//==- TargetRegisterInfo.cpp - Target Register Information Implementation --==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the TargetRegisterInfo interface. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Printable.h" #include "llvm/Support/raw_ostream.h" #include #include #define DEBUG_TYPE "target-reg-info" using namespace llvm; static cl::opt HugeSizeForSplit("huge-size-for-split", cl::Hidden, cl::desc("A threshold of live range size which may cause " "high compile time cost in global splitting."), cl::init(5000)); TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, regclass_iterator RCB, regclass_iterator RCE, const char *const *SRINames, const LaneBitmask *SRILaneMasks, LaneBitmask SRICoveringLanes, const RegClassInfo *const RCIs, unsigned Mode) : InfoDesc(ID), SubRegIndexNames(SRINames), SubRegIndexLaneMasks(SRILaneMasks), RegClassBegin(RCB), RegClassEnd(RCE), CoveringLanes(SRICoveringLanes), RCInfos(RCIs), HwMode(Mode) { } TargetRegisterInfo::~TargetRegisterInfo() = default; bool TargetRegisterInfo::shouldRegionSplitForVirtReg( const MachineFunction &MF, const LiveInterval &VirtReg) const { const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); MachineInstr *MI = MRI.getUniqueVRegDef(VirtReg.reg()); if (MI && TII->isTriviallyReMaterializable(*MI) && VirtReg.size() > HugeSizeForSplit) return false; return true; } void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const { for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI) RegisterSet.set(*AI); } bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet, ArrayRef Exceptions) const { // Check that all super registers of reserved regs are reserved as well. BitVector Checked(getNumRegs()); for (unsigned Reg : RegisterSet.set_bits()) { if (Checked[Reg]) continue; for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) { if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) { dbgs() << "Error: Super register " << printReg(*SR, this) << " of reserved register " << printReg(Reg, this) << " is not reserved.\n"; return false; } // We transitively check superregs. So we can remember this for later // to avoid compiletime explosion in deep register hierarchies. Checked.set(*SR); } } return true; } namespace llvm { Printable printReg(Register Reg, const TargetRegisterInfo *TRI, unsigned SubIdx, const MachineRegisterInfo *MRI) { return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) { if (!Reg) OS << "$noreg"; else if (Register::isStackSlot(Reg)) OS << "SS#" << Register::stackSlot2Index(Reg); else if (Register::isVirtualRegister(Reg)) { StringRef Name = MRI ? MRI->getVRegName(Reg) : ""; if (Name != "") { OS << '%' << Name; } else { OS << '%' << Register::virtReg2Index(Reg); } } else if (!TRI) OS << '$' << "physreg" << Reg; else if (Reg < TRI->getNumRegs()) { OS << '$'; printLowerCase(TRI->getName(Reg), OS); } else llvm_unreachable("Register kind is unsupported."); if (SubIdx) { if (TRI) OS << ':' << TRI->getSubRegIndexName(SubIdx); else OS << ":sub(" << SubIdx << ')'; } }); } Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) { return Printable([Unit, TRI](raw_ostream &OS) { // Generic printout when TRI is missing. if (!TRI) { OS << "Unit~" << Unit; return; } // Check for invalid register units. if (Unit >= TRI->getNumRegUnits()) { OS << "BadUnit~" << Unit; return; } // Normal units have at least one root. MCRegUnitRootIterator Roots(Unit, TRI); assert(Roots.isValid() && "Unit has no roots."); OS << TRI->getName(*Roots); for (++Roots; Roots.isValid(); ++Roots) OS << '~' << TRI->getName(*Roots); }); } Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) { return Printable([Unit, TRI](raw_ostream &OS) { if (Register::isVirtualRegister(Unit)) { OS << '%' << Register::virtReg2Index(Unit); } else { OS << printRegUnit(Unit, TRI); } }); } Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI) { return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) { if (RegInfo.getRegClassOrNull(Reg)) OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower(); else if (RegInfo.getRegBankOrNull(Reg)) OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower(); else { OS << "_"; assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) && "Generic registers must have a valid type"); } }); } } // end namespace llvm /// getAllocatableClass - Return the maximal subclass of the given register /// class that is alloctable, or NULL. const TargetRegisterClass * TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { if (!RC || RC->isAllocatable()) return RC; for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid(); ++It) { const TargetRegisterClass *SubRC = getRegClass(It.getID()); if (SubRC->isAllocatable()) return SubRC; } return nullptr; } /// getMinimalPhysRegClass - Returns the Register Class of a physical /// register of the given type, picking the most sub register class of /// the right type that contains this physreg. const TargetRegisterClass * TargetRegisterInfo::getMinimalPhysRegClass(MCRegister reg, MVT VT) const { assert(Register::isPhysicalRegister(reg) && "reg must be a physical register"); // Pick the most sub register class of the right type that contains // this physreg. const TargetRegisterClass* BestRC = nullptr; for (const TargetRegisterClass* RC : regclasses()) { if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) && RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC))) BestRC = RC; } assert(BestRC && "Couldn't find the register class"); return BestRC; } const TargetRegisterClass * TargetRegisterInfo::getMinimalPhysRegClassLLT(MCRegister reg, LLT Ty) const { assert(Register::isPhysicalRegister(reg) && "reg must be a physical register"); // Pick the most sub register class of the right type that contains // this physreg. const TargetRegisterClass *BestRC = nullptr; for (const TargetRegisterClass *RC : regclasses()) { if ((!Ty.isValid() || isTypeLegalForClass(*RC, Ty)) && RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC))) BestRC = RC; } return BestRC; } /// getAllocatableSetForRC - Toggle the bits that represent allocatable /// registers for the specific register class. static void getAllocatableSetForRC(const MachineFunction &MF, const TargetRegisterClass *RC, BitVector &R){ assert(RC->isAllocatable() && "invalid for nonallocatable sets"); ArrayRef Order = RC->getRawAllocationOrder(MF); for (MCPhysReg PR : Order) R.set(PR); } BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, const TargetRegisterClass *RC) const { BitVector Allocatable(getNumRegs()); if (RC) { // A register class with no allocatable subclass returns an empty set. const TargetRegisterClass *SubClass = getAllocatableClass(RC); if (SubClass) getAllocatableSetForRC(MF, SubClass, Allocatable); } else { for (const TargetRegisterClass *C : regclasses()) if (C->isAllocatable()) getAllocatableSetForRC(MF, C, Allocatable); } // Mask out the reserved registers const MachineRegisterInfo &MRI = MF.getRegInfo(); const BitVector &Reserved = MRI.getReservedRegs(); Allocatable.reset(Reserved); return Allocatable; } static inline const TargetRegisterClass *firstCommonClass(const uint32_t *A, const uint32_t *B, const TargetRegisterInfo *TRI) { for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) if (unsigned Common = *A++ & *B++) return TRI->getRegClass(I + countTrailingZeros(Common)); return nullptr; } const TargetRegisterClass * TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B) const { // First take care of the trivial cases. if (A == B) return A; if (!A || !B) return nullptr; // Register classes are ordered topologically, so the largest common // sub-class it the common sub-class with the smallest ID. return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this); } const TargetRegisterClass * TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const { assert(A && B && "Missing register class"); assert(Idx && "Bad sub-register index"); // Find Idx in the list of super-register indices. for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) if (RCI.getSubReg() == Idx) // The bit mask contains all register classes that are projected into B // by Idx. Find a class that is also a sub-class of A. return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); return nullptr; } const TargetRegisterClass *TargetRegisterInfo:: getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, const TargetRegisterClass *RCB, unsigned SubB, unsigned &PreA, unsigned &PreB) const { assert(RCA && SubA && RCB && SubB && "Invalid arguments"); // Search all pairs of sub-register indices that project into RCA and RCB // respectively. This is quadratic, but usually the sets are very small. On // most targets like X86, there will only be a single sub-register index // (e.g., sub_16bit projecting into GR16). // // The worst case is a register class like DPR on ARM. // We have indices dsub_0..dsub_7 projecting into that class. // // It is very common that one register class is a sub-register of the other. // Arrange for RCA to be the larger register so the answer will be found in // the first iteration. This makes the search linear for the most common // case. const TargetRegisterClass *BestRC = nullptr; unsigned *BestPreA = &PreA; unsigned *BestPreB = &PreB; if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) { std::swap(RCA, RCB); std::swap(SubA, SubB); std::swap(BestPreA, BestPreB); } // Also