { std::vector &Segments; SmallVector ActiveRegions; SegmentBuilder(std::vector &Segments) : Segments(Segments) {} /// Emit a segment with the count from \p Region starting at \p StartLoc. // /// \p IsRegionEntry: The segment is at the start of a new non-gap region. /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. void startSegment(const CountedRegion &Region, LineColPair StartLoc, bool IsRegionEntry, bool EmitSkippedRegion = false) { bool HasCount = !EmitSkippedRegion && (Region.Kind != CounterMappingRegion::SkippedRegion); // If the new segment wouldn't affect coverage rendering, skip it. if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { const auto &Last = Segments.back(); if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && !Last.IsRegionEntry) return; } if (HasCount) Segments.emplace_back(StartLoc.first, StartLoc.second, Region.ExecutionCount, IsRegionEntry, Region.Kind == CounterMappingRegion::GapRegion); else Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); LLVM_DEBUG({ const auto &Last = Segments.back(); dbgs() << "Segment at " << Last.Line << ":" << Last.Col << " (count = " << Last.Count << ")" << (Last.IsRegionEntry ? ", RegionEntry" : "") << (!Last.HasCount ? ", Skipped" : "") << (Last.IsGapRegion ? ", Gap" : "") << "\n"; }); } /// Emit segments for active regions which end before \p Loc. /// /// \p Loc: The start location of the next region. If None, all active /// regions are completed. /// \p FirstCompletedRegion: Index of the first completed region. void completeRegionsUntil(Optional Loc, unsigned FirstCompletedRegion) { // Sort the completed regions by end location. This makes it simple to // emit closing segments in sorted order. auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), [](const CountedRegion *L, const CountedRegion *R) { return L->endLoc() < R->endLoc(); }); // Emit segments for all completed regions. for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; ++I) { const auto *CompletedRegion = ActiveRegions[I]; assert((!Loc || CompletedRegion->endLoc() <= *Loc) && "Completed region ends after start of new region"); const auto *PrevCompletedRegion = ActiveRegions[I - 1]; auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); // Don't emit any more segments if they start where the new region begins. if (Loc && CompletedSegmentLoc == *Loc) break; // Don't emit a segment if the next completed region ends at the same // location as this one. if (CompletedSegmentLoc == CompletedRegion->endLoc()) continue; // Use the count from the last completed region which ends at this loc. for (unsigned J = I + 1; J < E; ++J) if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) CompletedRegion = ActiveRegions[J]; startSegment(*CompletedRegion, CompletedSegmentLoc, false); } auto Last = ActiveRegions.back(); if (FirstCompletedRegion && Last->endLoc() != *Loc) { // If there's a gap after the end of the last completed region and the // start of the new region, use the last active region to fill the gap. startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), false); } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { // Emit a skipped segment if there are no more active regions. This // ensures that gaps between functions are marked correctly. startSegment(*Last, Last->endLoc(), false, true); } // Pop the completed regions. ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); } void buildSegmentsImpl(ArrayRef Regions) { for (const auto &CR : enumerate(Regions)) { auto CurStartLoc = CR.value().startLoc(); // Active regions which end before the current region need to be popped. auto CompletedRegions = std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), [&](const CountedRegion *Region) { return !(Region->endLoc() <= CurStartLoc); }); if (CompletedRegions != ActiveRegions.end()) { unsigned FirstCompletedRegion = std::distance(ActiveRegions.begin(), CompletedRegions); completeRegionsUntil(CurStartLoc, FirstCompletedRegion); } bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; // Try to emit a segment for the current region. if (CurStartLoc == CR.value().endLoc()) { // Avoid making zero-length regions active. If it's the last region, // emit a skipped segment. Otherwise use its predecessor's count. const bool Skipped = (CR.index() + 1) == Regions.size() || CR.value().Kind == CounterMappingRegion::SkippedRegion; startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), CurStartLoc, !GapRegion, Skipped); // If it is skipped segment, create a segment with last pushed // regions's count at CurStartLoc. if (Skipped && !ActiveRegions.empty()) startSegment(*ActiveRegions.back(), CurStartLoc, false); continue; } if (CR.index() + 1 == Regions.size() || CurStartLoc != Regions[CR.index() + 1].startLoc()) { // Emit a segment if the next region doesn't start at the same location // as this one. startSegment(CR.value(), CurStartLoc, !GapRegion); } // This region is active (i.e not completed). ActiveRegions.push_back(&CR.value()); } // Complete any remaining active regions. if (!ActiveRegions.empty()) completeRegionsUntil(None, 0); } /// Sort a nested sequence of regions from a single file. static void sortNestedRegions(MutableArrayRef Regions) { llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { if (LHS.startLoc() != RHS.startLoc()) return LHS.startLoc() < RHS.startLoc(); if (LHS.endLoc() != RHS.endLoc()) // When LHS completely contains RHS, we sort LHS first. return