terminate the search one we have found a register class as small as // RCA. unsigned MinSize = getRegSizeInBits(*RCA); for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { // Check if a common super-register class exists for this index pair. const TargetRegisterClass *RC = firstCommonClass(IA.getMask(), IB.getMask(), this); if (!RC || getRegSizeInBits(*RC) < MinSize) continue; // The indexes must compose identically: PreA+SubA == PreB+SubB. unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); if (FinalA != FinalB) continue; // Is RC a better candidate than BestRC? if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC)) continue; // Yes, RC is the smallest super-register seen so far. BestRC = RC; *BestPreA = IA.getSubReg(); *BestPreB = IB.getSubReg(); // Bail early if we reached MinSize. We won't find a better candidate. if (getRegSizeInBits(*BestRC) == MinSize) return BestRC; } } return BestRC; } /// Check if the registers defined by the pair (RegisterClass, SubReg) /// share the same register file. static bool shareSameRegisterFile(const TargetRegisterInfo &TRI, const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) { // Same register class. if (DefRC == SrcRC) return true; // Both operands are sub registers. Check if they share a register class. unsigned SrcIdx, DefIdx; if (SrcSubReg && DefSubReg) { return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg, SrcIdx, DefIdx) != nullptr; } // At most one of the register is a sub register, make it Src to avoid // duplicating the test. if (!SrcSubReg) { std::swap(DefSubReg, SrcSubReg); std::swap(DefRC, SrcRC); } // One of the register is a sub register, check if we can get a superclass. if (SrcSubReg) return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr; // Plain copy. return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr; } bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) const { // If this source does not incur a cross register bank copy, use it. return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg); } // Compute target-independent register allocator hints to help eliminate copies. bool TargetRegisterInfo::getRegAllocationHints( Register VirtReg, ArrayRef Order, SmallVectorImpl &Hints, const MachineFunction &MF, const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const { const MachineRegisterInfo &MRI = MF.getRegInfo(); const std::pair> &Hints_MRI = MRI.getRegAllocationHints(VirtReg); SmallSet HintedRegs; // First hint may be a target hint. bool Skip = (Hints_MRI.first != 0); for (auto Reg : Hints_MRI.second) { if (Skip) { Skip = false; continue; } // Target-independent hints are either a physical or a virtual register. Register Phys = Reg; if (VRM && Phys.isVirtual()) Phys = VRM->getPhys(Phys); // Don't add the same reg twice (Hints_MRI may contain multiple virtual // registers allocated to the same physreg). if (!HintedRegs.insert(Phys).second) continue; // Check that Phys is a valid hint in VirtReg's register class. if (!Phys.isPhysical()) continue; if (MRI.isReserved(Phys)) continue; // Check that Phys is in the allocation order. We shouldn't heed hints // from VirtReg's register class if they aren't in the allocation order. The // target probably has a reason for removing the register. if (!is_contained(Order, Phys)) continue; // All clear, tell the register allocator to prefer this register. Hints.push_back(Phys); } return false; } bool TargetRegisterInfo::isCalleeSavedPhysReg( MCRegister PhysReg, const MachineFunction &MF) const { if (PhysReg == 0) return false; const uint32_t *callerPreservedRegs = getCallPreservedMask(MF, MF.getFunction().getCallingConv()); if (callerPreservedRegs) { assert(Register::isPhysicalRegister(PhysReg) && "Expected physical register"); return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1; } return false; } bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const { return !MF.getFunction().hasFnAttribute("no-realign-stack"); } bool TargetRegisterInfo::shouldRealignStack(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); const Function &F = MF.getFunction(); return F.hasFnAttribute("stackrealign") || (MFI.getMaxAlign() > TFI->getStackAlign()) || F.hasFnAttribute(Attribute::StackAlignment); } bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const { unsigned N = (getNumRegs()+31) / 32; for (unsigned I = 0; I < N; ++I) if ((mask0[I] & mask1[I]) != mask0[I]) return false; return true; } unsigned TargetRegisterInfo::getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const { const TargetRegisterClass *RC{}; if (Reg.isPhysical()) { // The size is not directly available for physical registers. // Instead, we need to access a register class that contains Reg and // get the size of that register class. RC = getMinimalPhysRegClass(Reg); } else { LLT Ty = MRI.getType(Reg); unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0; // If Reg is not a generic register, query the register class to // get its size. if (RegSize) return RegSize; // Since Reg is not a generic register, it must have a register class. RC = MRI.getRegClass(Reg); } assert(RC && "Unable to deduce the register class"); return getRegSizeInBits(*RC); } bool TargetRegisterInfo::getCoveringSubRegIndexes( const MachineRegisterInfo &MRI, const TargetRegisterClass *RC, LaneBitmask LaneMask, SmallVectorImpl &NeededIndexes) const { SmallVector PossibleIndexes; unsigned BestIdx = 0; unsigned BestCover = 0; for (unsigned Idx = 1, E = getNumSubRegIndices(); Idx < E; ++Idx) { // Is this index even compatible with the given class? if (getSubClassWithSubReg(RC, Idx) != RC) continue; LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx); // Early exit if we found a perfect match. if (SubRegMask == LaneMask) { BestIdx = Idx; break; } // The index must not cover any lanes outside \p LaneMask. if ((SubRegMask & ~LaneMask).any()) continue; unsigned PopCount = SubRegMask.getNumLanes(); PossibleIndexes.push_back(Idx); if (PopCount > BestCover) { BestCover = PopCount; BestIdx = Idx; } } // Abort if we cannot possibly implement the COPY with the given indexes. if (BestIdx == 0) return false; NeededIndexes.push_back(BestIdx); // Greedy heuristic: Keep iterating keeping the best covering subreg index // each time. LaneBitmask LanesLeft = LaneMask & ~getSubRegIndexLaneMask(BestIdx); while (LanesLeft.any()) { unsigned BestIdx = 0; int BestCover = std::numeric_limits::min(); for (unsigned Idx : PossibleIndexes) { LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx); // Early exit if we found a perfect match. if (SubRegMask == LanesLeft) { BestIdx = Idx; break; } // Try to cover as much of the remaining lanes as possible but // as few of the already covered lanes as possible. int Cover = (SubRegMask & LanesLeft).getNumLanes() - (SubRegMask & ~LanesLeft).getNumLanes(); if (Cover > BestCover) { BestCover = Cover; BestIdx = Idx; } } if (BestIdx == 0) return false; // Impossible to handle NeededIndexes.push_back(BestIdx); LanesLeft &= ~getSubRegIndexLaneMask(BestIdx); } return BestIdx; } Register TargetRegisterInfo::lookThruCopyLike(Register SrcReg, const MachineRegisterInfo *MRI) const { while (true) { const MachineInstr *MI = MRI->getVRegDef(SrcReg); if (!MI->isCopyLike()) return SrcReg; Register CopySrcReg; if (MI->isCopy()) CopySrcReg = MI->getOperand(1).getReg(); else { assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike"); CopySrcReg = MI->getOperand(2).getReg(); } if (!CopySrcReg.isVirtual()) return CopySrcReg; SrcReg = CopySrcReg; } } Register TargetRegisterInfo::lookThruSingleUseCopyChain( Register SrcReg, const MachineRegisterInfo *MRI) const { while (true) { const MachineInstr *MI = MRI->getVRegDef(SrcReg); // Found the real definition, return it if it has a single use. if (!MI->isCopyLike()) return MRI->hasOneNonDBGUse(SrcReg) ? SrcReg : Register(); Register CopySrcReg; if (MI->isCopy()) CopySrcReg = MI->getOperand(1).getReg(); else { assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike"); CopySrcReg = MI->getOperand(2).getReg(); } // Continue only if the next definition in the chain is for a virtual // register that has a single use. if (!CopySrcReg.isVirtual() || !MRI->hasOneNonDBGUse(CopySrcReg)) return Register(); SrcReg = CopySrcReg; } } void TargetRegisterInfo::getOffsetOpcodes( const StackOffset &Offset, SmallVectorImpl &Ops) const { assert(!Offset.getScalable() && "Scalable offsets are not handled"); DIExpression::appendOffset(Ops, Offset.getFixed()); } DIExpression * TargetRegisterInfo::prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags, const StackOffset &Offset) const { assert((PrependFlags & ~(DIExpression::DerefBefore | DIExpression::DerefAfter | DIExpression::StackValue | DIExpression::EntryValue)) == 0 && "Unsupported prepend flag"); SmallVector OffsetExpr; if (PrependFlags & DIExpression::DerefBefore) OffsetExpr.push_back(dwarf::DW_OP_deref); getOffsetOpcodes(Offset, OffsetExpr); if (PrependFlags & DIExpression::DerefAfter) OffsetExpr.push_back(dwarf::DW_OP_deref); return DIExpression::prependOpcodes(Expr, OffsetExpr, PrependFlags & DIExpression::StackValue, PrependFlags & DIExpression::EntryValue); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex, const TargetRegisterInfo *TRI) { dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n"; } #endif