RHS.endLoc() < LHS.endLoc(); // If LHS and RHS cover the same area, we need to sort them according // to their kinds so that the most suitable region will become "active" // in combineRegions(). Because we accumulate counter values only from // regions of the same kind as the first region of the area, prefer // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. static_assert(CounterMappingRegion::CodeRegion < CounterMappingRegion::ExpansionRegion && CounterMappingRegion::ExpansionRegion < CounterMappingRegion::SkippedRegion, "Unexpected order of region kind values"); return LHS.Kind < RHS.Kind; }); } /// Combine counts of regions which cover the same area. static ArrayRef combineRegions(MutableArrayRef Regions) { if (Regions.empty()) return Regions; auto Active = Regions.begin(); auto End = Regions.end(); for (auto I = Regions.begin() + 1; I != End; ++I) { if (Active->startLoc() != I->startLoc() || Active->endLoc() != I->endLoc()) { // Shift to the next region. ++Active; if (Active != I) *Active = *I; continue; } // Merge duplicate region. // If CodeRegions and ExpansionRegions cover the same area, it's probably // a macro which is fully expanded to another macro. In that case, we need // to accumulate counts only from CodeRegions, or else the area will be // counted twice. // On the other hand, a macro may have a nested macro in its body. If the // outer macro is used several times, the ExpansionRegion for the nested // macro will also be added several times. These ExpansionRegions cover // the same source locations and have to be combined to reach the correct // value for that area. // We add counts of the regions of the same kind as the active region // to handle the both situations. if (I->Kind == Active->Kind) Active->ExecutionCount += I->ExecutionCount; } return Regions.drop_back(std::distance(++Active, End)); } public: /// Build a sorted list of CoverageSegments from a list of Regions. static std::vector buildSegments(MutableArrayRef Regions) { std::vector Segments; SegmentBuilder Builder(Segments); sortNestedRegions(Regions); ArrayRef CombinedRegions = combineRegions(Regions); LLVM_DEBUG({ dbgs() << "Combined regions:\n"; for (const auto &CR : CombinedRegions) dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " << CR.LineEnd << ":" << CR.ColumnEnd << " (count=" << CR.ExecutionCount << ")\n"; }); Builder.buildSegmentsImpl(CombinedRegions); #ifndef NDEBUG for (unsigned I = 1, E = Segments.size(); I < E; ++I) { const auto &L = Segments[I - 1]; const auto &R = Segments[I]; if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) continue; LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col << " followed by " << R.Line << ":" << R.Col << "\n"); assert(false && "Coverage segments not unique or sorted"); } } #endif return Segments; } }; } // end anonymous namespace std::vector CoverageMapping::getUniqueSourceFiles() const { std::vector Filenames; for (const auto &Function : getCoveredFunctions()) llvm::append_range(Filenames, Function.Filenames); llvm::sort(Filenames); auto Last = std::unique(Filenames.begin(), Filenames.end()); Filenames.erase(Last, Filenames.end()); return Filenames; } static SmallBitVector gatherFileIDs(StringRef SourceFile, const FunctionRecord &Function) { SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) if (SourceFile == Function.Filenames[I]) FilenameEquivalence[I] = true; return FilenameEquivalence; } /// Return the ID of the file where the definition of the function is located. static Optional findMainViewFileID(const FunctionRecord &Function) { SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); for (const auto &CR : Function.CountedRegions) if (CR.Kind == CounterMappingRegion::ExpansionRegion) IsNotExpandedFile[CR.ExpandedFileID] = false; int I = IsNotExpandedFile.find_first(); if (I == -1) return None; return I; } /// Check if SourceFile is the file that contains the definition of /// the Function. Return the ID of the file in that case or None otherwise. static Optional findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { Optional I = findMainViewFileID(Function); if (I && SourceFile == Function.Filenames[*I]) return I; return None; } static bool isExpansion(const CountedRegion &R, unsigned FileID) { return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; } CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { CoverageData FileCoverage(Filename); std::vector Regions; // Look up the function records in the given file. Due to hash collisions on // the filename, we may get back some records that are not in the file. ArrayRef RecordIndices = getImpreciseRecordIndicesForFilename(Filename); for (unsigned RecordIndex : RecordIndices) { const FunctionRecord &Function = Functions[RecordIndex]; auto MainFileID = findMainViewFileID(Filename, Function); auto FileIDs = gatherFileIDs(Filename, Function); for (const auto &CR : Function.CountedRegions) if (FileIDs.test(CR.FileID)) { Regions.push_back(CR); if (MainFileID && isExpansion(CR, *MainFileID)) FileCoverage.Expansions.emplace_back(CR, Function); } // Capture branch regions specific to the function (excluding expansions). for (const auto &CR : Function.CountedBranchRegions) if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) FileCoverage.BranchRegions.push_back(CR); } LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); return FileCoverage; } std::vector CoverageMapping::getInstantiationGroups(StringRef Filename) const { FunctionInstantiationSetCollector InstantiationSetCollector; // Look up the function records in the given file. Due to hash collisions on // the filename, we may get back some records that are not in the file. ArrayRef RecordIndices = getImpreciseRecordIndicesForFilename(Filename); for (unsigned RecordIndex : RecordIndices) { const FunctionRecord &Function = Functions[RecordIndex]; auto MainFileID = findMainViewFileID(Filename, Function); if (!MainFileID) continue; InstantiationSetCollector.insert(Function, *MainFileID); } std::vector Result; for (auto &InstantiationSet : InstantiationSetCollector) { InstantiationGroup IG{InstantiationSet.first.first, InstantiationSet.first.second, std::move(InstantiationSet.second)}; Result.emplace_back(std::move(IG)); } return Result; } CoverageData CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { auto MainFileID = findMainViewFileID(Function); if (!MainFileID) return CoverageData(); CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); std::vector Regions; for (const auto &CR : Function.CountedRegions) if (CR.FileID == *MainFileID) { Regions.push_back(CR); if (isExpansion(CR, *MainFileID)) FunctionCoverage.Expansions.emplace_back(CR, Function); } // Capture branch regions specific to the function (excluding expansions). for (const auto &CR : Function.CountedBranchRegions) if (CR.FileID == *MainFileID) FunctionCoverage.BranchRegions.push_back(CR); LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name << "\n"); FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); return FunctionCoverage; } CoverageData CoverageMapping::getCoverageForExpansion( const ExpansionRecord &Expansion) const { CoverageData ExpansionCoverage( Expansion.Function.Filenames[Expansion.FileID]); std::vector Regions; for (const auto &CR : Expansion.Function.CountedRegions) if (CR.FileID == Expansion.FileID) { Regions.push_back(CR); if (isExpansion(CR, Expansion.FileID)) ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); } for (const auto &CR : Expansion.Function.CountedBranchRegions) // Capture branch regions that only pertain to the corresponding expansion. if (CR.FileID == Expansion.FileID) ExpansionCoverage.BranchRegions.push_back(CR); LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " << Expansion.FileID << "\n"); ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); return ExpansionCoverage; } LineCoverageStats::LineCoverageStats( ArrayRef LineSegments, const CoverageSegment *WrappedSegment, unsigned Line) : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), LineSegments(LineSegments), WrappedSegment(WrappedSegment) { // Find the minimum number of regions which start in this line. unsigned MinRegionCount = 0; auto isStartOfRegion = [](const CoverageSegment *S) { return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; }; for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) if (isStartOfRegion(LineSegments[I])) ++MinRegionCount; bool StartOfSkippedRegion = !LineSegments.empty() && !LineSegments.front()->HasCount && LineSegments.front()->IsRegionEntry; HasMultipleRegions = MinRegionCount > 1; Mapped = !StartOfSkippedRegion && ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); if (!Mapped) return; // Pick the max count from the non-gap, region entry segments and the // wrapped count. if (WrappedSegment) ExecutionCount = WrappedSegment->Count; if (!MinRegionCount) return; for (const auto *LS : LineSegments) if (isStartOfRegion(LS)) ExecutionCount = std::max(ExecutionCount, LS->Count); } LineCoverageIterator &LineCoverageIterator::operator++() { if (Next == CD.end()) { Stats = LineCoverageStats(); Ended = true; return *this; } if (Segments.size()) WrappedSegment = Segments.back(); Segments.clear(); while (Next != CD.end() && Next->Line == Line) Segments.push_back(&*Next++); Stats = LineCoverageStats(Segments, WrappedSegment, Line); ++Line; return *this; } static std::string getCoverageMapErrString(coveragemap_error Err) { switch (Err) { case coveragemap_error::success: return "Success"; case coveragemap_error::eof: return "End of File"; case coveragemap_error::no_data_found: return "No coverage data found"; case coveragemap_error::unsupported_version: return "Unsupported coverage format version"; case coveragemap_error::truncated: return "Truncated coverage data"; case coveragemap_error::malformed: return "Malformed coverage data"; case coveragemap_error::decompression_failed: return "Failed to decompress coverage data (zlib)"; case coveragemap_error::invalid_or_missing_arch_specifier: return "`-arch` specifier is invalid or missing for universal binary"; } llvm_unreachable("A value of coveragemap_error has no message."); } namespace { // FIXME: This class is only here to support the transition to llvm::Error. It // will be removed once this transition is complete. Clients should prefer to // deal with the Error value directly, rather than converting to error_code. class CoverageMappingErrorCategoryType : public std::error_category { const char *name() const noexcept override { return "llvm.coveragemap"; } std::string message(int IE) const override { return getCoverageMapErrString(static_cast(IE)); } }; } // end anonymous namespace std::string CoverageMapError::message() const { return getCoverageMapErrString(Err); } static ManagedStatic ErrorCategory; const std::error_category &llvm::coverage::coveragemap_category() { return *ErrorCategory; } char CoverageMapError::ID = 0;